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Schwartz- Jampelf“@ﬁi@lbﬁiilh%ﬁé &ﬁ/%?‘ﬁﬁﬁ_ﬂ:
ET N T AT X B IRREARER & 1RETSE
WrEERERE VERE JERERFRFEREFF RS
ﬁ%%a
C ARHEO BN, MIast~ b Y 2 AGTF = U RIBIC K B EE B
EJE (Schwartz-Jampel JEGRE, SIS) DERRFZET - BB FRWI— & X Z2HE L,
BT 5r TR REARAA & B RIEIRIC T I I e A~R S Z L Th D, SIS 1 — v
B RBEBRTH Y HOARBERIGEC L2 34 b= T LBRFEEE TRERE
b, BEEHE LT, £EEICBIT 23— o OMRERA O, BETSHEHY % (E
L. ECEFRAEL TR VAT H D T L ERL, EBIETEFLaY TR
T L= ARG HEATICRESEAUANFTHD L ER L, 2hb O

FRERIC LV | SIS DFEEEGEF B0 T 7228, ZIRERHERE, RIGRESE

_Lb'Cifof‘o“é“ PO B OIER D D ADL 2% U< ET 2 HAMER TH D,
TEGIORIE, B, FREBAET S THY . SHEEREORI LR+ THY ., 1
%@@Iﬂtwéﬁh%o BT AT LOFESL ERFRIEDBRFE DI O EED I,
AEBIZHDHRETHY . BHBWIC L 2HEEa Y b — TR ERE
BOFUITBIEOEEZIERELT 72010, EOBRETH D, SIS EFOFHIE -
fﬁjﬁ? BOETOBWHIEOREL, MBI LIZET L~ U R X DIRIEMHET %

?'T fcﬁ 2 7%.0

A. W%Eﬂ‘]
R B R M  REE (Schwartz Jampel JEEEE,

SIS) HN—H U RIBEBRTH Y (Nature

Genetics,2001 , Am.J Hum Genet.2002) . # D B
FEHEIURIC L 5 4 b =7 L BRIFE 2 TER
LY, BEEDLIL AKCBIT B SA—AH 0
WRERB D, BETFUTEWE R L, &E
AW VI VBB ATHAZ L ERL
(Nature Genetics1999, &2001), 7E&F/L =2y
TAT L — A WEFHEEICRES Y 2 WA
FTHLILERLI (Nature Neurosczence
2002), ZHEOFEREIC LY. wsmﬁ@L
BFBD TR TN, BRAISHER L, 1RIBNE
ERFESL L TR B, #o?\ﬁ%wfﬁﬂ“
ADL #% L< & #é%%&%%f%é EN SIS
O B EE, MIS~ N Y v 7 R8T ST LRI

\2 &5 SIS DERRBNT - BIBTRM— LA %12
Bh L. IS TR & EIROTARRIC T o
BHTEA~NES L TH D, IR— )V I v RABFERRIC

LAREED &ﬁ%ﬁ?ﬁtofwéwi BRI, <
J K% Nicole T@i&ij—i?ﬁﬁa BEOIN—TTh
D, %LLZIK%B’C@J‘“WJ@%%E LN f%ﬁ&pﬁﬂ

F+5Thd, oI =T EERRE. T
AR - BIRERIREEIC & B SHERENT 2 b
5ﬁ\ﬁ$@?ﬁ%%&&<\%%@ﬁmkﬁ%
BN D, SCN4A 75 Bz X % myotonia
permanents & SIS DEEFEER, %WE@%)’E%
BERTEYENEEY, hETIIE, #%T
AP SR LT T, Sk v DEEF
ERMNFENTE LT, Na F ¥ FLOERHT
bol TR b b D, BWY AT LBEBHETLS
NTWRWED, BEROIEET LRHTH S,



BELEN D72 S RO S WIRBIZH LT,
HRR - IR ZITO Z LIk v #EfTOR
1B, BEREEIE - BAZ B LB 2H - 15
FIEORREZITV., BEOQOLDHEEZXS Z
EEHEME L,
Kﬁ%fi*h%%%%ﬁ%ﬁ&mﬁb F[r]
BB RNEBEIC ColQ KIBEE : SeRMFEE
ﬁﬁfﬁ%bf“é%ﬁ%%ﬁﬁ%@%ﬁ BT
5Z L& B L, MERIXAChE OBEDREE
EWV) HTHEDHEREAF L, ?mﬁk%ﬁﬁk

WO RLRDIEREFELRZNOE—ED ALY T
LEFEHRT HFREMELRH Y (K1), ZErORESL &
IRERMZEZ BRI L& Lz,

X1

1I8—=IVho RIBECOIQRIBDEBARIFS L

SIS =4 =7

CRiZE, K%)

