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Pierre Robin sequence (PRS) can occur as a component of campomelic dysplasia (CD) and
acampomelic campomelic dysplasia (ACD) caused by dysfunction or dysregulation of SOXO,
although it can also take place as an isolated form. Recently, genomic alterations in the far
upstream and the far downstream region of SOX9 have been identified in patients with isolated
PRS. Here, we report a male patient with PRS and a heterozygous genomic rearrangement in the
5" region of SOX9. Clinical analysis revealed PRS-compatible craniofacial anomalies, mild
hypoplasia of the left scapula and normal male external genitalia. Molecular analysis identified
a paracentric inversion on the long arm of chromosome 17 with breakpoints at 17g21.31 and
17924.3, and a microdeletion spanning from -4.15 to -1.16 Mb relative to SOX9. These findings
indicate that the chromosomal region more than 1.16 Mb apart from SOX9 contains at least one
developmental enhancer(s) for SOX9 that plays a critical role in the development of the
mandible and a relatively small role in the development of the scapula. Moreover, the concept of
exclusion mapping argues that putative CD/ACD loci are located within the 1.16 Mb region
closest to SOX9 coding exons, which remain intact in this non-CD/ACD patient. This study

provides a novel example for long-range cis-regulatory mutations of SOX9.

Key words:

campomelic dysplasia, deletion, inversion, enhancer, non-coding element
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INTRODUCTION

Pierre Robin sequence (PRS) (OMIM 261800) is a congenital malformation sequence
characterized by micrognathia, glossoptosis and posterior U-shaped cleft palate [Robin et al.,
1923]. The primary defect of PRS is assumed to be mandibular hypoplasia caused by impaired
chondrogenesis or aberrant proliferation of neural crest cells [Gordon et al., 2009]. PRS
frequently occurs as a component of known syndromes such as campomelic dysplasia (CD)
(OMIM 114290), acampomelic campomelic dysplasia (ACD) and Stickler syndrome (OMIM
108300), although PRS can also take place as an isolated (non-syndromic) form
[Holder-Espinasse et al., 2001].

CD and ACD are caused by dysfunction or dysregulation of SOX9; multiple intragenic
mutations of SOXY as well as various types of chromosomal rearrangements around the coding
exons have been identified in patients with CD and ACD [Meyer J et al., 1997; Gordon et al.,
2009]. In addition to PRS, patients with CD manifest bowing of the long bones (campomelia),
hypoplastic scapulae, pelvic malformations, a missing pair of ribs, clubfeet and 46, XY gonadal
dysgenesis. ACD represents a mild variant of CD lacking campomelia. Since PRS is present in
most patients with CD and ACD [Gordon et al., 2009], SOX9 likely plays a particularly
important role in the development of the mandible. ‘

Recently, molecular defects in the far upstream and the far downstream region of
SOX9 have been identified in patients with isolated PRS. Jamshidi et al. [2004] and Jakobsen et
al. [2007] identified balanced translocations of t(2;17) in familial and sporadic PRS cases
respectively, and found that the 17q breakpoints are located more than 1.0 Mb upstream of
SOX9. Subsequently, Benko et al. identified variable genomic abnormalities (translocations,
deletions and a nucleotide substitution) at a position more than 1.0 Mb apart from SOX9 in two
sporadic and five familial cases with PRS [2009]. Furthermore, Benko et al. showed that the
deletions and translocations included several highly conserved non-coding elements (HCNE)
and the nucleotide substitution abolished the tissue-specific enhancer activity of one of these

HCNEs (HCNE-F2) [2009]. These data provide the first evidence that dysfunction of the
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very-long-range enhancer(s) of SOX9 causes isolated PRS. However, there is no other report of
patients with a molecular defect in the far upstream or the far downstream region of SOX9. Here,
we report on a male patient with a complex genomic rearrangement in the 5' region of SOX9.
Clinical and molecular analyses of this patient provide further information on tissue-specific

regulation of SOX9.

