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Aromatase excess syndrome (AEXS) is a rare autosomal dominant disorder characterized by gynecomastia. This condition is caused
by overexpression of CYPI9A1 encoding aromatase, and three types of cryptic genomic rearrangement around CYP19A1, that is,
duplications, deletions, and inversions, have been identified in AEXS. Duplications appear to have caused CYP19A1 overexpression
because of an increased number of physiological promoters, whereas deletions and inversions would have induced wide CYP19A1
expression due to the formation of chimeric genes consisting of a noncoding exon(s) of a neighboring gene and CYP19A1 coding
exons. Genotype-phenotype analysis implies that phenotypic severity of AEXS is primarily determined by the expression pattern of
CYPI9A1 and the chimeric genes and by the structural property of the fused exons with a promoter function (i.e., the presence or
the absence of a natural translation start codon). These results provide novel information about molecular mechanisms of human

genetic disorders and biological function of estrogens.

1. Introduction

Aromatase encoded by CYPI9AI is a cytochrome P450 en-
zyme that plays a key role in estrogen biosynthesis [1]. It
catalyzes the conversion of A*-androstendione into estrone
(E;) and that of testosterone (T) into estradiol (E;) in the
placenta and ovary as well as in other tissues such as the fat,
skin, bone, and brain [1].

Overexpression of CYPI9AI causes a rare autosomal
dominant disorder referred to as aromatase excess syndrome
(AEXS, OMIM no. 139300) [2-8]. AEXS is characterized by
pre- or peripubertal onset gynecomastia, gonadal dysfunc-
tion, advanced bone age from childhood to pubertal period,
and short adult height in affected males [2-8]. In particular,
gynecomastia is a salient feature in AEXS, and, therefore,
this condition is also known as hereditary gynecomastia or
familial gynecomastia [5]. Affected females may also show
several clinical features such as macromastia; precocious
puberty, irregular menses, and short adult height [5, 6, 8].

27

Recently, three types of cryptic genomic rearrangements
around CYPI9AI have been identified in 23 male patients
with AEXS [2—4]. The results provide useful implications not
only for the clarification of underlying mechanisms but also
for the identification of phenotypic determinants. Here, we
review the current knowledge about AEXS.

2. The Aromatase Gene (CYP19A1)

CYPI9A1 encoding aromatase is located on 15q21.2 adjacent
to DMXL2 and GLDN (Figure 1) [3, 9]. It spans ~123 kb and
consists of at least 11 noncoding exons 1 and nine coding
exons 2-10 [9-12]. Each exon 1 is accompanied by a tissue-
specific promoter and is spliced alternatively onto a common
splice acceptor site at exon 2, although some transcripts
are known to contain two of the exons 1 probably due to
a splice error [9-11]. Transcription of CYPI9AI appears
to be tightly regulated by alternative usage of the multiple
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Ficure 1: Simplified schematic representation indicating the genomic structure of CYP19A1. CYPI9AI is located on 15q21.2 adjacent to
DMXL2 and GLDN and consists of at least 11 noncoding exons 1 and nine coding exons 2-10 [9, 10]. Each exon 1 is accompanied by a
tissue-specific promoter and is spliced alternatively onto a common splice acceptor site at exon 2 [9-13].

promoters [9-13]. Actually, CYP19A1 is strongly expressed in
the placenta and moderately expressed in the ovary, whereas
it is only weakly expressed in a rather limited number of
tissues including skin, fat, and hypothalamus [4, 13]. Of the
11 noncoding exons 1, exon 1.4 seems to play a critical role in

the regulation of estrogen biosynthesis in males, because this

exon contains the major promoter for extragonadal tissues
[9, 10].

