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1. Introduction

Congenital myasthenic syndromes (CMS) are heterogeneous disorders caused by mutations
in molecules expressed at the neuromuscular junction (NM]J) (Fig. 1). Each mutation affects
the expression level or the functional properties or both of the mutant molecule. No fewer
than 11 defective molecules at the NM]J have been identified to date. The mutant molecules
include (i) acetylcholine receptor (AChR) subunits that forms nicotinic AChR and generate
endplate potentials (Ohno et al., 1995; Sine et al., 1995), (ii) rapsyn that anchors and clusters
AChRs at the endplate (Ohno et al., 2002; Milone et al., 2009), (iii) agrin that is released from
nerve terminal and induces AChR clustering by stimulating the downstream
LRP4/MuSK/Dok-7/rapsyn/AChR pathway (Huze et al., 2009), (iv) muscle-specific
receptor tyrosine kinase (MuSK) that transmits the AChR-clustering signal from agrin/LRP4
to Dok-7/rapsyn/AChR (Chevessier et al., 2004; Chevessier et al., 2008), (v) Dok-7 that
interacts with MuSK and exerts the AChR-clustering activity (Beeson et al., 2006; Hamuro et
al., 2008), (vi) plectin that is an intermediate filament-associate protein concentrated at sites
of mechanical stress (Banwell et al., 1999; Selcen et al., 2011), (vii) glutamine-fructose-6-
phosphate aminotransferase 1 encoded by GFPT1, the function of which at the NM]J has not
been elucidated (Senderek et al., 2011), (viii) skeletal muscle sodium channel type 1.4
(Nay1.4) that spreads depolarization potential from endplate throughout muscle fibers
(Tsujino et al., 2003), (ix) collagen Q that anchors acetylcholinesterase (AChE) to the synaptic
basal lamina (Ohno et al., 1998; Ohno et al., 1999; Kimbell et al., 2004), (x) B2-laminin that
forms a cruciform heterotrimeric lamins-221, -421, and -521 and links extracellular matrix
molecules to the B-dystroglycan at the NMJ (Maselli et al, 2009), (xi) choline
acetyltransferase (ChAT) that resynthesizes acetylcholine from recycled choline at the nerve
terminal (Ohno et al., 2001). AChR (Lang & Vincent, 2009), MuSK (Hoch et al., 2001; Cole et
al., 2008), and LRP4 (Higuchi et al., 2011) are also targets of myasthenia gravis, in which
autoantibody against each molecule impairs the neuromuscular transmission.

CMS are classified into three groups of postsynaptic, synaptic, and presynaptic depending
on the localization of the defective molecules. Among the eleven molecules introduced
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2 Neuromuscular Disease

above, AChR, rapsyn, MuSK, Dok-7, plectin, and Nayl.4 are associated with the
postsynaptic membrane. Agrin, ColQ, and B2-laminin reside in the synaptic basal lamina.
The only presynaptic disease protein identified to date is choline acetyltransferase (ChAT).
A target molecule and its synaptic localization of glutamine-fructose-6-phosphate
aminotransferase 1 (GFPT1) are still unresolved but the phenotypic consequence is the
postsynaptic AChR deficiency. This chapter focuses on molecular bases of these three
groups of CMS.

Choline + AcCoA <= ACh + CoA

) ﬁzlanﬂnh1

AChR

Fig. 1. Schematic of molecules expressed at the NM]J

2. Physiology of the NMJ

This section introduces molecular basis of development and maintenance of the NMJ, and
physiological features of nicotinic muscle AChR.

