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Periodontal regeneration by FGF-2: Present status

and future outlook

S. Murakami

Department of Periodontology, Graduate School of Dentistry, Osaka University, Japan.

Introduction

At present a variety of regenerative
therapies are available in the field of
periodontal therapy, such as bone grafts,
guided tissue regeneration (GTR) and
application of enamel matrix derivatives, all
of which have achieved a measure of success.
However, a number of issues with these
techniques remain to be solved, including
technique sensitivity, limitation of indications,
predictability, and the longevity of outcomes.

In the 1990s, Langer and Vacanti (1993)
developed the concept of tissue engineering,
consisting three key elements: signaling
molecules, scaffolds and stem cells (Figure 1).
They proposed that the active introduction of
one or more of the triad enables the induction
of desirable tissue regeneration. In relation to
periodontal regenerative therapy, the use of
somatic tissue stem cells and/or progenitor
cells within periodontal ligaments to act as
“stem cells” has been demonstrated (Seo et al
2004). In order to enhance the outcomes of
tissue regenerative therapy, it is crucial to
stimulate the biological activities of these
cells, and a physiologically efficient method
for doing so is through the use of cytokines or
growth factors. The ability of various
recombinant cytokines to enhance periodontal
tissue regeneration has been investigated in
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preclinical and clinical studies (Table 1). This
chapter reviews the potential use of basic
fibroblast growth factor (bFGF, FGF-2) to
promote periodontal tissue regeneration, with
a discussion of the current status and prospects
of FGF-2 therapy.

In vivo analyses of effects of FGF-2 on
periodontal regeneration

Fibroblast growth factor (FGF) was
discovered in 1974 as a protein from bovine
pituitary glands that strongly induces
proliferative activity in fibroblasts
(Gospodarowicz 1974). In 1984, two distinct
proteins with different isoelectric points were
fractionated from the pituitary extract using
acidic and basic pHs, which became known
as acidic FGF (aFGF, FGF-1) and basic FGF
(bFGF, FGF-2), respectively (Bohlen et a/
1984, Thomas et al 1984). A year later the
entire amino acid sequence of bovine FGF-2
was determined, and the cDNA of human
FGF-2 was cloned in 1986 (Abraham et a/
1986, Esch et al 1985). FGF-2 has received
particular attention in the field of regenerative
therapy, as it stimulates various stem cells to
proliferate while maintaining their
multipotency, and is a strong inducer of
angiogenesis.

In order to evaluate the effectiveness of
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» Endogenous somatic
stemcells in PDL

> Somatic mesenchymal

stem cells isolated from

othertissues

Periodontal
Tissue
Engineering

» Bonegraft ' > Enamelmatrix derivative
» Hydroxyapatite » Cytokine
» PB-TCP

» GTRmembrane

Figure 1. Triad of periodontal tissue engineering. The concept of tissue engineering consists of stem
cells, a signaling molecule and a scaffold. In the case of periodontal tissue engineering, the above-
indicated stem cells, signaling molecules and scaffold materials have been examined pre-clinically, with
some having already been introduced into clinics.

o

PDGF-BB (platelet-derived growth factor) plus IGF-I (insulin-like growth factor-I)
BMP-2 (bone morphogenetic protein-2)

TGF-J (transforming growth factor-f3)

OP-1 (BMP-7) (osteogenic protein-1)

BDNF (brain-derived neurotrophic factor)

FGF-2 (bFGF) (basic fibroblast growth factor

PDGF-BB (platelet-derived growth factor) plus B-TCP (GEM21S™) (B-tricalcium phosphate)

GDF-5 (growth and differentiation factor-5)

Table 1. Periodontal regeneration by recombinant cytokines
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applying topical FGF-2 to induce periodontal
tissue regeneration, a series of animal studies
using beagle dogs and non-human primates
was performed (Murakami et al 2003c,
Takayama et a/ 2001c). The mandibular
molars of beagle dogs, and the first and second
molars of non-human primates, were utilized
for experimentation. After elevation of
mucoperiosteal flaps, class II furcation defects
were surgically created and the exposed
cementum removed by curettage, before vinyl
polysiloxane impression material was placed
in the defects to induce inflammation. Four
weeks after the first surgery, a flap was raised
to expose the inflamed furcation, granulation
tissues were removed and the root surfaces
curetted. A small round bur was used to make
a horizontal groove on each root in order to
indicate the base of the defect. Furcation
defects were filled with a gelatinous carrier
without or with FGF-2 and the wound was

surgically closed. Periodontal tissue
regeneration at the test sites of beagle dogs
and non-human primates was examined at 6
and 8 weeks respectively, after FGF-2
application to the defects.