3. Molecular Bases of AEXS

A family with dominantly transmitted gynecomastia of pre-
pubertal onset was first described in 1962 by Wallach and
Garcia [14]. After this initial report, several cases have been
described [5-8, 15]. Laboratory examinations of the affected
males revealed markedly elevated serum estrogen values
and estrogen/androgen ratios and significantly increased
aromatase activity in fibroblasts and lymphocytes [5-8, 15].
Linkage analyses in two families indicated a close association
between CYP19A1-flanking polymorphic markers and the
disease phenotype [5, 6]. Thus, the condition was assumed to
be caused by gain-of-function mutations of CYPI9AI, and,
therefore, the name of AEXS was coined for this condition
[7, 8]. However, since direct sequencing and Southern
blotting analysis failed to detect mutations or copy number
abnormalities in the coding region of CYPI9A1 [5, 6], the
molecular basis of this entity remained elusive until recently.

In 2003, Shozu et al. reported a father-son pair and a
sporadic case with AEXS in whom they identified heterozy-
gous chromosomal inversions of the chromosome 15 [2].
Subsequently, Demura et al. performed detailed molecular
studies for these cases and additional two cases and char-
acterized four types of inversions affecting the 5’ region of
CYP19A1 [3]. Each inversion has resulted in the formation
of a chimeric gene consisting of CYPI9A1 coding exons
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and exon 1 of the widely expressed neighboring genes,
that is, CGNLI, TMOD3, MAPK6, and TLN2. These data
imply that overexpression of CYPI9AI in the inversion-
positive cases are caused by cryptic usage of constitutively
active promoters. Consistent with this, in silico analysis
revealed the presence of promoter-compatible sequences
around exon 1 of CGN1, TMOD3, and MAPK®6 in multiple
cell types, although such sequences remain to be identified
for noncoding exons of TLNZ2 [4].

We recently studied 18 males from six families with AEXS
(families A-F) and identified three types of heterozygous
cryptic genomic rearrangements in the upstream region of
the CYPI9A1 coding exons (Figure2) [4]. In families A
and B, we identified the same 79,156 bp tandem duplica-
tion encompassing seven of the 11 noncoding exons 1 of
CYP19A1. Notably, this duplication includes exon 1.4 that
functions as a major promoter for extragonadal tissues such
as fat and skin; therefore, CYPI9AI overexpression in these
families would be explained by increasing the number of
this promoter. Indeed, RT-PCR analysis detected a splice
variant consisting of exon I.4 at the 5" side and exon 1.8 at
the 3’ side in lymphoblastoid cell lines and skin fibroblasts
of the patients, indicating that the duplicated exon 1.4
at the distal nonphysiological position actually functions
as transcription start sites. In family C, we identified a
211,631 bp deletion affecting exons 2-43 of DMXL2 and
exons 5-10 of GLDN. This deletion appears to have caused
CYP19A1 overexpression because of cryptic usage of DMXL2
exon 1 as an extra transcription start site for CYPI19AI.
Indeed, RT-PCR revealed the presence of chimeric mRNA
clones consisting of DMXL2 exon 1 and CYP19AI exon 2,
supporting the notion that aberrant splicing has occurred
between these two exons. Such DMXL2/CYP19A1 chimeric
mRNA accounted for 2-5% of CYP19AI-containing tran-
scripts from skin fibroblasts. In families D-F, we identified
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F1GURE 2: Schematic representation of duplications and deletions identified in patients with AEXS. (a) the tandem duplication of families A
and B [4]. Genome: the duplication (yellow boxes) includes seven of the 11 noncoding exons 1 of CYPI9A1. mRNA: the sequence of a rare
transcript is shown. The 3’-end of exon 1.4 is connected with the 5'-end of exon L.8. (b) The deletion of family C [4]. Genome: the deletion
(a gray area) includes exons 2—43 of DMXL2 and exons 5-10 of GLDN. mRNA: The sequence of a rare chimeric gene transcript is shown.
DMXL2 exon 1 consisting of a noncoding region and a coding region is spliced onto the common acceptor site of CYP19A1 exon 2. (c) The
deletion of families D—F [4]. Genome: the deletion (a gray area) includes exons 2—43 of DMXL2. mRNA: the sequence of a rare chimeric
gene transcript is delineated. The mRNA structure is the same as that detected in family C.

an identical 165,901 bp deletion including exons 2—43 of
DMXL2. RT-PCR identified the same chimeric mRNA as that
detected in family C.

