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Table 3. Pharmacological Therapy for Wilson’s Disease

Kodama et al.

Drug Mode of Action

Maintenance Dose

Side effects

Trientine Induction of urinarycopper excre-
tion by chelating action

meg/kg/day

750-1,000 mg/day three times
a day; children, 20-25

Gastritis, in rare cases aplastic anemia and sideroblastic
anemia, neurological deterioration during initial phase of
treatment (about 26% [130])

D-Penicillamine Induction of urinary copper excre-

tion by chelating action

750-1,000 mg/day three times
a day; children: 20 mg/kg/day

Fever, rash, proteinuria, lupus-like reation, aplastic ane-
mia, leukopenia, thrombocytopenia, nephrotic syndrome,
degenerative change in skin, elastosis perforans serpin-
gosa, serous retinitis, hepatotoxicity, neurological deterio-
ration during initial phase of treatment (about 50% [110])

blocking copper absorption by com-

plexation with copper meals [108]

Zinc Blockage of copper absorption by 150 mg/day, three times a Gastritis, biochemical pancreatitis, zinc accumulation,
inducing metallothionein in entero- day; children: 50-75 mg/day possible changes in immune function
cytes

Tetrathiomolybdate | Detoxifying copper in plasma and 20 mg, three times with meals | Anemia, neutropenia, hepatotoxicity, neurologic deteriora-

and three times between

tion during initial treatment (about 4% [108])

tients who receive the full treatment [100]. Urinary copper excre-
tion increases above 1000 pg/day for a few months following peni-
cillamine or trientine treatment (initial treatment). These levels
range between 200-500 pg/day during maintenance therapy with a
chelating agent [89].

Penicillamine

While penicillamine is the most effective treatment for remov-
ing copper through urine excretion, it is associated with severe side
effects [101]. These side effects include immunological conditions
(e.g., lupus-like reactions, nephrotic syndrome, myasthenia gravis,
and Goodpasture syndrome), skin defects (e.g., degenerative
changes and elastosis perforans serpiginosa), and joint disorders
(e.g., arthropathy). Given these side effects, trientine is now the
preferred method of treatment [89,99].

Trientine

Figure 14 shows the chemical structure of trientine. Trientine is
known to remove copper from the blood compartment, and in-
creases urinary copper excretion. Zinc and iron are also excreted
with trientine, although in lesser amounts [102]. Trientine shares
some of penicillamine’s side effects, but appears to be significantly
less toxic and as efficacious as penicillamine [103]. For this reason,
trientine is the recommended chelator for treatment of patients with
hepatic WD [99].

Zinc

Zinc is a recommended treatment for presymptomatic patients
and for maintenance therapy of WD [99]. Zinc treatment of patients
with WD results in increased levels of non-toxic zinc-bound metal-
lothionein. The enterocyte metallothionein induced by zinc inhibits
copper uptake from the intestinal tract, resulting in a negative cop-
per balance [104]. Zinc is also thought to protect against copper
toxicity in the liver by promoting sequestration of free copper in a
non-toxic, metallothionein-bound form [105]. Treatment adequacy
is determined by measuring non-ceruloplasmin-bound copper levels
in the serum (5-15 pg/dL), 24-hour urinary copper excretion (<75
pg/day) [89], or by spot urinary copper excretion with less than
0.075 pg/mg creatinine [106]. Non-ceruloplasmin-bound copper
levels in the serum can usually be calculated from serum copper
and ceruloplasmin levels using the following equation:

non-ceruloplasmin-bound copper levels in the serum (ug/dL) =
serum copper level (ug/dL) — 3 x serum ceruloplasmin level
(mg/dL)

This is possible because approximately 3.15 pg of copper is
bound to one mg of ceruloplasmin.

Tetrathiomolybdate (TTM)

TTM is an anti-copper drug with a unique mechanism of action
developed for patients with neurological WD. It has 4 sulfur groups
that allow it to form a tripartite and stable interaction with copper
(Fig 14). If given with food, TTM forms a stable complex' with
copper, rendering it unavailable for absorption. When given without
food, however, it is well absorbed and complexes with free serum
copper. TTM treatment does not result in serum copper spikes typi-
cally observed with penicillamine and trientine [107]. This may
explain why neurological worsening is rare with TTM treatment
versus other chelating agents [108], although a patient receiving
TTM treatment was reported to develop status epilepticus [109].
While TTM is now preferred over other chelating agents for treat-
ment of neurological WD, the FDA recently decided that further
studies are required before it can be used in patients with neurologi-
cal WD (from HP of Pipex Parmaceuticals Comp).

