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Tenascin-C is expressed in abdominal aortic aneurysm tissue
with an active degradation process

Taizo Kimura,"** Koichi Yoshimura,"* Hiroki Aoki,"* Kyoko Imanaka-Yoshida,®” Toshimichi Yoshida,*’
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Center for Global Health and Medicine, Tokyo, Japan

Abdominal aortic aneurysm (AAA) is a common disease
caused by segmental weakening of the aortic walls and
progressive aortic dilation leading to the eventual rupture of
the aorta. Currently no biomarkers have been established to
indicate the disease status of AAA. Tenascin-C (TN-C) is a
matricellular protein that is synthesized under pathological
conditions. In the current study, we related TN-C expression
to the clinical course and the histopathology of AAA to
investigate whether the pattern of TN-C expression could
indicate the status of AAA. We found that TN-C and matrix
metalloproteinase (MMP)-9 were highly expressed in human
AAA. In individual human AAA TN-C deposition associated
with the tissue destruction, overlapped mainly with the
smooth muscle actin-positive cells, and showed a pattern
distinct from macrophages and MMP-9. In the mouse model
of AAA high TN-C expression was associated with rapid
expansion of the AAA diameter. Histological analysis
revealed that TN-C was produced mainly by vascular
smooth muscle cells and was deposited in the medial layer
of the aorta during tissue inflammation and excessive
destructive activities. Our findings suggest that TN-C may
be a useful biomarker for indicating the pathological status
of smooth muscle cells and interstitial cells in AAA.

Key words: aneurysm, aorta, biomarkers, inflammation, smooth
muscle cells, tenascin-C
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Abdominal aortic aneurysm (AAA) is a common disease in
older individuals that is caused by segmental weakening and
progressive dilation of the aorta. The main feature of AAA
tissue is the infiltration of inflammatory cells, including lym-
phocytes and macrophages, which produce various pro-
teases and proinflammatory cytokines.' In turn, the proteases
degrade the load-bearing extracellular matrix (ECM)>® and
the cytokines interfere with the normal biosynthesis of the
ECM by vascular smooth muscle cell (VSMC).* Eventually,
this leads to a weakening of the aortic walls.

Typically, AAA does not present any initial symptoms;
nevertheless, it eventually causes the rupture of the aorta
with high mortality. At present, the diameter and the growth
rate of aneurysms are used to predict the risk of aortic rup-
ture.®> Accordingly, large aneurysms (greater than 5.5 cm in
diameter) or those with higher than average growth rates
(more than 4 mm/year for aneurysms less than 4cm in
diameter) are recommended for surgical treatment.’ The
surgery entails either open repair, to replace the diseased
aorta with an artificial graft, or endovascular repair, to insert
a stent-graft that isolates the aneurysm from the hemody-
namic load. For small aneurysms with a low risk of rupture,
pharmacological therapy is desirable to prevent rapid
growth and rupture. There is, however, no established
therapy for small aneurysms.® Thus, it is essential to iden-
tify appropriate molecular targets for pharmacological treat-
ment and suitable biomarkers for assessing treatment
efficacy.” This requires elucidation of the molecular patho-
genesis of aneurysms and understanding the interplay
among inflammatory cells, interstitial cells including VSMC,
and the ECM.
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TN-C is a matricellular protein that is synthesized by
various cell types, including VSMC and fibroblasts,®'°
in response to inflammatory cytokines' and mechanical
stress.® As a modulator of the inflammatory process, TN-C is
typically synthesized under pathological conditions, including
wounds, inflammation, and tumorigenesis.'2 A previous study
has reported an increased expression of TN-C in human
AAA.'3™ However, it remains unknown how the expression
pattern of TN-C is related to the progression of AAA. In the
current study, we focused on the expression pattern of
tenascin-C (TN-C) in human and mouse models of AAA.