Collectively, three types of genomic rearrangements on
15q21 have been identified in AEXS to date, namely, inver-
sion type (four subtypes), duplication type, and deletion
type (two subtypes) (Figure 3(a)) [2—4]. In this regard,
sequence analyses for the breakpoints have indicated that (1)
inversion types are formed by a repeat sequence-mediated
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nonallelic intrachromosomal or interchromosomal recombi-
nation or by a replication-based mechanism of fork stalling
and template switching (FoSTeS) that occurs in the absence
of repeat sequences and is often associated with microhomol-
ogy [16], (2) duplication type is generated by FoSTeS, and
(3) deletions are produced by nonhomologous end joining
that takes place between nonhomologous sequences and is
frequently accompanied by an insertion of a short segment
at the fusion point or by a nonallelic recombination [16].
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Thus, it appears that genomic sequence around CYPI9A1
harbors particular motifs that are vulnerable to replication-
and recombination-mediated errors. The results provide
novel mechanisms of gain-of-function mutations leading to
human diseases.
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4. Clinical Features of AEXS

To date, a total of 23 male cases from 10 families have
been reported to have molecularly confirmed AEXS (Table 1,
Figure 3(a)) [2—4]. They exhibited pre- or peripubertal onset
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TasLE 1: Summary of clinical studies in male patients with aromatase excess syndrome (modified from [4]).

(a)
Family Family A Family B Family C Family D Family E
Mutation types Duplication Duplication Deletion Deletion Deletion
The promoter involved in CYP19AI CYP19A1 CYP19AI DMXL2 DMXL2
CYPI19A1 overexpression )
Case Case 1 Case 2 Case 3 Case 4 Case 5 Case6 Case7 Case8 Case 9 Case 10
Age at examination (year) 66 15 20 15 15 13 42 9 12 13
<Phenotypic findings> '
Gynecomastia (tanner breast stage) 2 2 2 3 4 4 4 3 4 4
Onset of gynecomastia (year) 13 13 10 11 12 11 11 7 9 10
Mastectomy (year) No Yes (15) No Yes (15) Yes(15)  Yes(13) No No Yes (12)  Yes(13)
Testis (ml) N.E. 12 12 12 12 12 N.E. 3 12 20
Pubic hair (tanner stage) N.E. 2-3 4 5 4 3 N.E. 1 3 4
Facial hair Normal Scarce Scarce Normal Absent Absent  N.E.  Absent Absent Absent
Height (SDS)? -1.2 -0.3 +0.4 +0.8 -2.0 -1.0 - -16 +2.7 +0 +1.8
Bone age (year)® N.E. N.E. N.E. 16.0 16.0 13.5 N.E. 13.0 15.0 17.0
Fertility (spermatogenesis) Yes ? (Yes)h ? [ ? Yes ? ? ?
<Endocrine findings>* B B S B S B S B S B S B B S B S B S
<At Dx> Stimulus
LH (mIU/mL) GnRH® 3.8 2.3 14.3 2.1 17.0 24 294 19 406 1.8 69.2 1.1 115 0.6 395 6.7 148
LH (mIU/mL) GnRH (after priming)f 1.8 9.5 1.3 107 '
FSH (mIU/mL) GnRH* 1.7 3.1 5.3 <05 1.2 09 24 14 42 20 78 32 66 06 29 07 1.0
FSH (mIU/mL) GnRH (after priming)f 2.6 32 <05 09
Prolactin (ng/ml) . 4.3 53 8.2 9.1 11.3 18.8
A*A (ng/mL) 0.5 1.1 1.2 0.6 0.7 24 29
T (ng/mL) hCGs 2.9 1.6 2.2 4.0 26 72 14 79 06 36 24 32 97
DHT (ng/mL) 0.4 0.2 04 12
Inhibin B (pg/mL) 61.6 74.6 83.5 752
E; (pg/mL) 157 120 124 57 63 53
E, (pg/mL) 29 15 22 59 56 38 24 19 25 58
E,/T ratio (X10°) 10.0 94 10.0 14.8 215 27.1 3L7 104 18.1