Patients with Neurological Symptoms

In patients with neurological symptoms, clinical worsening is
observed during the first few weeks of treatment in approximately
50% and 26% of patients treated with penicillamine and trientine,
respectively. In addition, 25% of patients treated with penicillamine
are at risk of permanent neurological damage and may not recover
to baseline levels of function [110]. Neurological worsening during
initiation of anti-copper therapy is attributed to spikes in levels of
serum non-ceruloplasmin-bound copper which occur during mobi-
lization of large stores of copper in the liver [107]. Although neuro-
logical worsening is also observed in a few patients treated with
zinc, which is slow-acting, zinc alone or combination therapy with
zinc and trientine are now recommended in patients with neurologi-
cal WD [99,111,112]. Another problem is that neurological symp-
toms sometimes do not completely subside with treatment. Liver
transplantation in some patients with neurological disorders was
reported to resolve neurological symptoms associated with WD.
However, detailed neurological evaluations in these patients were
not carried out [113]. Because early treatment is critical in patients
exhibiting neurological disorders, medical education efforts target-
ing primary care physicians should be implemented in order to
improve early diagnosis [81].
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Fig. (14). Chemical reaction of chelation by trientine (upper) and tetrathiomolybdate (lower) [126].

Patients with Hepatic Symptoms

Patients with mild and moderate liver disorders are initially
treated with chelating agents (trientine preferred over penicil-
lamine) [89,99]. Serum levels of aminotransferases and non-
ceruloplasmin-bound copper are normalized a few months after
initial treatment, reaching adequate urinary copper excretion levels
that range between 200-500 pg/day. Once this occurs, maintenance
therapy is initiated with zinc alone or with a lower dose of chelating
agents (i.e., trientine). In patients with fulminant hepatitis or hemo-
lysis, liver transplantation is the most likely solution [114].

One major obstacle regarding long-term treatment of patients
with WD is poor drug compliance. A recent report showed that
25% of patients were not persistently taking their medication, re-
sulting in deterioration and occasionally fatal outcomes [115]. Ac-
cordingly, it is important for physicians to make an effort to pro-
mote compliance during therapy.

Hepatocellular carcinoma (HCC) has become an important
issue for patients with WD as current treatments have improved life
expectancy. In a previous study, we examined the characteristics of
25 WD patients with HCC and compared them to non-WD patients
with HCC in a cohort from the Liver Cancer Study group in Japan,
1994-2003 (LCS-J) [17]. The average age at diagnosis of HCC in
WD patients was considerably lower compared to non-WD patients.
In addition, male to female ratios were high in WD patients. Taken
together, these results show that patients with WD (mainly males)
are in danger of developing HCC despite treatment. The mechanism
that leads to carcinogenesis in WD remains unknown and is cur-
rently under investigation. LEC rats harboring a deletion in 4TP7B
develop HCC [76]. Tsubota et al reported that mRNA expression of
tumorigenic  proteins, Ras GTPase-activating-like  protein
(IQGAP1) and vimentin, was induced by persistent oxidative stress
in the liver of LEC rats, making these proteins important clinical
targets for HCC [116]. Production of oxygen and nitrogen reactive
species, and unsaturated aldehydes that arise from copper overload
in patients with WD has been reported to cause mutations in the
p53 tumor suppressor gene [117]. These findings suggest that oxi-
dative stress is associated with HCC. Vitamin E may act as an anti-
oxidant adjunct for WD therapy [118]. The copper chelating agent,
TTM, inhibits angiogenesis, fibrosis, and inflammation [119,120].
However, how these affect HCC development is unclear. Elucida-
tion of these mechanisms will help devise strategies aimed at pre-
venting HCC in patients with long-term WD.
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Early signs at birth or in the neonatal period before
typical symptomatic onset of Menkes disease.

1’zYalmHon,g.; Gu*, 2Chie Fujisawa, ?Hiroko Kodama

'Dept. of Health Policy, National Research Institute for Child
Health and Development, Tokyo, Japan; *Dept. of Pediatrics,
Teikyo University School of Medicine, Tokyo, Japan.
*gyh(@nch.go jp

Menkes disease (MNK) is caused by mutation of the gene that
encodes a copper-transporting ATPase. Subcutaneous injections of
copper-histidine complex initiated soon after birth is the currently
accepted mode of treatment. In this study, we summarized the early
signs during the neonatal period before typical symptomatic onset of
MNK and attempted to provide clues for early diagnosis. A total of
41 Japanese MNK patients were investigated. Clinical data for all
patients were obtained from medical records or medical record
summaries by a pediatrician’s retrospective review. Prior signs at
birth or in the neonatal period before typical symptomatic onset of
MNK  included congenital malformations (41.2%), hair
abnormalities (15.2%), feeding difficulty (15.2%), hypothermia
(13.0%), respiratory distress (10.7%), hypotonia (2.2%), skin
abnormalities (2.2%), and hyperbilirubinemia (in two patients).
There were totally 21 types of congenital malformations. Higher
arched palate was most commonly found (35.7%).
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A novel treatment of Menkes disease and occipital
horn syndrome.