2.1 NMJ synaptogenesis

At the NM]J, MuSK is an indirect receptor for agrin (Valenzuela et al., 1995; Dechiara e al.,
1996). Agrin released from the nerve terminal binds to LRP4 on the postsynaptic membrane
(Kim et al., 2008; Zhang et al., 2008). Binding of LRP4 to agrin phosphorylates MuSK.
Phosphorylated MuSK recruits the noncatalytic adaptor protein Dok-7 (Okada ef al., 2006).
Once recruited, Dok-7 further facilitates phosphorylation of MuSK, and induces clustering
of rapsyn and AChR by phosphorylating the B subunit of AChR. Rapsyn self-associates and
makes a homomeric cluster at the endplate, which serves as a scaffold for AChR. Rapsyn
and AChR bind each other with a stoichiometry of 1:1. Rapsyn also binds to p-dystroglycan
and links the rapsyn scaffold to the subsynaptic cytoskeleton (Froehner ef al., 1990; Cartaud
et al., 1998; Ramarao & Cohen, 1998; Ramarao et al., 2001). Except for LRP4, each of the above
molecules is a CMS target.
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2.2 Physiology of the nicotinic muscle AChR

Nicotinic AChRs are pentameric ligand-gated ion channels. The family of pentameric
ligand-gated ion channels includes cationic AChRs, cationic serotonergic receptors (SHTs),
anionic glycine receptors, and anionic GABAs and GABAc receptors (Keramidas et al.,
2004). Heteromeric neuronal nicotinic AChRs are comprised of various combinations of a
(02-a7) and B subunits (B2-B4), whereas homomeric AChRs are formed only by a single a
subunit (e.g., a7-09) (Mihailescu & Drucker-Colin, 2000). On the other hand, nicotinic
muscle AChRs have only two forms: fetal AChR that carries the o, B, §, and y subunits
encoded by CHRNA1, CHRNB1, CHRND, CHRNG, respectively, in the stoichiometry of8y;
and adult-type AChR that carries the & subunit instead of the y subunit in the stoichiometry
a2Bde (Mishina et al., 1986). The & subunit is encoded by CHRNE. Nicotinic muscle AChR
harbors two binding sites for ACh at the interfaces between the 0-8 and o~y/o~¢ subunits
(Lee et al., 2009; Mukhtasimova et al., 2009). Binding of a single ACh molecule opens the
channel pore but for a short time. Binding of two ACh molecules stabilizes the open state of
AChR, and AChR stays open for a longer time. Only cations pass through the channel pore
of nicotinic AChRs. Unlike sodium, potassium, or calcium channels, AChRs, in general,
have no selectivity for cations, but a7 AChRs have 10-20 times higher permeability for Ca2+
than for Na*.

3. Postsynaptic CMS

Postsynaptic CMS is classified into four phenotypes: (i) endplate AChR deficiency due to
defects in AChR, rapsyn, agrin, MuSK, Dok-7, plectin, glutamine-fructose-6-phosphate
aminotransferase 1, (ii) slow-channel congenital myasthenic syndrome, (iii) fast-channel
congenital myasthenic syndrome, and (iv) sodium channel myasthenia.

3.1 Endplate AChR deficiency

Endplate AChR deficiency is caused by defects in AChR, rapsyn, agrin, MuSK, Dok-7,
plectin, and GFPT1.

3.1.1 Endplate AChR deficiency due to defects in AChR subunits

Endplate AChRs deficiency can arise from mutations in CHRNA1, CHRNB1, CHRND, and
CHRNE, but not CHRNG.

Two different groups of mutations of the AChR subunit genes cause endplate AChR
deficiency. The first group includes null mutations in CHRNE encoding the & subunit. The
null mutations are caused by frameshifting DNA rearrangements, de novo creation of a stop
codon, and frameshifting splice-site mutations, or mutations involving residues essential for
subunit assembly. Large-scale in-frame DNA rearrangements also abolish expression of the
AChR ¢ subunit (Abicht et al., 2002). Mutations in the promoter region (Ohno et al., 1999)
and most missense mutations (Ohno et al., 1997) do not completely abolish expression of the
€ subunit but the molecular consequences are indistinguishable from those of null
mutations. Lack of the & subunit can be compensated for by the presence of the fetal y
subunit that is normally expressed in embryos (Engel ef al., 1996). The patients can survive
with y-AChR even in the absence of e-AChR. If a null mutation resides in the other AChR
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subunit genes, the affected individual will have no substituting subunit and cannot survive.
Indeed, two homozygous missense low expressor or null mutations in CHRNAI and
CHRND caused lethal fetal akinesia (Michalk et al., 2008).