£Sojournopuy Jo [euInof [puorIEWIAU]
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()
Family , Family F Family G Family H Sporadic
Mutation types ’ Deletion Inversion Inversion Inversion
The promoter involved in
CYPI9AI overexpression DMX12 CGNL1 MAPK6 TMOD3 TLN2
Case Case 11 Case12 Case 13 Case14 Case15 Case16 Casel17 Case18 Case19 Case20 Case2ll  Case22 Case23
Age at examination (year) 69 35 44 45 9 8 13 10 35 7 13 17 36
<Phenotypic findings>
Gynecomastia (tanner breast stage) Yess  Yess  Yest  Yes' 2 3 3 3 Yes 3 5 N.E  Yes
Onset of gynecomastia (year) 2 2 ? ? 8 8 11 10 5 5 8 7 ?
Mastectomy (year) Yess  Yess  Yest  Yes' No No  Yes(?) Yes(?) Yes(16) No Yes (2) Yes () Yes(19)
Testis (ml) N.E. N.E. N.E. N.E. 2 1.5 2 2 N.E. N.E. N.E. Normal N.E.
Pubic hair (tanner stage) NE NE NE NE 1 1 2 1 Normal 1 2-3 (at21.0) N.E. N.E.
Facial hair N.E. NE NE  NE. Absent Absent Absent Absent Absent Absent N.E. Scarce N.E.
Height (SDS)* NE ~-15 ~-15 ~-15 +14 NE  +20  +24 Short >+25 -16(at21.0) Short NE.
Bone age (year)® NE NE NE NE 125 130 150 (a:‘l“; 5 NE (alf_,;f’s) 17.0 NE NE
Fertility (spermatogenesis) Yes Yes Yes Yes ? ? ? ? Yes ? ? ? ?
<Endocrine findings>* B B B B B B B S B B B B S B
<At Dx> Stimulus
LH (mIU/mL) GnRH® 0.2 3.5 1.7 3.0 0.2 <0.1 26 63 1.5 1.7 0.1 2.6 100 4.3
LH (mIU/mL) GnRH (after priming)®
FSH (mIU/mL) GnRH*® 14 23 0.8 0.8 14 05 08 1.2 1.2 1.5 0.3 <0.1 <0.1 2.7
FSH (mIU/mL) GnRH (after priming)* :
Prolactin (ng/ml)
A*A (ng/mL) 1.4 0.4 1.7 0.5 0.3 <03 09 15 1.3 0.8 0.3 24 09
T (ng/mL) hCGe 2.6 2.5 2.1 2.5 <0.1 <0.1 27 92 2.7 3.2 <0.1 1.2 38 23
DHT (ng/mL) 02 05 ’
Inhibin B (pg/mL)
E; (pg/mL) 32 34 59 34 26 4 77 86 903 119 544 556
E, (pg/mL) 10 19 24 31 11 7 25 40 223 15 178 392
E,/T ratio (x10%) 38 76 114 124 9.3 148 696 148.3 1704

SDS: standard deviation score; Dx: diagnosis; Tx: therapy; LH: luteinizing hormone; FSH: follicle stimulating hormone; A%A: androstenedione; T testosterone; DHT: dihydrotestosterone;

Ey: estrone; Ej: estradiol; GnRH: gonadotropin-releasing hormone; hCG: human chorionic gonadotropin; N.E.: not examined; B: basal; and S: stimulated.

Abnormal clinical findings are boldfaced.

Abnormally low hormone values are boldfaced, and abnormally high hormone values are underlined.

