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mutations and in patients with acquired QT prolongation [25,26].
These effects run counter to what would be predicted by the Nernst
equation because they are opposite to what is expected from a simple
change in electrochemical driving force. Additionally, previous studies
demonstrated that the Iy blocking properties of dofetilide were
strikingly dependent on extracellular potassium [27]. The sensitivity
of Iy to blocking drugs at low [K*], was significantly increased
compared to that at high [K"], [27]. These findings may explain our
observation that current levels were smaller overall at low [K™],.

Furthermore, we also assessed the effect of the KCR1 E33D variant
on KCNH2 blockade by anti-arrhythmic drugs other than dofetilide to
determine whether the effect of the “loss of function” variant of KCR1
is generalized. Blockade of the KCNH2 channel by dofetilide required
channel activation and resulted in a time-dependent decline of the
open channel current [28]. We selected quinidine and p,L-sotalol
whose mode of action on KCNH2 channel is different from dofetilide.
Quinidine exhibited a rapid onset of blockade, with steady-state
achieved before the first few test pulses [29]. Meanwhile, the p,L-
sotalol blockade of the KCNH2 channel was biphasic: a significant
inhibition with the initial pulse and ready relaxation to equilibrium
blockade with subsequent test pulses. Our findings show that KCR1
E33D significantly increased the sensitivity of Ixcnpz to both quinidine
and p,L-sotalol as well as dofetilide, and may be associated with drug
induced QT prolongation and tachyarrhythmia. We therefore specu-
late that reduced repolarization reserve due to enhanced Iy, inhibition
caused by a “loss of function” KCR1 variant (e.g. E33D) combined with
the hypokalemic state may contribute to arrhythmia development,

" especially if a patient were to take an unrecognized I, blocker [30].

In general, we expect that loss of function variants in KCR1, such as
E33D, would increase the susceptibility of cardiac I, to inhibition by
KCNH2 inhibitors. The results from our study indicate that the E33D
variant in KCR1 leads to a loss of protection from blockade by the
prototypical KCNH2 blockers in vitro, as well as loss of enzymatic o~
glycosyltransferase function in a yeast expression system. This is the
first report implicating a loss of function variant in KCR1 in QT
prolongation and ventricular fibrillation, although further studies are
necessary to determine how diminished function of endogenous KCR1
in the heart can lead to increased arrhythmia susceptibility.
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Introduction

In the development of atherosclerosis,
monocytes transmigrate through the
endothelium and differentiate into
macrophages.? It was  previously
demonstrated that ephrin B1 cell signalling
peptide and its cognate receptor, ephrin
receptor B2 (EphB2), which are key
regulators  of  embryogenesis  and
morphogenesis,>* are expressed in

CELL MIGRATION; EPHRIN; EPH RECEPTOR; GENE
N PROFILE = . ” ‘

atherosclerotic lesions, and that both ephrin
Bl and EphB2Z inhibit monocyte
chemotaxis. There are few data, however,
on the gene expression profile of the ephrin
(EFN) and Eph receptor (EPH) family of genes
in atherosclerosis-related human cells. The
present study, therefore, analysed the
expression of all 21 members of the EFN and
EPH gene family in adult human monocytes
and related cells.
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Materials and methods

This study was performed in accordance with
the International Code of Medical Ethics of
the World Medical Association (Declaration
of Helsinki).

CELL PURIFICATION AND CULTURE
Mononuclear cells from wvenous blood of
healthy adult volunteers were prepared
using Lymphoprep™ (Axis-Shield, Oslo,
Norway). Monocytes were enriched by
counter-flow centrifugal elutriation (RSE
elutriation system; Hitachi Koki, Ibaraki,
Japan) as described previously.S THP-1
monocytic cells and Jurkat T cells were
purchased from the American Type Culture
Collection (ATCC, Rockville, MD, USA) and
cultured in RPMI medium supplemented
with 10% heat-inactivated fetal bovine
serum at 37°C in a 5% carbon dioxide
atmosphere. Adult human coronary artery
endothelial cells (HCAEC) were obtained
from the Applied Cell Biology Research
Institute (Kirkland, WA, USA) and
maintained in CSC medium (Applied Cell
Biology Research Institute) at 37°C in a 5%
carbon dioxide atmosphere. For experiments
with HCAEC cells up to the third passage
were used.

RNA ISOLATION AND RT-PCR
TEMPLATE PREPARATION

Total RNA was isolated from the cells using
Isogen reagent (Nippon Gene, Tokyo,
Japan),> -8 and was cleared of genomic DNA
by the use of genomic DNA wipe-out buffer
from the QuantiTect™ Reverse Transcription
Kit (Qiagen, Hilden, Germany). Reverse
transcription-polymerase chain reaction
(RT-PCR) was used in the present study
instead of a microarray’ because of its
specificity. Forward and reverse primers were
designed for particular exons within each
gene using human genomic DNA as the

common positive control template. The
exon-intron structures of all human EFN and
EPH genes were identified through the Map
Viewer Web site (http://www.ncbi.nlm.nih.
gov/mapview/map_search.cgi). The primer
sets used in this study are shown in Table 1.
Ex Taq™ polymerase (TaKaRa, Tokyo, Japan)
was used for PCR and the reaction mixture
was assembled to a total volume of 10 ul as
follows: 6.65 nl water, 1.0 ul 10 x Ex Tag™
buffer, 0.8 pl dNTP mixture (comprising
2.5 mM of each nucleotide), 1.0 pl forward
and reverse primers (5 uM of each primer),
0.5 pl template and 0.05 pl Ex Tag™
polymerase. The PCR was carried out with
pre-heating (94 °C for 2 min) and 30 or 35
cycles of amplification (94 °C for 20 s, 55°C
or 60°C for 30 s and 72°C for 40 s). DNA-
cleared RNA without reverse transcription
and human genomic DNA (50 nM;
Clontech, Palo Alto, CA, USA) were used as
negative and positive control templates,
respectively. For all cell types, PCR was
repeated three to five times and
representative data are shown.