The second group of mutations affecting the AChR subunit genes includes missense
mutations of CHRNA1, CHRNB1, and CHRND. These mutations compromise expression of
the mutant subunit and/or the assembly of AChRs, but do not completely abolish AChRs
expression. The main difference between mutations in CHRNE and those in CHRNAI,
CHRNBI1, and CHRND is tolerance to low or no expression of the & subunit whereas similar
mutations in other subunits generally have devastating consequences and cause high
fatality. Some missense mutations in CHRNAI, CHRNB1, CHRND, and CHRNE also affect
the AChR channel kinetics and vice versa. The kinetic effects will predominate if the second
mutation is a low expressor, or if the kinetic mutation has slow-channel features with
dominant gain-of function effects.

In endplate AChR deficiency, the postsynaptic membrane displays a reduced binding for
peroxidase- or 125]-labeled a-bungarotoxin and the synaptic response to ACh, reflected by
the amplitude of the miniature endplate potential, endplate potential, and endplate current,
is reduced. In some but not all cases the postsynaptic region is simplified. In most cases, the
muscle fibers display an increased number of small synaptic contacts over an extended
length of the muscle fiber. In some patients quantal release is higher than normal. In patients
with null mutations in CHRNE, single channel recordings of AChRs at patient endplates
reveal prolonged opening bursts that open to an amplitude of 60 pS, indicating expression
of the fetal y-AChR in contrast to the adult e-AChR that has shorter opening bursts and
opens to an amplitude of 80 pS. In contrast, in most patients with low-expressor mutations
in the CHRNA1, CHRNBI, or CHRND, single channel recordings demonstrate no or minor
kinetic abnormalities.

As in autoimmune myasthenia gravis, endplate AChR deficiency is generally well
controlled by regular doses of anticholinesterases. Anticholinesterase medications inhibit
the catalytic activity of AChE; this prolongs the dwell time of ACh in the synaptic space and
allows each ACh molecule to bind repeatedly to AChR.

3.1.2 Endplate AChR deficiency due to defects in rapsyn

Congenital defects of rapsyn also cause endplate AChR deficiency. Rapsyn makes a
homomeric cluster and binds to AChR as well as to B-dystroglycan, and forms AChR
clusters at the endplate (Froehner et al., 1990; Cartaud et al., 1998; Ramarao & Cohen, 1998;
Ramarao et al, 2001). The structural domains of rapsyn include an N-terminal
myristoylation signal required for membrane association (Ramarao & Cohen, 1998), seven
tetratrico peptide repeats at codons 6 to 279 that subserve rapsyn self-association (Ramarao
& Cohen, 1998; Ramarao et al., 2001), a coiled-coil domain at codons 298 to 331 that binds to
the long cytoplasmic loop of each AChR subunit (Bartoli et al., 2001), a Cys-rich RING-H2
domain at codons 363-402 that binds to the cytoplasmic domain of B-dystroglycan (Bartoli et
al., 2001) and mediates the MuSK induced phosphorylation of AChR (Lee et al., 2008), and a
serine phosphorylation site at codon 406. Transcription of rapsyn in muscle is under the
control of helix-loop-helix myogenic determination factors that bind to the cis-acting E-box
sequence in the RAPSN promoter (Ohno et al., 2003).
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Loss-of-function mutations in RAPSN have been reported in the coding region (Ohno ef al.,
2002; Burke et al., 2003; Dunne & Maselli, 2003; Maselli et al., 2003; Muller et al., 2003;
Banwell et al., 2004; Yasaki et al., 2004; Cossins et al., 2006; Muller et al., 2006) as we as in the
promoter region (Ohno et al., 2003). N88K in RAPSN is one of the most frequently observed
mutations in CMS (Muller et al., 2003; Richard et al., 2003). We reported lack of a founder
haplotype for N88K (Ohno & Engel, 2004), but analysis of markers closer to RAPSN later
revealed possible presence of a shared haplotype (Muller et al., 2004) suggesting that N8SK
is an ancient founder mutation but subsequent multiple recombination events and
divergence of microsatellite markers have narrowed the shared haplotype region.
Functional analysis L14P, N88K, and 553ins5 disclosed that these mutations have no effect
on self-association of rapsyn but impair colocalization of rapsyn with AChR (Ohno et 4.,
2002). Analysis of A25V, N88K, R91L, L361R, and K373del later revealed diverse molecular
defects affecting colocalization of rapsyn with AChR, formation of agrin-induced AChR
clusters, self-association of rapsyn, and expression of rapsyn (Cossins et al., 2006). Although
there are no genotype-phenotype correlations in mutations at the coding region,
arthrogryposis at birth and other congenital malformations occurs in nearly a third of the
patients. In addition, the -38A>G mutation affecting an E-box in the promoter region
observed in Near-Eastern Jewish patients exhibits unique facial malformations associated
with prognathism and malocclusion (Ohno et al., 2003).