3Bvaluated by age- and ethnicity-matched growth references; heights >+2.0 SD or below < —2.0 SD were regarded as abnormal.

bAssessed by the Tanner-Whitehouse 2 method standardized for Japanese or by the Greulich-Pyle method for Caucasians; bone age was assessed as advanced when it was accelerated a year or more.
“Evaluated by age-matched male reference data, except for inhibin B and E; that have been compared with data from 19 adult males.

dTreated with aromatase inhibitors (anastrozole).

¢GnRH 100 pg/m? (max. 100 yg) bolus i.v.; blood sampling at 0, 30, 60, 90, and 120 minutes.

fGnRH test after priming with GnRH 100 ug i.m. for 5 consecutive days.

8hCG 3000 IU/m? (max 5000 IU) i.m. for 3 consecutive days; blood sampling on days 1 and 4.

hAlthough Case 3 has not yet fathered a child, he has normal spermatogenesis with semen volume of 2.5 ml (reference value: >2 ml), sperm count of 105 x 105/ml (>20 X 10%/ml), total sperm count of 262.5 X
106 (>40 x 106), motile cells of 70% (>50%), and normal morphological sperms 77% (>30%).

iThese four patients allegedly had gynecomastia that required mastectomy (age unknown).

The sister has macromastia, large uterus, and irregular menses; the parental phenotype has not been described.

The conversion factor to the S unit: LH 1.0 (TU/L), FSH 1.0 (IU/L), E; 3.699 (pmol/L), E 3.671 (pmol/L), A%A 3.492 (nmol/L), and T 3.467 (nmol/L).
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gynecomastia, small testes with fairly preserved masculin-
ization, obvious or relative tall stature in childhood and
grossly normal or apparent short stature in adulthood,
and age-appropriate or variably advanced bone ages. Blood
endocrine studies revealed markedly elevated E; values and

Ey/T ratios in all cases examined and normal or variably |

elevated E; values. In addition, A%-androstenedione, T,
and dihydrotestosterone values were low or normal, and
human chorionic gonadotropin (hCG) test indicated normal
T responses. Notably, LH values were grossly normal at
the baseline and variably responded to GnRH stimulation,
whereas FSH values were low at the baseline and poorly
responded to GnRH stimulation even after preceding GnRH
priming, in all cases examined.

The severity of such clinical phenotypes is primarily de-
pendent on the underlying mechanisms (Table 1). They are
obviously mild in the duplication type, moderate in the
deletion type, and severe in the inversion type, except for
serum FSH values that remain suppressed irrespective of the
underlying mechanisms. Likewise, gynecomastia has been
reported to be ameliorated with 1mg/day of aromatase
inhibitor (anastrozole) in the duplication and the deletion
types and with 2-4 mg/day of anastrozole in the inversion

type [4].

5. Expression Pattern of CYP19A1 and
the Chimeric Genes as
One Phenotypic Determinant

Phenotypic severity is much milder in the duplication type
than in the deletion and the inversion types. This would
be explained by the tissue expression pattern of CYPI9A1
and the chimeric genes. Indeed, RT-PCR analysis using
normal human tissue samples revealed that CYPI9AI is
expressed only in a limited number of tissues such as
placenta, ovary, skin, and fat, while the five genes involved
in the formation of chimeric genes are widely expressed with
some degree of variation (Figure 3(b)). Therefore, it is likely
that the duplication types would simply increase CYP19A1
transcription in native CYP19AI-expressing tissues, whereas
the deletion and the inversion types lead to CYPI19AI
overexpression in a range of tissues, because expression
patterns of chimeric genes are predicted to follow those of
the original genes. Furthermore, it is also likely that the
native CYPI9AI promoter is subject to negative feedback
by elevated estrogens [17], whereas such negative feedback
effect by estrogen is weak or even absent for the chimeric
genes in the deletion and the inversion types.