MATERIALS AND METHODS
Human aortic samples

We obtained surgical specimens at the maximal diameter of
the aneurysm from eight individuals with AAA for the analysis
of TN-C and matrix metalloproteinase (MMP)-9 levels. For
the controls, we obtained four autopsy specimens of the
aorta between the renal artery and the iliac bifurcation from
patients that died of unrelated causes. The samples were
immediately frozen at —-80°C. For the histological analysis,
we obtained tissue specimens from four AAA patients and
from three individuals who died of an unrelated cause. Four
separate tissue specimens were obtained from one individu-
al’s aorta and fixed in 4% paraformaldehyde. The experimen-
tal protocols were approved by the Ethical Commitiee for
Clinical Studies at the Yamaguchi University Hospital and
conformed to the provisions of the Declaration of Helsinki as
revised in Tokyo 2004. Written informed consent was
obtained from patients before the procurement of samples.

Mouse model of AAA

We induced AAA in mice with a periaortic application of 0.5 M
CaCl,, as described previously.* After the CaCl, application,
mice were killed at the indicated time points with an overdose
of pentobarbital to obtain aortic samples. The aortic tissue
was excised either immediately for the protein analysis (3—4
mice at each time point), or after the perfusion-fixation for the
histological analysis (3—4 mice at each time point). For the
perfusion-fixation, 4% paraformaldehyde in PBS was per-
fused at physiological pressure. All animal experimental pro-
tocols were approved by the Yamaguchi University School of
Medicine Animal Experiments Review Board.

Tissue staining

Paraffin-embedded sections of aortic tissue were stained
with rabbit polyclonal’® and mouse monoclonal (clone 4C8,

Immuno-Biological Laboratories, Takasaki, Japan) anti-TN-C,
anti-smooth muscle a-actin (Sigma, St Louis, MO, USA), or
anti-CD68 (DAKO Japan, Tokyo, Japan) antibodies. Stained
samples were visualized with the avidin-biotin-peroxidase
complex staining kit (Vector Laboratories, Burlingame, CA,
USA), according to the manufacturer’s instructions. To identify
the TN-C producing cells, B-galactosidase (B-gal) activity was
detected in heterozygous TN-C reporter mice, in which the
LacZ gene encoding B-gal was knocked in to one of the TN-C
loci, as described previously.'® Briefly, the entire aorta was
fixed with 4% paraformaldehyde in 0.1 M phosphate buffer
(pH 7.4) for 30 min at 4°C, then washed with buffer A (2 mM
MgClz, 0.01% sodium deoxycholate, 0.02% NP-40 in phos-
phate buffer). Then, the sample was incubated at 37°C for5 h
with Bluo-gal solution (Invitrogen, Carlsbad, CA, USA), which
contained 5.0 mM potassium ferrocyanide, 5.0 mM potassium
ferricyanide, and 0.5 mg/mL Bluo-gal in buffer A. The sample
was further fixed with 4% paraformaldehyde for 30 min and
then embedded in paraffin.'®'” The sections were deparaf-
finized and counterstained with Nuclear Fast Red (Vector
Laboratories) or hematoxylin. Standard procedures were
used for HE and EVG staining.

Protein analyses

Human and mouse aortic samples were rinsed in PBS and
then homogenized in a buffer containing 150 mM NaCl,
25 mM Tris (pH 7.4), 5 mM EDTA, 10 mM sodium pyrophos-
phate, 10 mM B-glycerophosphate, 1 mM NazNO,, 1 mM
PMSF, and 10 pg/mL aprotinin. The proteins were extracted
from the homogenized samples by adding Triton X-100
(Sigma) to a final concentration of 1%. Glyceraldehyde-3-
phosphate dehydrogenase (Chemicon, Billerica, MA, USA)
and TN-C were detected by immunobiotting with the cor-
responding antibodies. To analyze MMP-9, we performed
gelatin zymography of the conditioned media, as previously
described.®

RESULTS
Expression of TN-C in human AAA

We first examined the expression levels of TN-C by Western
blotting and MMP-9 by gelatin zymography in various sizes of
human AAA (Fig. 1). We found that TN-C and MMP-9 were
readily detectable in AAA and almost undetectable in the
control samples that were obtained from the aortae of
patients who had died of unrelated causes. When the expres-
sion level of TN-C was correlated with that of MMP-9, a
marker of tissue degradation that is secreted mainly by mac-
rophages, they did not show tight correlation (Fig. 1b). This is