As shown in Tables 2 and 3, topical
application of FGF-2 significantly stimulated
periodontal regeneration in both the beagle
and the non-human primate models when
compared to control sites (Figure 2).
Histological observation revealed new
cementum with Sharpey’s fibers, new
functionally-oriented periodontal ligament
fibers and new alveolar bone (Murakami et a/
2003a, Takayama et al 2001). Interestingly,
enhancement of angiogenesis and
regeneration of peripheral nerve fibers at the
FGF-2-treated sites were also observed one
week after FGF-2 application (Murakami
2011a).

More

importantly, no epithelial

Control site (n=6)

NBF (%) 354+89
NTBF (%) 16.6+ 6.2
NCF (%) 372 +15.1

0.1% FGF-2-applied site (n=6)
83.6+ 14.3"
441+9.5

97.0+ 7.5

*: p<0.01, Control site - gelatinous carrier alone was applied.

Table 2. Efficacy of FGF-2 for periodontal tissue regeneration in animal models - Furcation class II
model in beagle dogs (6-week follow up) (modified from Murakami et a/ 2003)

Control site (n=6)

NBF (%) 543+8.0
NTBF (%) 31.6+3.5
NCF (%) 38.8+ 8.6

0.4% FGF-2-applied site (n=6)
71.3 +£13.5"
48.7 +£8.9"

72.2 +14.4™

*: p<0.05,™: p<0.01, Control site - gelatinous carrier alone was applied.

Table 3. Efficacy of FGF-2 for periodontal tissue regeneration in animal models - Furcation class 11
model in non-human primates (8-week follow up) (modified from Takayama et a/ 2001)
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Figure 2. Periodontal tissue regeneration by FGF-2 (furcation class II beagle model).
FGF-2 (0.1%) plus gelatinous carrier was topically applied to surgically-created class II furcation defects
in the mandibular molars of beagle dogs. Representative images at (A) baseline and (B) 6 weeks after
FGF-2 application are shown. Arrow indicates furcation. (from Murakami et a/ 2003)

downgrowth, ankylosis or root resorption was
observed at the FGF-2 sites in any of the in
vivo experiments, nor was any severe gingival
inflammation or swelling observed at any of
the sites examined throughout the
experimental periods.

In vitro analyses of effects of FGF-2

It has already been demonstrated that FGF-
2 promotes proliferation of fibroblasts and
osteoblasts, and enhances angiogenesis. These
activities are crucial in the process of
periodontal tissue regeneration. However,
periodontal ligament (PDL) cells also play an
important role during periodontal tissue
regeneration (Seo ef al 2004, Lekic ef al 2001,
Murakami et al 2003b, Shimono et al 2003).
To reveal the molecular and cellular
mechanisms by which FGF-2 enhances
periodontal tissue regeneration, a series of in
vitro experiments using PDL cells were carried
out.

RT-PCR experiments demonstrated that
PDL cells express FGF receptor (FGFR) 1 and
FGFR2 mRNA (Takayama et a/ 2002), and
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in vitro experiments revealed that FGF-2
regulates the proliferation, differentiation,
migration and extracellular matrix (ECM)
production of PDL cells (Takayama et al/ 1997,
Shimabukuro et al 2005, Shimabukuro et al
2008, Shimabukuro et al 2010, Terashima et
al 2008). FGF-2 also enhances the
proliferative responses of PDL cells, and does
so via the extracellular signal-regulated kinase
(ERK) 1/2 signaling pathway, an important
second messenger system downstream of
FGFRs. Interestingly it was found that FGF-
2 significantly decreased both ALPase activity
and the formation of calcified nodules in PDL
cells in a dose-dependent manner. However,
the suppressive effect of FGF-2 on PDL cell
differentiation into hard-tissue-forming cells
such as osteoblasts and cementoblasts was
reversible. Thus, when FGF-2-stimulated PDL
cells were re-cultured in the absence of FGF-
2, calcified nodule formation resumed. By
temporarily inhibiting the differentiation of
PDL cells, FGF-2 facilitates their proliferation
while maintaining their multipotency, but once
the influence of FGF-2 is biologically
diminished immature PDL cells begin to
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differentiate into osteoblasts and
cementoblasts.