1999 FEF TIOREM - ikt ¥ — (NCNP) BN
IZEEPRZ2Ir SIS & L TR S iz 4 2{5’J
\~wﬁ/ﬁm%7iﬂﬁméhto%®%\
~Wﬁyﬁﬁ%(ﬂﬂﬂ2)ﬁﬁﬁﬁﬁ?fké
O T(mRNA T 14294 bp)EMfh 2 F > 7=/ 3— )L
T R YR A TRV L C & 1o, ARFHVER] %2 §
DICBWY AT LAOWBEEY BIET 720, EfOZE
BOIEETHDL, EmMAIZ, BRZE - EK4E
HERE, VETONIHEREZITY, BEFE
BIEATIIREF, & 27 BT X BB IT o 72,
HSPG2 @ promoter X° intron # & TERZ
METD2EHM TR Y — LA T HSPG2 &
PRIk % 0 %2 7= Agilent . SureSelect Custom
Capture # A& gk L ABI SOLiD4 I k %

resequencing Z{TV ., HSPG2ZhNx T 171 f&¥H
DENRIFEA AV F ¥ U IV B ELHREET
DFENT HIT> TV 5D, EIRE LM BRI S
TV, 77V RAERIE OB L RET S (UK
% Nicole 1+ L #Ei),

BMETILY DO RIC & HFERT - SBEER (F
; #

HSPG2/ v 77V VRN BaZ—57
BE— =TI — L B ST, ELSL
THR=NH 2 RBT DT AEER LT (B
WHEAKRENIH LEEZ), /v 277 v TR
DEFEMEITEE D 2 8F BEBMEE SNEFT D,

BEICHIRER., MERIC T SIS DERFRER OHHR %
RLTWD, 2FERE LT, K%, IREK,
BEREZBRE L, £7-. IRERFHIEICHRT L,
RNy 7 ZADOFEIMEEHER L, £& LTRED
BHIONRZFERT D, FERAICITILF HFE

REFDBBEIZ ColQ KRIBERA : SERMER I EMRRE
THZILTWS BB AIEE F % (protein
anchoring therapy) M EHIZ X B RIEEIEICE T
Do

(fREmEm~DBLE)
BETFEBRBTIIIERERER XL ETRRED
AMmAEEESDOEREHFCE N A - BET
FEATRZEIC B3 2 fmBRiEEt (ERk 1 6 30 R
g BEEFEE REEERETE1E) TV
FENTS 5, IREMSEZ BRI 2 5811E, TERERAT
ZRICRET D fmEtE St (FRk 2 O FEAFEHE SR
F415%5) 1AV, JERERFER VA HTERKE
DiFEEZEEED Bl BITED B,

FHAH 2 DNA 3B L B EBRIIIERERFER D
ZEBREORBEE TS, BMERIT. L
Z~THE, BRONNT, JERERFOBEREER
K DOERRE S CEW ERIEE 2 B L CHFSEED
Do

CEZE, X%)

SJS # &9 3 JEFIIZ*T L T Agilent £t SureSelect
Human All Exon v2 kit Z i\ Cx= 7 V B D
DNA %#E#E L. ABI SOLiD4 > — 27 =¥ T



50 bp DIFEEFNZIRE Lic, FERIND 62.9 -
78.3 x 106 DX 7 & FiH, & &V 50 bp OHEENE
WA FFOTDIZ 3.1 - 3.9 Gbp DEFIZRE L=,
BioScopel.3.1 % A vwW T b ~ & J A
GChR37/hgl9 2~ v B 7 # 4T\ 84.7% -
89.0% DIFEEF| D~ v ¥ FE1T o7z, Avadis
NGS {ZT unreliable reads <° PCR duplicates @
T 4 NE—U T &IV, default parameters %
FAWT SNV call #4177,

T EBER
ZHVE T Schwartz—Jampel JEMERE 1Bl ST
TeAT Y =, =V h o HFOERERTFEEIC
RS D —EBREEZMRT LMY, 02
EEIRET D,
BTSN
- 3WENLE TITRIE
HIRHALIE, KB RCIREAD. DS IHEIC
X BRI SR
- REE, KESOREHRESEDERESE
- BREEHRIGEIC L 2 4 M =T EHER

BEDR
- B I T, foROE % KR E
(myotonic discharge) % ~9, 4z, ¥
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discharge) & %5 I D4R BREAIET R %
Y, ‘
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X |
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TRMENRT I A h=—
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EMETINIRICK DIREEMRAT - SAEEE CF
Z, K%)

- SIS TIE, EERE ENDH. BRIERLSO
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RV B REBT D T AET VRS THE

MR D/ 3=V v DOBEREIRE 24T 72 > T
D, NREWWREEBER A 23 (K 4), B, ANk,
AR, BERHREIZ DWW T ORIEMEMRITIC
DWW, X EEB/H., KREARMEREZ OV T
BREHFEFCTH D, 5T, BRIEFEEFEIZON
Th, 2 b= UREEZRERDTCNBT
W, BT EITR o T 5,