© 2011 The Authors
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Figure 1 Expression of tenascin-C (TN-C) in a human abdominal
aortic aneurysm (AAA) and normal control aorta. (a) The relative
expression levels of TN-C were determined by protein levels
detected on Western blots, and cleaved matrix metalloproteinase
(MMP)-9 levels determined by gelatin zymography. The aortic diam-
eter corresponding to each lane is shown below the blot and zymo-
gram images. (b) Signals of TN-C (closed circles) and cleaved
MMP-9 (open circles) are shown for individual AAA samples excised
from the maximally dilated region of the AAA and for aortic tissue
samples from autopsy specimens. The levels are plotted against the
AAA diameter for each sample. Glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) was used as a loading control.

probably because of the heterogeneity in the pathology of
AAA tissue and suggests that expressions of TN-C and
MMP-9 may represent different aspects of the AAA patho-
physiology.

To further characterize the expression pattern of TN-C in
human AAA, we performed histological analyses of individual
AAA. During surgery, we obtained longitudinal strips of the
aneurysm wall that spanned from the region with normal
diameter to the maximally dilated region (Fig. 2a). These
aneurysmal wall strips showed the typical pathological fea-
tures of AAA. The regions with a normal diameter had pre-
served extracellular matrix architecture, as shown by EVG
staining, normal vascular smooth muscle cells, as shown by
smooth muscle o-actin (eSMA) staining, and few macroph-
ages, as shown by CD68 staining. TN-C immunostaining
showed very weak, diffuse staining in the normal regions of

© 2011 The Authors
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the aortic walls of AAA patients and in the normal aortic tissue
of the autopsy samples (Fig. 2b). The transitional region of
the aneurysm, from the region of normal diameter to the
region of dilated diameter, showed straightened, fragmented
elastic fibers, a slight decrease in the smooth muscle content,
and infiltration of macrophages. Immunostaining in this
region showed a high level of TN-C deposition that over-
lapped mainly with the staining of «SMA and less prominently
with that of CD&8. A high level of MMP-9 staining was also
observed in this region, which overlapped mainly with CD&8-
positive macrophages. The maximally dilated region of the
aneurysmal wall showed a marked loss of smooth muscle
cells and elastic lamellae, an increase in collagen fibers, and
the infiltration of macrophages. Immunostaining in this region
showed moderate and patchy TN-C deposition. Overall,
TN-C deposition was heaviest in the transitional region,
where there was a gradual loss of order in the extracellular
matrix architecture, gradual loss of smooth muscle cells, and
an increase in the infiltration of macrophages in the walls of
human AAA.

Expression of TN-C in a mouse model of AAA

We used the mouse model of AAA to evaluate TN-C expres-
sion during the time course of AAA progression. The mouse
model of AAA was created by periaortic application of CaCl,
in the infrarenal aorta; this caused chronic inflammation of
the aortic wall and fusiform dilation of the infrarenal aorta
(Fig. 3a). The expansion rate of the aneurysm was rapid in
the first 7 days, then slowed to a plateau phase between 14
and 28 days, and increased again between 28 and 42 days

.(Fig. 3b). After that, the aortic diameter reached the second

plateau phase. The expression levels of TN-C in the infrare-
nal aortic tissue increased in the first 7 days, returned to
basal levels at 14 days, then increased from 28 to 42 days
(Fig. 3c). After that, TN-C expression levels decreased.
These results indicate that the rapid expansion of AAA coin-
cided with a high expression of TN-C in the aortic tissue.