FGF-2 also stimulated significant
migration of PDL cells, even when their
proliferation was completely inhibited by
mitomycin-C. Furthermore, it was shown that
FGF-2 stimulates the biosynthesis of
hyaluronan (HA) and the cell surface
expression of CD44, and that the interaction
between these molecules plays a crucial role
in PDL cell migration (Shimabukuro et a/
2010).

This series of in vitro studies has facilitated
the development of a hypothesis on the mode
of action of FGF-2. Thus, during the early
stages of periodontal tissue regeneration, FGF-
2 stimulates proliferation of PDL cells while
suppressing their differentiation (Figure 3).

Then, during the subsequent healing process,

Early phase

PDL celis

v Stimulationof v Creationof
proliferation suitable loca
and migration environment

v Differentiation into
fibroblasts, osteoblasts and
cementoblasts

when FGF-2 is no longer present at the
administration site, PDL cells begin to
differentiate into hard-tissue-forming cells
such as osteoblasts and cementoblasts
resulting in marked periodontal tissue
regeneration at sites of FGF-2 application. In
addition, FGF-2 induces the angiogenesis that
is indispensable in the regeneration of tissue,
and regulates the production of osteopontin,
heparan sulfate and HA from PDL cells
(Takayama et al 1997, Shimabukuro et a/
2005, Shimabukuro et al 2008, Terashima et
al 2008). Notably, FGF-2 specifically
promotes the production of high molecular
weight HA, which plays an important role in
cell migration and the early stages of wound
healing (Shimabukuro et al 2005). Based on
the results described above, we concluded that
FGF-2 contributes to the overall regeneration

Late phase

Figure 3. Possible mode of action of FGF-2 in induction of periodontal regeneration.

During the early stages of periodontal tissue regeneration, FGF-2 stimulates the proliferation and migration
of PDL cells while maintaining their multipotent nature, and in later stages induces their differentiation
into hard-tissue-forming cells such as osteoblasts and cementoblasts. Furthermore, FGF-2 induces
angiogenesis and increases the production of osteopontin, HS and macromolecular HA from PDL cells,
creating a local environment suitable for the regeneration of periodontal tissue.
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of periodontal tissue by creating a local
environment that facilitates the function of this
mechanism (Murakami 2011b).

Clinical trial of FGF-2 for periodontal
tissue regeneration

Phase lIA clinical trial

Given the promise shown by FGF2 as a
periodontal regeneration agent, we performed
a Phase II clinical trial. Using data from animal
trials, we estimated that an effective FGF-2
concentration for periodontal tissue
regeneration is 0.03 to 0.3%. This
concentration range was therefore applied in
the Phase IIA trial.

We prepared gel-like investigational drugs
using 3% hydroxypropylcellulose (HPC) as a
vehicle. We then designed a double-blinded
clinical trial with approximately 80
periodontitis patients from 13 dental facilities
in Japan. Patients displaying a two- or three-
walled vertical bone defect >3 mm from the
top of the alveolar bone were registered for
this clinical trial and randomly divided into
four groups: Group P (Placebo), Group L
(0.03% FGF-2), Group M (0.1% FGF-2) and
Group H (0.3% FGF-2). Patients underwent
flap surgery during which we administered
200 pl of the appropriate investigational drug
to periodontal tissue defects. For efficacy
analysis, standardized radiographs of the
region of investigation were taken before and
36 weeks after administration of the
investigational drug. The rate of increase in
alveolar bone height was independently
measured by five specialist dental radiologists
who were blinded to the treatment each patient
had received. The median of five
measurements taken from the same image was
then selected for efficacy analysis.

We observed that the mean alveolar bone
height in Group H (0.3% FGF-2) gradually
increased for 36 weeks after application
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(Figure 4). After 36 weeks, a significant
increase (p=0.021) in alveolar bone height was
seen on standardized radiographs between
Group P (23.92%) and Group H (58.62%)
(Figure 4) (Kitamura et a/ 2008). No serious
adverse effects were seen during the course
of this clinical trial. The data obtained from
this clinical trial suggest that topical
application of FGF-2 is efficacious in
regenerating periodontal tissue in patients with
two- or three-walled intrabony defects.