Most patients respond well to anticholinesterase medications. Some patients further
improve with addition of 3,4-diaminopyridine, ephedrine, and albuterol (Banwell et al.,
2004). The drug 3,4-diaminopyridine blocks the presynaptic potassium channel, which
slows the repolarization of the presynaptic membrane (Wirtz et al., 2010) enhancing the
influx of Ca?* through the presynaptic voltage-gated P/Q-type and N-type channels. This,
in turn, facilitates the exocytosis of synaptic vesicles and the quantal content of the endplate
potential.

3.1.3 Endplate AChR deficiency due to a defect in agrin

Neural agrin released from the nerve terminal is a key mediator of synaptogenesis at the
NM]J. A reported homozygous G1709R agrin mutation, however, did not cause AChR
deficiency but mutations in agrin are potential causes of AChR deficiency by interfering
with the activation of MuSK and by impeding synaptic maturation.

The patient harboring the G1709R mutation was a 42-year-old woman with right lid ptosis
since birth, no oculoparesis, and mild weakness of facial, hip-girdle and anterior tibial
muscles, and refractoriness to pyridostigmine or 3,4-diaminopyridine (Huze et al., 2009). The
mutation is in the laminin G-like 2 domain, upstream of the neuron-specific y and z exons
that are required for MuSK activation and AChR clustering. AChR and agrin expression at
the endplate were normal. Structural studies showed endplates with misshaped synaptic
gutters partially filled by nerve endings and formation of new endplate regions. The
postsynaptic regions were preserved. Expression studies in myotubes using a mini-agrin
construct revealed the mutation did not affect MuSK activation or agrin binding to a-
dystroglycan. Forced expression of the mutant mini-agrin gene in mouse soleus muscle
induced changes similar to those at patient endplates. Thus, the observed mutation perturbs
the maintenance of the endplate without altering the canonical function of agrin to induce
development of the postsynaptic compartment.
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3.1.4 Endplate AChR deficiency due to defects in MuSK

MuSK and LRP4 form a heteromeric receptor for agrin. Five MUSK mutations have been
reported in three papers. The first report describes heteroallelic frameshift (220insC) and
missense (V790M) mutations in a patient with respiratory distress in early life, mild ptosis,
decreased upward gaze, and fatigable weakness of the cervical and proximal more than
distal muscles. The symptoms were worsened by pregnancy. Treatment with
pyridostigmine and 3,4-diaminopyridine was ineffective (Chevessier et al., 2004). The
frameshift mutation prevents MuSK expression and the missense mutation decreases MuSK
expression and impairs its interaction with Dok-7. Forced expression of the mutant protein
in mouse muscle decreased AChR expression at the endplate and caused aberrant axonal
outgrowth (Chevessier et al., 2004). Interestingly, mice homozygous for MuSK V789M
(which corresponds to the human MuSK V790M) are normal but mice hemizygous for
V789M are severely affected suggesting that MuSK V790M in humans is a haploinsufficient
only when accompanied by a null mutation (Chevessier et al., 2008).