We examined the localization of TN-C deposition in mouse
aortic tissues with immunostaining. Control tissues that were
not treated with CaCl, showed normal architecture with no
cellular infiltration. The immunostaining showed only very
faint, diffuse TN-C deposition (Fig. 4a). In contrast, in AAA
tissues 7 days after CaCl, application, the elastic fibers in the
media exhibited mild fragmentation and straightening, and
the adventitia exhibited marked cellular infiltration. TN-C
staining was readily detectable in both the media and the
adventitia beneath the media. Forty-two days after CaCl,
application, the elastic lamellae in the aortic wall exhibited
elongation, destruction, and cellular infiltration and the
adventitia exhibited fibrosis. In this late phase, the elastic
fibers had lost their wavy pattern and heavy deposition of
TN-C was observed almost exclusively in the media.

Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd
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Figure 2 Histological analysis of a human abdominal aortic aneu-
rysm (AAA). (a) A longitudinal strip of human AAA was obtained from
the region with normal diameter to the maximally dilated region (from
the left to the right in the panels), as depicted by the diagram of an
AAA shown at the top. The tenascin-C (TN-C) expression pattern
was detected by immunostaining (brown). EVG staining is also
shown. (b) The enlarged images are shown for the regions indicated
in panel (a). The right column shows control aorta without aneurys-
mal changes from autopsy samples. The serial sections of the
samples were stained for TN-C and matrix metalloproteinase
(MMP)-9. The samples were also stained for smooth muscle a-actin
(oSMA) and CD68 to indicate the smooth muscle cells and macroph-
ages, respectively. Bar 100 pm.

Diameter (mm)

Control

Control
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Figure 4 Histological analysis of tenascin-C (TN-C) expression in a
mouse model of abdominal aortic aneurysm (AAA). (a) Representa-
tive images of mouse aortic walls stained with EVG, TN-C antibodies
(brown), and HE at the indicated time points after the application of
CaCl,. (b) Representative images of mouse aortic walls 42 days after
CaCl, application or saline; sections were stained with EVG, TN-C
antibodies, and the B-galactosidase activities (B-gal, blue). The
double staining for B-galactosidase activity and smooth muscle
o-actin (@SMA) are also shown (B-gal + aSMA). Arrows in the
enlarged images indicate the cells positive both for B-gal and for
aSMA. Bars 50 um.
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Figure 3 Time course of tenascin-C (TN-C) expression in a mouse model of abdominal aortic aneurysm (AAA). (a) Representative
photographs are shown for abdominal acrtae 6 weeks after the periaortic application of saline (left) or CaCl, (right). (b) The average changes
in the diameters of abdominal aortae are shown for the indicated time points after the application of CaCl,. Saline-treated aorta did not show
significant changes in diameter (data not shown). (¢) The average changes in the expression of TN-C in abdominal aoftic tissues, as
determined by Western blotting, are shown at the indicated time points after the application of CaCl,. Glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) served as an internal control for the protein loading. The data are means + SE from 3-4 independent observations.
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To identify the TN-C-producing cells in AAA, we used het-
erozygous TN-C reporter mice. These mice had the LacZ
gene, which encoded B-gal, knocked in to one of the TN-C
loci. These TN-C reporter mice showed responses similar to
wild-type mice when treated with the periaortic application of
CaCl,, with comparable aortic expansion and similar pathol-
ogy (data not shown). The activity of the TN-C gene was
assessed by staining the B-gal in the aortic tissue with Bluo-
gal as a chromogenic substrate. In saline-treated control
aortae, B-gal staining was almost undetectable (Fig. 4b); it
was only detected after a fong incubation with Bluo-gal (data
not shown), indicating a low level of TN-C gene activity. In
CaClx-treated mice, 42 days after the application, B-gal-
positive cells were detected in the medial layer. Double stain-
ing revealed that most of the B-gal-positive cells were also
positive for aSMA (Fig. 4b, arrows in the enlarged images),
indicating that TN-C was mainly produced by VSMC in the
mouse model of AAA.