Phase Il B clinical trial

Having obtained positive results from the
Phase ITA trial, we progressed to a Phase 1B
trial (Kitamura et a/ 2011). In this large clinical
trial, approximately 260 periodontitis patients
from 25 dental facilities in Japan were
registered, and were randomly divided into
four groups comprising a placebo group and
three FGF-2 groups (0.2, 0.3 and 0.4%).
Results, in terms of efficacy and safety, were
similar to the Phase IIA trial (Kitamura et a/
2011, Murakami et al 2011a).

However, in both the Phase IIA and IIB
trials, no significant differences in the regain
of clinical attachment loss (CAL) between
Group P and the FGF-2 groups were found.
This is in agreement with observations
reported in a clinical trial showing the efficacy
of PDGF-BB plus B-TCP for periodontal
regeneration (Nevins ef al/ 2005). We speculate
that differences may exist between Group P
and the three FGF-2 groups in the histological
ratio of fibrous and epithelial attachments
achieving CAL acquisition.

Future Outlook of FGF-2 therapy

“Tissue engineering” is a fundamental
concept in tissue regeneration. As mentioned
above, we observed that topical application of
FGF-2 significantly induces periodontal tissue
regeneration, including fibrous attachment
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Rate of increase (%)
¢ 20 40 60 80 100
Group P ’
Group L ’
p=0.021
Group M !
GroupH 1=

Figure 4. Rates of increase in alveolar bone height in cases of 2- and 3-walled intrabony defects.

We compared rates of increase in alveolar bone height at 36 weeks after FGF-2 administration among
Group P (Placebo; n=19), Group L (0.03% FGF-2; n=19), Group M (0.1% FGF-2; n=19) and Group H
(0.3% FGF-2; n=17). Graph shows mean rates of increase in alveolar bone height (%) + standard deviation.
While no significant difference was observed between Groups L, M and P, Group H showed significantly
(p = 0.021) increased alveolar bone height in the bone defect region compared to Group P. (Modified
from Kitamura et al 2008)

Figure 5. Ideal FGF-2 carrier for periodontal tissue regeneration.
An FGF-2 carrier that could provide a formable and osteoconductive scaffold for undifferentiated cell
types within periodontal ligament would dramatically increase the indications of an FGF-2-based drug.
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and neogenesis of alveolar bone and
cementum in animal models. It is also
noteworthy that no gingival epithelial
downgrowth was observed at sites to which
FGF-2 was applied. In the clinical trials of
0.3% FGF-2, we observed significant
differences in the rate of increase in alveolar
bone height between the placebo group and
the FGF-2 group (Kitamura et al 2008,
Kitamura ef @/ 2011). This suggests that FGF-
2 is efficacious for periodontal regeneration
of intraosseous bone defects such as 2- or 3-
walled bone defects and probably furcation
involvements. However, to treat severe bony
defects such as 1-wall or horizontal bone
defects with FGF-2, the FGF-2 carrier may
require the function of a “scaffold” to
reinforce/direct its actions. HPC, which was
used in our clinical trials as a carrier, does not
function as a scaffold. Development of an
FGF-2 carrier that provides a formable and
osteoconductive scaffold for undifferentiated
cell types would dramatically increase the
indications of FGF-2 drugs beyond dental
applications and into the craniofacial field
(Figure 5). We recently examined the
combined effects of FGF-2 and B-TCP on
periodontal regeneration in 1-wall bony
defects in beagle models and found that the
combination induced significant periodontal
tissue regeneration, compared with B-TCP
alone (Anzai et al 2010). This suggests that
the combination of scaffold material(s) and
bioactive molecule(s) such as FGF-2 could be
useful for the treatment of severe cases.

The efficacy of “cytokine therapy” in
periodontal tissue regeneration was first
reported in the 1990s. Since then, various
recombinant cytokines have been investigated
for their efficacy (and safety) in stimulating
periodontal tissue regeneration, however few
have been approved for use in the dental field.
Therefore, we need to evaluate carefully the

usefulness and safety of cytokine therapy in
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stimulating periodontal tissue regeneration.
We hope that our work, together with future
investigations, will provide a framework
within which to understand “cytokine
therapy” and its application to periodontal
regeneration and oral reconstruction.
Furthermore, “stem cell therapy” may also
assist in improving periodontal regenerative
therapy. It has already been reported that
transplantation of bone marrow-derived cells
or adipose-tissue derived stem cells can
enhance periodontal regeneration (Murakami
2011b). The combined effects of “cytokine
therapy” and “stem cell therapy” still require
investigation.
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