'Bishin Ogawa*, 1Hiroko Kodama

'Department of Pediatrics, Teikyo University School of
Medicine, Tokyo, Japan. * eogawaster@gmailcom

The current standard therapy for Menkes disease (MD) and occipital
horn syndrome (OHS) is a parenteral administration of copper-
histidine. However, the treatment is less effective for neurologic
symptoms, because administered copper is not transported to
neurons. Diethyldithiocarbamate (DEDTC), a lipophilic chelater,
has shown beneficial effects in macular mice, an animal model of
MD, on copper concentrations and cytochrome ¢ oxidase activity in
brain. These results led us to treat MD and OHS patients with
disulfiram, a dimer of DEDTC, in combination with copper-
histidine. Disulfiram was orally administered in two MD patients
and an OHS patient after approval of the ethical committee of
Teikyo University Hospital, with maintenance dosage of 100 mg/d,
QD. Supplementation of copper-histidine was unaltered during the
study period. Serum levels of copper and ceruloplasmin tended to
increase in a MD patient, and in addition, he showed enriched
emotional expression and behavior more often after disulfiram
administration. We speculate that copper-disulfiram complex was
transported to neurons resulting in neurological improvement.
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Combination therapy with injections of copper and
oral administrations of disulfiram in the macular
mouse, an animal model of Menkes disease.

'Hiroko Kodama*, lWazttanapon Bhadhprasit,

'Chie Fujisawa. ' Teikyo University, Tokyo, Japan.
*hkodama@med.teikyo-u.ac

Menkes disease (MD) is a neuro degenerative disorder characterized
by copper deficiency caused by a defect in ATP7A. Treatment for
this disease is parenteral administration of copper-histidine. When
the treatment is initiated in newborn infants, neurological
degeneration is prevented. Delayed treatment, however, is not
effective, because copper accumulates at the blood-brain barrier
(BBB) and is not transported to neurons after the BBB matures. We
investigated the effects of a combination therapy of copper and
disulfiram, a lipophilic chelator, in macular mice. Mice were given
subcutaneous injections of CuCl, and oral administrations of
disulfiram twice a week for 60 days. Copper concentrations in the
brain, serum and liver of treated macular mice were significantly
higher than those of control macular mice which received CuCl,; and
distilled water instead of disulfiram. Cytochrome C oxidase activity
and catecholamine metabolism in the brains of treated mice were
also improved by the combination therapy, suggesting that the
administered copper is transported to the neurons.
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Combination therapy with copper injections and
oral administrations of disulfiram in the macular

mouse, an animal model of Menkes disease
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Injected copper will reach to
neurons when the BBB is
immature.

However, after the BBB becomes
mature, the copper can not reach
to neurons

Disturbances of Cu transport in the intestine and brain of Menkes disease

(Murata Y, Kodama H et al Pediatr Res 1997)

Object of this study

The object is to create treatment strategy of Menkes
disease by transporting copper into the Golgi
apparatus, and then to the neurons.

We investigated the effects of a combination therapy
with injections of copper and oral administration of
disulfiram, a lypophilic chelator, in the macular
mouse, an animal model of Menkes disease by two
methods.

One method is biochemical analysis, and another is
in vivo molecular imaging.



Materials & Methods |

Biochemical analysis

Macular mice were given subcutaneous injections
(10pg of CuCl,/time) and oral administrations of
disulfiram (0.3 mg/g body weight) twice a week for
8weeks.

Controls: normal littermates and macular mice treated
with only copper injections

Copper concentrations in the brain, serum, liver,
intestine and kidney were analyzed .

Cytochrome c oxidase activity and
adrenaline/dopamine were also analyzed in the brain.
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Copper concentration

Copper concentrations in the cerebellum, liver and serum of treated
macular mice were significantly higher than those of control macular

mice.
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Copper concentration

The copper concentrations in the kidney and intestine of macular
mice were significantly higher than those of normal mice. These
concentrations in the treated macular mice were higher than those
in control macular mice, but not significantly.
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Cytochrome c oxidase
(CCO) activity

The CCO activity in the cerebrum and the cerebellum of treated macular
mice was increased by combination treatment.
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Catecholamine analysis

Adrenarine/dopamine was also improved by the
combination therapy

Summary of biochemical analysis

The serum copper level was increased by the
combination therapy with CuCl, and disulfiram,
indicating that copper absorption is improved by
the treatment.

The copper concentration, cytochrome c oxidase
and catecholamine metabolism in the brain were
improved by the combination therapy, indicating
that the combination therapy is effective for

Menkes disease.

The copper concentration also increased in the
kidneys and intestine. However, no adverse effects
were observed.
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in vivo molecular imaging in mice
[Protocol of microPET imaging)
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Materials: macular mice
Controls: C3H/He mice
Imaging: microPET, Focus220 (Siemens,USA)

Disulfiram (100 mg/g) was intraperitoneally
injected and then 30 min after %4CuCl,was
injected intraveously.

Controls were injected only 84CuCl,.

In collaboration with
Drs. T. Takeda, H. Shintaku
of Osaka City Univ.
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Results of molecular imaging
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Summery of imaging by using PET

 Injected copper was mostly taken in the liver.

e Copper was accumulated in the brain by the
combination treatment of copper injections
and disulfiram until 24 hours after injections.

Conclusion

e Copper absorption is improved by the
combination treatment of copper injections and
oral administrations of disulfiram.

° These results suggest that copper is able to
penetrate to the Golgi apparatus and blood
brain barrier, and then is used for copper-
dependent enzymes.

e The combination therapy of the present study
could be effective for Menkes disease.