DISCUSSION

In this study we found that both TN-C and MMP-9 were highly
expressed and showed distinct expression patterns in human
AAA. We observed TN-C deposition in the interstitium over-
lapping mainly with aSMA staining, while the expression
pattern of MMP-9 overlapped mainly with that of CD68-
positive macrophages in the transitional regions of human
AAA. The mouse AAA model demonstrated that the expres-
sion level of TN-C correlated with the expansion rate of the
AAA diameter and the destruction of the aortic wall. This is
consistent with previous reports that showed that TN-C
reflected inflammation and destruction in various tissues,
including cardiovascular tissue; those authors suggested that
TN-C would be a good marker for tissue degradation.'®?° Qur
studies in TN-C reporter mice revealed that TN-C was pro-
duced mostly by VSMC in the medial layer of the aorta.
These findings suggest that TN-C is produced mainly by
VSMC and interstitial cells in human AAA as previously
reported in a rat model of myocardial infarction,’ although
macrophages may also partly contribute to the production of
TN-C.2' Therefore, TN-C expression appears to reflect the
pathological status of VSMC and interstitial cells induced by
inflammation™ and mechanical stress® in AAA (Fig. 5).

Our findings imply that TN-C may serve as a clinical biom-
arker for disease activity in AAA.” This type of biomarker is
required in order to stratify risk in patients with AAA before
intervention.?? Such biomarkers are also required after endo-
vascular repair with stent-grafts, as AAA continue to grow in
a subset of patients even after the successful deployment of
the stent-graft, possibly because of continuing inflamma-
tion.® In addition, new biomarkers are essential for the devel-
opment of new pharmacotherapies for treating AAA.7?*

© 2011 The Authors
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Figure 5 Implications of the findings. Schematic diagram shows
the interpretation of our findings. Infiltrating macrophages (M)
produce various inflammatory cytokines and proteases. Proteases
degrade the extracellular matrix (ECM) to promote abdominal aortic
aneurysm. Inflammatory cytokines and mechanical stress induce the
production of tenascin-C (TN-C) mainly by vascular smooth muscle
cells (VSMC). Potential biomarkers are indicated in rectangles. TN-C
may be useful as a biomarker for indicating the pathological status of
VSMC.

Although various biomarkers have been proposed for AAA,
most are either secreted by inflammatory cells®* or produced
in ECM degradation,” and no biomarker is available for indi-
cating the pathological status of VSMC and interstitial cells.
TN-C may be useful for this purpose, possibly in combination
with other inflammatory markers and ECM degradation prod-
ucts. Furthermore, TN-C has advantageous properties for a
biomarker, because it is deposited locally in the inflammatory
lesion, which can be detected in bioimaging,?2° and it is also
released in stable forms into circulation. Indeed, serum TN-C
has been recognized as a useful biomarker for ventricular
remodeling in patients with acute myocardial infarction?” and
in patients with dilated cardiomyopathy.?®2°

In conclusion, we found that TN-C was expressed and
deposited in the regions of AAA that exhibited high tissue
degrading activity, both in human tissue and an animal
model. The expression of TN-C is likely to reflect the patho-
logical status of VSMC and interstitial cells in AAA. Further
study is required to elucidate the function of TN-C and to
evaluate whether the serum levels or bioimaging of TN-C
would be suitable for the assessment of disease activity in
human AAA.
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ARTICLE INFO ABSTRACT
Articl_e history: Objective: We sought to examine the effect of resveratrol (3,4',5-trihydroxy-trans-stilbene), a plant-
Received 21 October 2010 derived polyphenolic compound, on the development of abdominal aortic aneurysm (AAA).
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Available online 8 April 2011

Methods: AAA was induced in mice by periaortic application of CaCl,. NaCl (0.9%)-applied mice were used
as a sham group. Mice were treated with intraperitoneal injection of PBS (Sham/CON, AAA/CON, n=30
for each) or resveratrol (100 mg/kg/day) (AAA/RSVT, n=30). Six weeks after the operation, aortic tissue
was excised for further examinations.

Key wor.dS: . Results: Aortic diameter was enlarged in AAA/CON compared with Sham/CON. Resveratrol treatment
Abdominal aortic aneurysm . K . L. R .