A second report describes heteroallelic M605I and A727V mutations in MuSK in a patient
with severe myasthenic symptoms since early life that improved after puberty but
worsened after menstrual periods. The MEPP and MEPC amplitudes in anconeus muscle
were reduced to about 30% of normal and the EPP quantal content was half-normal.
Synaptic contacts were small and electron microscopy showed simplified postsynaptic
regions with too few secondary synaptic clefts. The patient failed to respond to
pyridostigmine, ephedrine or 3,4-diaminopyuridine but responded partially to albuterol
(Maselli et al., 2010).

A third report describes a homozygous P31L mutation in the extracellular domain of MuSK
in 5 patients in a consanguineous Sudanese kinship. The findings included ptosis from an
early age, partial ophthalmoparesis, and weakness of torso and limb girdle muscles.
Pyridostigmine therapy gave only slight benefit (Mihaylova et al., 2009).

3.1.5 Endplate AChR deficiency due to defects in Dok-7

Phosphorylated MuSK recruits a noncatalytic adaptor protein, Dok-7. Recruited Dok-7
further facilitates phosphorylation of MuSK (Okada et al., 2006). Dok-7 is highly expressed at
the postsynaptic region of skeletal muscle and in heart. It harbors an N terminal pleckstrin
homology domain (PH) important for membrane association, a phosphotyrosine-binding
(PTB) domain, and C-terminal sites for phosphorylation. The PH and PTB domains are
required for association with and phosphorylation of MuSK. Phosphorylation of two C
terminal residues is a requisite for Dok-7 activation by Crk and Crk-L (Hallock et al., 2010).

Numerous mutations have been identified in DOK7 (Beeson et al., 2006; Muller ef al., 2007;
Anderson et al., 2008; Selcen et al., 2008; Vogt et al., 2009; Ben Ammar et al., 2010). Nearly all
patients carry a common 1124_1127dupTGCC mutation in exon 7. This and other mutations
upstream of the C-terminal phosphorylation sites abrogate the ability of Dok-7 to associate
with Crk1/Crkl1L and hence its activation (Hallock et al., 2010; Wu et al., 2010). Mutations
disrupting or eliminating the PH and PTB domains of Dok-7 prevent dimerization and
association of Dok-7 with MuSK (Bergamin et al., 2010).
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3.1.6 Endplate AChR deficiency due to defects in plectin

Plectin, encoded by PLEC, is a highly conserved and ubiquitously expressed intermediate
filament-linking protein concentrated at sites of mechanical stress, such as the postsynaptic
membrane of the endplate, the sarcolemma, Z-disks in skeletal muscle, hemidesmosomes in
skin, and intercalated disks in cardiac muscle. Pathogenic mutations in PLEC result in
epidermolysis bullosa simplex, a progressive myopathy (Smith et al., 1996), and, in some
patients, myasthenic syndrome (Banwell et al., 1999; Selcen et al., 2011). We reported two
cases of CMS associated with plectin deficiency (Banwell et al., 1999; Selcen et al., 2011). The
dystrophic changes in muscle are attributed to dislocation of the fiber organelles no longer
anchored by the cytoskeletal intermediate filaments and to sarcolemmal defects allowing
Ca?* ingress into the muscle fibers. The myasthenic syndrome is attributed to destruction of
the junctional folds lacking adequate cytoskeletal support.