CLINICAL REPORT

This Japanese male patient was born at 38 weeks of gestation after an uncomplicated
pregnancy and delivery. At birth, his length was 48.0 cm (-0.48 SD), weight 2.83 kg (-0.55 SD)
and head circumference 32.0 cm (+ 0 SD). Immediately after birth, he was referred to our clinic
because of respiratory distress and facial anomalies. He had hypoplastic mandible, cleft palate
and glossoptosis and was therefore diagnosed as having PRS. In addition, he showed bilateral
clubfeet. Campomelia and tibial skin dimples were not observed. He manifested normal male
external genitalia with bilateral descended testes. On skeletal survey, dolichocephaly with
hypoplasia of the facial bone, micrognathia and hypoplasia of the left scapula were evident (Fig.
1). The right scapula was unremarkable. The ischia appeared somewhat broad, and the
ischiopubic synchondroses wide; yet, these findings were too mild to be distinguishable from
the normal range. Other radiological hallmarks in campomelic dysplasia, such as cervical
kyphosis, hypoplastic pedicles of the thoracic spine and narrow ilia, were not discernible.
G-banding chromosome analysis showed a normal 46,XY karyotype. Direct sequence analysis
for SOX9 detected no mutation in the coding region [Wada et al., 2009].

During several months after birth, he continually required medical intervention for
respiratory and feeding difficulties. He underwent a tracheotomy at 8 months of age. He showed
no obvious developmental delay; he was able to stand and walk along the wall at 1 year of age
and was able to indicate his desires and needs by pointing at 1 year and 7 months of age. On his
last examination at 1 year and 7 months of age, he measured 76.3 cm (-1.77 SD) and weighed

9.2 Kg (-1.31 SD). His parents and sister were clinically normal.
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MOLECULAR ANALYSES

This study was approved by the Institutional Review Board Committee at the National
Center for Child Health and Development. After obtaining written informed consent from the
parents, a peripheral blood sample was taken from the patient. Parental samples were not
available for molecular analysis.

High-resolution chromosomal banding revealed a karyotype of
46,XY,der(17)inv(17)(q21.31q24.3)del(17)(q24.3q23?) (Fig. 2A). Fluorescence in situ
hybridization (FISH) analysis using RP11-84E24-BAC containing SOX9 and
RP11-20NO1-BAC on 17g21.31 indicated a paracentric inversion on one of the two
chromosome 17 (Fig 2B and 2C). Signals for SOX9 were detected on two chromosome 17.
Comparative genomic hybridization (CGH) analysis using a human genome oligoarray (1x1 M
format, G4447A, Agilent Technologies Palo Alto, CA) indicated a heterozygous deletion in the
SOX9 upstream region (Fig. 3A). In silico analysis using UCSC genome browser
(http://genome.ucsc.edu/; hg 19; NCBI Build 37) showed that the deletion was 2.99 Mb in
physical length and flanked by the proximal and the distal breakpoints residing at -4.15 Mb and
-1.16 Mb to SOX9, respectively. A total of 18 known genes were located within the deleted

region, as assessed using the Refseq database (Fig. 3A).

DISCUSSION
A complex genomic rearrangement in the 5' region of SOX9 was identified in a male
patient with PRS. The genomic lesion was started at a point 1.16 Mb upstream of SOX9 and
affected several HCNEs. In particular, HCNE-F2, previously shown to act as a developmental
enhancer for the craniofacial region [Benko et al., 2009], was deleted in this patient (Fig. 3B).
Thus, the PRS phenotype of this patient would be ascribed to SOX9 misexpression due to loss of
HCNE-F2, although we cannot rule out the possibility of another hitherto unidentified