Extracellular matrix reduced the aneurysm size and inflammatory cell infiltration in the aortic wall compared with AAA/CON.
Inflammation Elastica Van Gieson staining showed destruction of the wavy morphology of the elastic lamellae in
Neoangiogenesis AAAJCON, while it was preserved in AAA/RSVT. The increased mRNA expression of monocyte chemo-
Oxidative stress tactic protein-1, tumor necrosis factor-a, intercellular adhesion molecule-1, CD68, vascular endothelial

growth factor-A, p47, glutathione peroxidase (GPX)1 and GPX3 were attenuated by resveratrol treat-
ment (all p<0.05). Administration of resveratrol decreased protein expression of phospho-p65 in AAA.
The increased 8-hydroxy-2'-deoxyguanosine-positive cell count and 4-hydroxy-2-nonenal-positive cell
count in AAA were also reduced by resveratrol treatment. Zymographic activity of matrix metallopro-
teinase (MMP)-9 and MMP-2 was lower in AAA/RSVT compared with AAA/CON (both p<0.05). Compared
with AAA/CON, Mac-2* macrophages and CD31* vessels in the aortic wall were decreased in AAA[RSVT
(both p<0.05).
Conclusion: Treatment with resveratrol in mice prevented the development of CaCl,-induced AAA, in
association with reduced inflammation, oxidative stress, neoangiogenesis, and extracellular matrix dis-
ruption. These findings suggest therapeutic potential of resveratrol for AAA.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction tribute to prevention of cardiovascular events [1]. This mechanism
may be involved in the so-called French paradox, which refers

Resveratrol (3,4’,5-trihydroxy-trans-stilbene), one of the to the phenomenon that the French experience a relatively low
dietary polyphenols found in red wine and grape skin, is known to incidence of cardiovascular disease despite a high-calorie, high-fat
have an antioxidant and anti-inflammatory effect that may con- diet. Resveratrol was reported to exhibit various bioactivity, includ-
ing antioxidant [2-4], anti-inflammatory [5], anti-angiogenic [6],
and anti-tumorgenic [7] effects. Recently, resveratrol has been
shown to activate silent information regulator two ortholog

* Corresponding author. Tel.: +81 3 3451 8121, fax: +81 3 3454 0067. (SIRT)1, which is known to be a regulator of aging [4]. It delays

E-mail address: anzai@cpnet.med.keio.ac.jp (T. Anzai).
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age-related deterioration and mimics transcriptional aspects of
dietary restriction [8]. Moreover, resveratrol was also shown to
confer vasoprotection in animal models of type 2 diabetes and
aging [9]. However, the effect of resveratrol on aortic diseases such
as abdominal aortic aneurysm (AAA) remains unclear.

AAA is a localized dilatation of the abdominal aorta and occurs
most commonly at the infrarenal portion. The prevalence of AAA
increases with age, occurring in up to 9% of adults older than 65
years of age [10]. If surgical treatment is not applicable, AAA pro-
gresses to rupture, with a high mortality. Although much effort
has been made to clarify the mechanism of development of AAA,
effective nonsurgical therapy is currently not available. Recent
studies have revealed that inflammatory processes and oxidative
stress are involved in the pathogenesis of AAA. Various chemical
mediators have been shown to play key roles in vascular inflamma-
tion and oxidative stress, together with infiltration of leukocytes.
Inflammation-related molecules, including tumor necrosis factor
(TNF)-a [11], monocyte chemotactic protein (MCP)-1 [12], inter-
cellular adhesion molecule (ICAM)-1 [13], c-Jun N-terminal kinase
(JNK) [14], and IkB kinase/nuclear factor (NF)-«B [15], and oxida-
tive stress [16] synergistically activate each other and contribute
to the pathogenesis of AAA.

CaCly-induced AAA is an established animal model of AAA,
which mimics the pathological features of human AAA. Periaortic
application of CaCl, induces production of reactive oxygen species
(ROS) and subsequent severe chronic inflammation followed by
extracellular matrix (ECM) degradation [14,17]. This model is suit-
able to examine the effect of antioxidant or anti-inflammatory
therapy for AAA. In this study, we examined the effect of resveratrol
on the development of AAA, focusing on oxidative stress, inflam-
mation, and neoangiogenesis.