Results

VALIDATION OF RT-PCR
CONDITIONS

Each primer set amplified a single PCR

-product from genomic DNA (Fig. 1, lane 3 in

each column) and no product from the DNA-
cleared RNA (Fig. 1, lane 2 in each column).
Thus, the RT-PCR products were specific to
the target genes and were derived from the
synthesized cDNA. When expression of the
genes coding for ephrin B1 (EFNBI) and
EphB2 (EPHB2) were examined in human
monocytes, THP-1 cells and HCAEC (Fig. 1),
expression was consistent with our previous
data obtained by RI-PCR using different
primers and an immunofluorescence
technique.® The present RT-PCR method was,
therefore, reliable for analysis of the
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FIGURE 1: Expression profiling of genes encodmg ephrln cell s:gnalhng peptldes and
their cognate ephrin receptors in adult human peripheral blood monocytes, THP-1
cells, adult human coronary artery endothelial cells (HCAEC) and Jurkat T cells by
reverse transcription—-polymerase chain reaction (RT-PCR). The templates used were:
lanes 1, cDNA; lanes 2, DNA-cleared RNA; lanes 3, genomic DNA and the PCR was
carried out for 30 (x 30) or 35 (x 35) cycles using the primer sets listed in Table 1

expression of the human EFN and EPH
family of genes. .

EFN AND EPH EXPRESSION IN
MONOCYTES AND THP-1 CELLS

In adult human peripheral blood monocytes,
multiple EFN and EPH genes of both the A
and the B subclasses were detected. All EFN
and EPH genes were detected except those
coding for ephrin A2, EphA3 and EphA7 and
ephrin B3 (Fig. 1, monocytes, x 35). Strong
signals were observed for the genes coding for
ephrin A4 and EphB2, EphB4 and EphB6 (Fig.
1, monocytes, x 30). In human monocytic
THP-1 cells, all EFN and EPH genes were
found except those coding for EphA3, EphA4

and EphAS8 (Fig. 1, THP-1, x 35) and robust
signals were obtained for the genes coding for
ephrin A4, EphAe6, EphB1, EphB4 and EphBé6
(Fig. 1, THP-1, x 30). The expression patterns
of the EFN and EPH genes in adult human
monocytes and THP-1 cells showed
similarities, though with some disparities
which might have been due to immortalizing
processes occurring in THP-1 cells.10

EFN AND EPH EXPRESSION IN
HCAEC AND JURKAT T CELLS
Multiple members of the A and B subclasses
of EFN and EPH genes were also detected in
HCAEC and Jurkat T cells. In HCAEC, all
members except the genes coding for EphAl
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and EphB3 were found (Fig. 1, endothelial
cells, x 35) and strong signals were detected
for the genes coding for ephrins A1, A4 and
A5, EphA2 and EphA4, ephrins B1 and B2,
and EphB1, EphB2 and EphB4 (Fig. 1,
endothelial cells, x 30). In Jurkat T cells, all
members except the genes coding for ephrins
A2 and AS, EphA4, EphA7 and EphB3 were
detected (Fig. 1, Jurkat, x 35) and robust
bands were obtained for the genes coding for
ephrins Al, A3 and A4, EphA3, ephrins Bl
and B2, EphB1, EphB2, EphB4 and EphB6
(Fig. 1, Jurkat, x 30). The pattern of
redundant expression of EFN and EPH genes
in HCAEC and Jurkat T cells was consistent
with previous reports.1t12

Discussion

Ephrins are divided into two subclasses
according to the way in which they are
bound to the cell membrane: those of
subclass A (ephrins A1 - A5) are attached to
the plasma membrane by a
glycosylphosphatidylinositol anchor,
whereas those of subclass B (ephrins B1 - B3)
have a single transmembrane domain.3#
Ephrins of subclasses A and B interact
primarily with Eph receptors of subclasses A
(EphAl - EphA8) and B (EphB1 - EphB4 and
EphB6), respectively. Characteristically,
ephrins and Eph receptors can mediate
bidirectional signalling: classical forward
signalling by Eph receptors via their intrinsic
tyrosine kinase activity and reverse
signalling by ephrins of subclass B via their
conserved cytoplasmic domain.® Despite
intensive study, the significance of ephrins
and Eph receptors in adults is still unclear.

We previously reported that ephrin B1 and
EphB2 were expressed in both dilated and
stenotic lesions associated with
atherosclerosis.> In the inflammatory process,
monocytes adhere to endothelial cells during
transmigration!* and to T lymphocytes as
antigen-presenting macrophages.'* Through
these cell-to-cell interactions, ephrins and Eph
receptors on monocytes/macrophages can
bind to their counterparts on other types of
cell or to other monocytes/macrophages.
Ephrin B1 and reverse signalling by EphB2
inhibit monocyte chemotaxis.® Several
ephrins of both subclasses A and B can inhibit
the chemotaxis of Jurkat T cells'? and ephrin
B1 promotes endothelial cell migration.!®

These findings suggest that a wide variety
of ephrins and Eph receptors might
modulate the chemokine-conditioned
transmigration/chemotaxis of monocytes.?
The ephrin/Eph receptor system might
provide clues about the regulatory
mechanisms of monocytes/macrophages
and the mechanisms underlying other
macrophage-related inflammatory diseases
in adults,6-20 and requires further study.
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