3.1.7 Endplate AChR deficiency due to defects in glutamine-fructose-6-phosphate
aminotransferase 1 (GFPT1)

Glutamine-fructose-6-phosphate transaminase 1, encoded by GFPT1, catalyzes transfer of an
amino group from glutamine onto fructose-6-phosphate, yielding glucosamine-6-phosphate
and glutamate. GFPT1 is a rate-limiting enzyme that controls the flux of glucose into the
hexosamine biosynthesis pathway. GFPT1 thus initiates formation of UDP-N-
acetylglucosamine (UDP-GIcNAc), which is a source of multiple glycosylation processes
including addition of N-acetylglucosamine to serine or threonine residues (O-linked
GlcNAc) (Wells et al., 2001). The disease gene was discovered by linkage analysis and
homozygosity mapping of 13 kinships with a limb-girdle CMS often associated with tubular
aggregates in skeletal muscle (Senderek et al., 2011). Immunoblots of muscle of affected
patients revealed decreased expression of O-linked GIcNAc, but the responsible molecule(s)
causing CMS remain elusive.

3.2 Slow-channel congenital myasthenic syndrome (SCCMS)

The second class of postsynaptic CMS due to mutations in the AChR subunit genes is
SCCMS. SCCMS is an autosomal dominant disorder, in which a gain-of-function mutation
on a single allele compromises the neuromuscular signal transduction (Ohno et al., 1995).
The mutation causes prolonged AChR channel openings and increases the synaptic
response to ACh (Fig. 2). There is a single reported case of autosomal recessive SCCMS, in
which an ¢L78P mutation minimally prolongs channel opening events but the mutant
channel arising from a single allele is not sufficient to cause disease (Croxen et al., 2002). In
general, dominantly inherited disorders, including SCCMS, tend to present after
adolescence and have a relatively mild course. Some patients with SCCMS, however,
present early in life and become severely disabled even in the first decade.

In SCCMS, neuromuscular transmission is compromised by three distinct mechanisms.
First, staircase summation of endplate potentials causes depolarization block of the
postsynaptic membrane by rendering the voltage-gated skeletal muscle sodium channel go
into an inactivated state and thereby inhibit action potential generation (Maselli & Soliven,
1991). Second, some mutant AChRs are prone to become desensitized (Milone et al., 1997),
which reduces the number of AChRs that respond to the released ACh quanta. Third,
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prolonged opening of AChR causes excessive influx of extracellular calcium, which results
in focal degeneration of the junctional folds as well as apoptosis of some of the junctional
nuclei (Groshong et al., 2007). In normal adult human e-AChR, 7% of the synaptic current is
carried by Ca2*, which is higher than that carried by the human fetal y-AChR or by muscle
AChRs of other species (Fucile et al., 2006). This predisposes endplate to Ca2* overloading
when the channel opening events are prolonged. In addition, at least two SCCMS mutations,
gT264P (Ohno et al, 1995) and oV259F (Fidzianska et al., 2005), increase the Ca2+
permeability 1.5- and 2-fold, respectively (Di Castro et al., 2007).
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Fig. 2. Slow channel CMS. (A) Schematic diagram of AChR subunits with SCCMS
mutations. (B) Single channel currents from wild-type and slow channel («V249F) AChRs
expressed on HEK293 cells. (C) Miniature endplate current (MEPC) recorded from
endplates of a control and a patient harboring aV249F. The patient’s MEPC decays
biexponentially (arrows) due to expression of both wild-type and mutant AChRs.