2. Methods
2.1. Aneurysm induction in mice and study protocol

AAA was induced in 6- to 8-week-old C57BL/6] mice by periaor-
tic application of 0.5M CaCl, as described previously [17] with
minor modifications. NaCl (0.9%) was substituted for CaCl, in sham-
operated mice (Sham/CON, n=30). Mice surviving the operation
for 6 h were randomly assigned to two groups. Mice were treated
with intraperitoneal injection of 100 mg/kg resveratrol (#R5010,
Sigma, St. Louis, MO, USA)in 500 .l phosphate buffered saline (PBS)
(AAA|RSVT, n=30) or 500 w1 PBS alone (AAA/CON, n=30), respec-
tively, 6 h after the operation and then every day. We determined
the dose based on the previous study showing that 100 mg/kg of
resveratrol prevented endotoxin-induced uveitis-associated cellu-
lar and molecular inflammatory responses by inhibiting oxidative
damage and redox-sensitive NF-kB activation [18]. Six weeks after
the operation, we measured blood pressure and heart rate using the
tail-cuff method under conscious state as previously described (BP-
98A-L, Softron, Tokyo, Japan) [19]. Then mice were sacrificed with
an overdose of pentobarbital and perfusion-fixed with a mixture
of 10% formaldehyde in PBS at physiological perfusion pressure,
We excised the abdominal aorta, photographed it to determine the
external diameter and subjected it to histological analyses. All pro-
cedures were performed in accordance with the Keio University
animal care guidelines, which conform to the Guide for the Care and
Use of Laboratory Animals published by the US National Institute of
Health (NIH Publication No. 85-23, revised 1996).

2.2. Histological analysis

Paraffin-embedded cross-sections of abdominal aorta (6 pm
thick) were stained with Hematoxylin—-Eosin (HE), elastica Van
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Fig. 1. Mouse CaCl,-induced abdominal aortic aneurysm (AAA). Representa-
tive macroscopic appearance of the aorta in sham-operated control mouse
(Sham/CON, A), AAA control mouse (AAA/CON, B), and resveratrol-treated AAA
mouse (AAA/RSVT, C) is shown. The diameter of the abdominal aorta 6 weeks after
the operation is larger in AAA/CON than in Sham/CON. The diameter is smaller
in AAA/RSVT than in AAA/CON (D). Data are mean SD. *p<0.05 vs. Sham/CON,
tp<0.05 vs. AAA/CON, :

Gieson (EVG), Victoria Blue, Picrosirius Red, and dihydroethidium
(DHE), which is a fluorescent dye to detect intracellular production
of ROS. Victoria Blue-positive area in the aortic wall was measured
by Lumina Vision (Mitani Corporation, Japan). Immunohisto-
chemical staining was performed on paraffin-embedded tissue
sections using the avidin-biotin complex method according to
the manufacturer’s instructions (Vectastain ABC; Vector Labora-
tories, Burlingame, CA, USA). The following primary antibodies
used were: Mac-2 as a macrophage marker (CL8942AP, Cedar-
lane, Ontario, Canada), CD31 (AnaSpec 53332, AnaSpec, Fremont,
CA, USA) to assess neoangiogenesis, 8-hydroxy-2’-deoxyguanosine
(8-OHdG) (MHN-020P, JaICA, Shizuoka, Japan), which is gener-
ated from deoxyguanosine in DNA by hydroxyl free radicals and
serves as a sensitive and specific marker of DNA damage or oxida-
tive stress, and 4-hydroxy-2-nonenal (4-HNE) (MOG-020P, JaICA,
Shizuoka, Japan), which is known to be increased in association
with oxidative stress due to the increase in the lipid peroxida-
tion chain reaction. The number of Mac-2-positive macrophages,
8-OHdG-positive cells, and 4-HNE-positive cells was quantified by
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Fig. 2. Hematoxylin-Eosin (HE) and elastic Van Gieson (EVG) staining of the mouse aortic wall. Representative HE staining of the aortic wall (Sham/CON: A, D, AAA/CON: B,
E, AAA/RSVT: C, F). Representative EVG staining of the aortic wall (Sham/CON: G, J, AAAJCON: H, K, AAA/RSVT: 1, L). Scale bars indicate 200 pm (A-C, G-I) and 50 i (D-F,