6. Structural Property of the Fused Exons as
Another Phenotypic Determinant

Phenotypic severity is also milder in the deletion type than
in the inversion types, despite a similar wide expression
pattern of genes involved in the chimeric gene formation
(Table 1, Figure 3(b)). In this context, it is noteworthy that
a translation start codon and a following coding region
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are present on exon 1 of DMXL2 of the deletion type but
not on exons 1 of the chimeric genes of the inversion
types (Figure 3(a)). Thus, it is likely that DMXL2/CYP19A1
chimeric mRNAs transcribed by the DMXL2 promoter
preferentially recognize the natural start codon on DMXL2
exon 1 and undergo nonsense-mediated mRNA decay and
that rather exceptional chimeric mRNAs, which recognize
the start codon on CYPI9AI exon 2, are transcribed into
CYP19A1 protein. By contrast, such a phenomenon would
not be postulated for the inversion-mediated chimeric
mRNAs, Consistent with this, it has been shown that the
DMXL2/CYP19A1 chimeric mRNA is present only in 2~
5% of CYP19A1-containing transcripts from skin fibroblasts,
whereas the CGNLI/CYP19A1 chimeric mRNA and the
TMOD3/CYP19A1 chimeric mRNA account for 89-100%
and 80% of transcripts from skin fibroblasts, respectively
[2,4].

In addition, the genomic structure caused by the rear-
rangements would affect efficiency of splicing between non-
coding exon(s) of neighboring genes and CYP19A1 exon 2.
For example, in the inversion subtype 1, the physical distance
between CGNLI exon 1 and CYPI9AI exon 2 is short, and,
while a splice competition may be possible between exon 1 of
neighboring genes and original CYP19A1 exons 1, eight of 11
CYP19A1 exons 1 including exon 1.4 have been disconnected
from CYP19A1 coding exons by inversion (Pigure 3(a)). This
may also enhance the splicing efficiency between CGNLI
exon 1 and CYPI9AI exon 2 and thereby lead to relatively
severe overexpression of the CGNLI-CYPI9AI1 chimeric
gene, although this hypothesis would not be applicable for
other chimeric genes.

7. Implication for
the Hypothalamus-Pituitary-Gonadal
Axis Function

It is notable that a similar degree of FSH-dominant hypog-
onadotropic hypogonadism is observed in the three types,
although E; and E; values and E,/T ratios are much higher
in the inversion type than in the duplication and deletion
types (Table 1). In particular, FSH was severely suppressed
even after GnRH priming in the duplication type [4]. This
implies that a relatively mild excess of circulatory estrogens
can exert a strong negative feedback effect on FSH secretion
primarily at the pituitary. This would be consistent with
the results of animal studies that show strong inhibitory
effect of E; on transcription of FSH beta-subunit gene in the
pituitary cells and almost negligible effect on synthesis of LH
beta-subunit and secretion of LH [18, 19]. In this regard,
while T responses to hCG stimulation are normal in the
duplication and the deletion types and somewhat low in the
inversion type, this would be consistent with fairly preserved
LH secretion in the three types and markedly increased
estrogen values in the inversion type. In addition, whereas
fertility and spermatogenesis are normally preserved in the
three types, this would be explained by the FSH-dominant
hypogonadotropic hypogonadism, because FSH plays only a
minor role in male fertility (spermatogenesis) [20].



8. Conclusions

Current studies argue that AEXS is caused by overexpression
of CYP19A1 due to three different types of cryptic genomic
rearrangements including duplications, deletions, and inver-
sions. It seems that transcriptional activity and structural
property of the fused promoter constitutes the underlying
factor for the clinical variability in most features of AEXS
except for FSH-dominant hypogonadotropic hypogonadism.
Thus, AEXS represents a novel model for gain-of-function
mutation leading to human genetic disorders.
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THZEINz. —F, 3FICBTHED LN E
{EFWMUNRS1Z, multiple ligation probe ampli-
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37

RERFIIMCH Y, 1 EHEOMEAMEEH LT,
mRNA ## CTid CYPIAI =27 v v 1DHHD
— DR ETAEERZO—0iENC, 5Elc
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