Slow channel mutations can be divided into two groups. The first group includes mutations
at the extracellular domain like aG153S (Sine et al., 1995), as well as at the N-terminal part of
the first transmembrane domain like aN217K (Wang et al., 1997) and ¢L.221F (Hatton et al.,
2003). These mutations increase the affinity for ACh binding, probably by retarding the
dissociation of ACh from the binding site, which gives rise to repeated channel openings
after a single event of ACh binding. The second group includes mutations at the second
transmembrane domain (M2) that lines the ion channel pore. These mutations mostly
introduce a bulky amino acid into the channel lining face, but €T264P (Ohno et al., 1995)
introduces a kink into the channel pore, whereas BV266A (Shen et al., 2003) and eV265A
(Ohno et al., 1998) introduce a smaller amino acid into the pore. Mutations in M2 retard the
channel closing rate o and variably enhance the channel opening rate . Some mutations in
M2 also increase affinity for ACh, which include aV249F (Milone ef al., 1997), eL269F (Engel
et al., 1996), and €T264P (Ohno et al., 1995).
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SCCMS can be treated with conventional doses of long-lived open channel blockers of
AChR, such as the antiarrhythmic agent quinidine (Fukudome ef al., 1998; Harper & Engel,
1998) and the antidepressant fluoxetine (Harper et al., 2003). Quinidine reduces the
prolonged burst duration of SCCMS to the normal level at 5 uM (Fukudome et al., 1998). As
the concentration of quinidine in the treatment of cardiac arrhythmia is 6-15 pM, 5 pM is
readily attainable in clinical practice and indeed demonstrates significant effects (Harper &
Engel, 1998). Similarly, fluoxetine reduces the prolonged burst duration to the normal level
at 10 uM, which is clinically attainable without adverse effects at 80 to 120 mg/day of
fluoxetine (Harper et al., 2003).

3.3 Fast-channel congenital myasthenic syndrome (FCCMS)

The third class of postsynaptic CMS due to mutations in AChR subunit genes is FCCMS.
FCCMS is kinetically opposite to SCCMS (Fig. 3). In FCCMS, the closed state of AChR is
stabilized compared to the open state which results in abnormally brief channel opening
events which, in turn, reduces the amplitude of the endplate potential and impair the safety
margin of neuromuscular transmission. The resulting pathophysiology is thus similar to
endplate AChR deficiency, but abnormally small endplate potential is a qualitative instead
of a quantitative defect in AChR.

FCCMS is an autosomal recessive disorder. One allele carries a missense mutation that
confers a fast closure of AChRs, and the other allele usually harbors a low-expressor or null
mutation, or the fast channel mutation occurs at homozygosity. As in heterozygous healthy
parents of endplate AChR deficiency, we humans may completely lack 50% of each AChR
subunit without any clinical symptoms. In FCCMS, a low-expressor or null mutation on one
allele unmasks the deleterious effect of the fast-channel mutation on the second allele.
Detailed kinetic analyses of FCCMS mutations have revealed special insights into the
molecular architectures of the AChR subunits. Three such examples are presented here.

The €1254ins18 mutation causes a duplication of STRDQE codons at positions 413 to 418
close to the C-terminal end of the long cytoplasmic loop (LCP) linking the third (M3) and
fourth (M4) transmembrane domains of the receptor. £1254ins18-AChR expressed on
HEK293 cells opens in three different modes. The opening probabilities of normal AChRs
are clustered into a single large peak, whereas the £1254ins18-AChR shows three different
peaks (Milone et al, 1998). In all the three modes, the AChR is activated slowly and
inactivated rapidly, which gives rise to an inefficient synaptic response to ACh. Another
FCCMS mutation, ¢A411P in the LCP also destabilizes the channel opening kinetics. The
channel opening probabilities of eA411P-AChRs are widely distributed and do not form any
discernible peaks (Wang et al., 2000). Our analysis first disclosed that the function of LCP is
to stabilize the open conformation of the AChR.

eN436del is a deletion of Asn at the C-terminal end of the LCP. The deletion shortens the LCP
and shifts a negatively charged Asp residue at codon 435 against M4. eN436del-AChR
decreases the duration of channel opening bursts 2.7-fold compared to the wild type due to a
2.3-fold decrease in gating efficiency and a 2.5-fold decrease in agonist affinity of the
diliganded closed state. A series of artificial mutations established that the effects of eN436del
are not due to juxtaposition of a negative charge against M4 but to the shortening of the LCP.
Deletion of the C-terminal residue of the LCP of the B and § subunits also results in fast-