J-L).

counting the total number of diaminobenzidine (DAB)-positively
stained cells in 20 grid fields with a total area of 0.1 mm?2. The
number of CD-31-positive vessels was quantified by counting the
vessels in 20 grid fields with a total area of 0.1 mm?2.

2.3. Quantitative real-time RT-PCR

Total RNA was isolated by a modification of the acid
guanidinium thiocyanate and phenol/chloroform extraction
method as previously described [20]. Total RNA concen-
tration was determined by spectrophotometric analysis at
260nm. Reverse transcription was performed using Tagman
reagents (Applied Biosystems, Foster City, CA, USA). Real-
time quantitative PCR of each sample was carried out with
TagMan Gene Expression Assays and an ABI Prism™ 7700
Sequence Detection System (Applied Biosystems), based on
methods described previously [20]. The Tagman assays used
were MCP-1 (Mm99999056.m1), TNF-a (Mm00443258_m1),
ICAM-1 (MmO01175876.g1), CD68 (Mm00839636.g1), VEGF-
A (MmO004373304.m1), nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase subunit p47 (Mm00447921_m1),
glutathione peroxidase (GPX)1 (MmO00656767_g1), and GPX3
(MmO00492427_m1) from Applied Biosystems. For each sam-
ple, CT values were subtracted from that of the housekeeping
gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to
generate normalized CT values. The primer pairs and probe for
GAPDH were: forward primer: AACTCCCTCAAGATTGTCAGCAA;
reverse primer: GTGGTCATGAGCCCITCCA; Tagman probe:
CTGCACCACCAACTGCTTAGCCCC.

2.4. Gelatin zymography

We performed gelatin zymography to assess matrix metallopro-
teinase (MMP)-9 and MMP-2 activities. Frozen mice descending
aorta was homogenized in cell lysis buffer (Cell Signaling Tech-
nology, Danvers, MA, USA) containing 1% Triton X-100 and
protease inhibitors. After centrifugation at 16,000 x g for 30 min
at 4°C, the supernatant liquid was collected. Protein concen-
tration was measured using Coomassie protein assay reagent
(Pierce Biotechnology, Rockford, IL, USA) based on the Bradford
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Fig. 3. Immunohistochemical staining for Mac-2 (A-C and M), CD31 (D-F and N), 8-hydroxy-2'-deoxyguanosine (8-OHdG) (G-I and 0), and 4-hydroxy-2-nonenal (4-HNE)
(J-L and P) in the mouse aortic wall is shown. Scale bars indicate 50 pwm. Data are mean =+ SD (n=4-8 for each group). *p<0.05 vs. Sham/CON, tp<0.05 vs. AAAJCON.

assay. In brief, equal volumes of tissue extract (10 ug of pro-
tein) were purified, followed by resolution under electrophoresis
on 10% SDS-polyacrylamide gels (Novex EC61752, Invitrogen)
containing 1mg/ml of gelatin. Then, the gels were renatured in
renaturing buffer (Novex Zymogram Renaturing Buffer LC2670,
Invitrogen); 50 mM Tris-HCl containing 100 mM NaCl and 2.5%

Triton X-100. They were then incubated with developing buffer
(Novex Zymogram Developing Buffer LC2671, Invitrogen); 50 mM
Tris-HCl containing 10mM CaCl,. The gels were stained with
Coomassie Brilliant Blue (Simply Blue Safe Stain LC6060, Invit-
rogen), and gelatinolytic activity was quantified. The left end
lane in the gel was used for the loading control. The sum of