cis-regulatory element(s) of SOX9 being affected by the deletion/inversion. In this regard, while
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the deletion has removed 18 genes, clinical features of the patient can be explained by SOX9
dysfunction alone. Moreover, none of the 18 genes, except for KCNJ2, are known to be
involved in mandibular growth. Furthermore, whereas dominant negative mutations of human
KCNJ2 as well as homozygous deletion of mouse Kcn.J2 have been shown to result in cleft
palate and micrognathia [Andelfinger et ai., 2002; Zaritsky et al., 20001, haploinsufficiency of
KCNJ2/KenJ2 has not been shown to cause such abnormalities. Hence, the patient represents a
novel case with PRS caused by a SOX9 cis-regulatory mutation. Such submicroscopic genomic
rearrangements may also be present in other patients with isolated PRS. Indeed, only a few
genes have been identified as causative genes for isolated PRS. In this regard, it is noteworthy
that mutations of collagen genes including COL1142 and COL11AI were shown to cause a
PRS-like phenotype, i.e., Stickler syndrome without apparent ocular involvement [Vikkula et al.,
1995; Annunen et al., 1999]. Since collagen genes are known to be direct targets of SOX9
[Gordon et al., 2009], these data suggest that transactivation of collagen genes by SOX9 is
critical for the development of the mandible.

This patient manifested PRS-compatible craniofacial abnormalities and mild
hypoplasia of the left scapula. Nevertheless, he showed no typical CD/ACD skeletal features.
These data indicate that the genomic rearrangement of the patient disrupted at least one
enhancer for SOX9 that plays a critical role in the development of the mandible and a small role
in the development of the scapula. In addition, the concept of exclusion mapping implies that
tissue-specific enhancers for long bones, pelvic bones and ribs are located within the 1.16 Mb
region closest to SOX9, because CD/ACD is known to be a fully penetrant phenotype in patients
with intragenic mutations of SOX9 [Meyer et al., 1997]. Consistent with this, previous studies
have suggested that putative loci for CD/ACD are located within the 1.0 Mb region from SOX9
[Gordon et al., 2009]. Nevertheless, the phenotype of this patient could also be explained by
assuming that there is a global developmental enhancer(s) of SOX9 in the region more than 1.16
Mb apart from SOX9 and that the mandible and the scapula are more sensitive to reduced

transcriptional levels of SOX9 than other skeletal tissues [Gordon et al., 2009]. Indeed, various
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skeletal changes of the patient such as clubfeet, borderline broad ischia and relatively wide
ischiopubic synchondroses, may be related to mildly impaired SOX9 expression. In this context,
it is noteworthy that CD, ACD and isolated PRS are currently regarded as a continuum of a
disorder caused by SOX9 abnormalities [Gordon et al., 2009]. Thus, this patient may represent
an intermediate phenotype between ACD and isolated PRS.

This patient had normal male external genitalia, indicating that the testis-specific
enhancer(s) of SOX9 is preserved in this patient. Consistent with this, previous studies on
translocation-positive patients suggested that a testis-specific enhancer(s) is located within the
789 kb region closest to SOX9 [Gordon et al., 2009]. Moreover, animal studies have identified a
testis-specific enhancer immediately upstream of Sox9 [Sekido et al., 2008]. However, fairly
well preserved masculinization of this patient may be ascribed to incomplete penetrance of
gonadal dysgenesis in SOX9 abnormalities, because normal testicular development has been
observed in about 25% of 46,XY individuals with a SOX9 intragenic mutation [Mansour et al.,
1995].

To date, various types of cryptic deletions have been identified in patients with PRS
(Fig. 3B). Notably, there is no overlapping region of deletion that is shared by all PRS cases,
although the deletions of sporadic case 4 and familial case 1 reported by Benko et al. [2009] are
located within the deleted region of the patient described herein. These results imply that
multiple cis-acting elements around SOX9 are required for the appropriate development of the
mandible. Further analysis in a large cohort of PRS patients would enable us to clarify the
precise locations of SOX9 tissue-specific enhancers. In this regard, array CGH would serve as a
powerful tool for screening of such patients, because it can detect various copy number
alterations in a chromosomal region of several megabases.

In summary, the present study provides a novel example for long-range cis-regulatory
mutations of SOX9. Our findings suggest that the genomic region more than 1.16 Mb upstream
of SOX9 includes at least one cis-acting element that regulates SOX9 expression in the

developing mandible, and, to a lesser extent, in the developing scapula. Further studies will
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permit the full characterization of the genomic environment involved in tissue-specific

regulation of SOX9.