JREICE LT, MRGEARE X~ v b &
LTERY—7 y MEEZEEL QN D, 73—
AGTFOERELY, &% 4 —F v F&E5
CENEELL ., BEHRAEEDOHEBLORAL V¥
—7 v MEEORNVPEEN S, protein L
JL +RNA UL D trans-splicing 7m v =7 b %
BETL T3,
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EETFERENEEF Lo - EF b2 S a eI
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Schwartz-Jampel JEMRBEZUW FEMINICH T RX— VIV BEBEFT T Y — AEFHR

WESEE KEFKF AHBRFRZEREFZRFEFR - SR

HRES

FRFED BENE, =D (HSPG2) BIEFOERIC LY FBIES DE REEME
FRBREIE (Schwartz-Jampel JEWEEE, SIS) DOAF TOERKZHET - B FRWHTIED
W ZERTHDOTH D, SIS ORREETFOMPA%, BEFHERTHLZ L, &
FESDIRNT L XY SRESHERE, RIBRIEPHEL LT LT, ERORE,

DU, RV, SHEREORNAARND, =7 Y —MEFR RV, BETDE
Z5 LOFESL L IEFIEOBERE OO OB D T-,

A. BIRE®

BUE BB MERREE (Schwartz-Jampel fEE
B, SJS) 1F = U RBERTH Y (Nature
Genetics,2001 , Am.J.Hum Genet.2002) . D
BREGEIEICL D I4 F =T L BRFEZE
FER &5, ABFEOBRIE, MlEst~ b v
RE3FIR—= )V U RABIC K B SIS DEGRZET -
BETFZE X E2REL, BiZHFRERE
B L B RTA R T 7 R e~ D T
HD, R—)h U RBFERIC L DREERZK T
2o TWNDDIE, BIR T, 73U K% Nicole {#
T ERFHFED I N—TTHY | HICERT
DIEFIOFEYR ., B2, WA +2Th 5,
fthod I A b =T IEEREFRER, FLTADAEE - T
FEEARIEIZ & 2 SHEREBI T obi 525, B
BICIERD L REOEEARELIND,
SCN4A ZZ#IZ L 5 myotonia permanents &
SIS DEERIER, ERAEBEHAMATE V&
BlEES, ZHETIIEE, siTAPAEES
WEG LI=BIE, = h v OBBGEFERNR
SINTEHT . Na Ty XNVOERPITHoTF]
LD D, BEIY AT ABEIHESLINLTY
W, BEROERTORFETHD, BE
BBV HROERIZS WVERBRIZH LT, B
R - AR EAT O Z LI K DV ET O
1B, #EREEE - BAZ B LB R20 -

BERIEOBEREEITV., BEDOQOLDOALEFN
HIERBERE L,

B. BIRA&

SJS FEBIDRIE - FE HHLETORMSEDHE
3L 1999 FE £ TITHEM - Mgk v & — (NCNP)
oSy 7 IZERRR2 T SIS & LCRERE L 441
F 2 Bl S VB FREREPRE S,
D%, N—Nh EET (HSPG2) 1ZEKRE
f5FTd DD TmRNA T 14294 bp) AR &1
D Te =)V R E TRV L T & T,
AHIEFZ PO AT AOBELX BT
72, EFOEBPEETH D, BRI,
FRIRZMT - EREHETRE, LETHNIIHAE
WEIT 9, BITFERMBTIIRE, F 178
EMTIT I T o 72, HSPG2 @ promoter X°
intron 28O TERZRETL2EHHTETT Y
— A2 C HSPG2 &g % M%7z Agilent
#t SureSelect Custom Capture %Ak L ABI
SOLiD4 {Z X % resequencing #1TV ., HSPG2
{ZINA T 171 BEOBMARTFMEA A F v ox
NS OFHRBET ORI 1T o 7,

C. IRHER
SJS FEGIDHIE - FAFE BAETOZMAZEDE
3 SIS ®EEEH 3 JEFITX LT Agilent £t




SureSelect Human All Exon v2 kit # W\ C=x
7Y RO DNA % ##E L, ABI SOLiD4 *—
7 T HITT 50 bp OFEEF|ZHRE LTZ, &
JEGIHND 62.9 - 78.3x 106 DF &5, £ %
7" 50 bp DIEESFRZFFO7-DIZ 3.1 -3.9 Gbp
DEF|ZPE LT, BioScopel.3.1 ZFH\ Tt h
77 A GChR37/Mhgl9 I~ v B2 7 24T\

84.7% - 89.0% DI HEEFN D~ v ¥ T %FT o7,

Avadis NGS (2T unreliable reads = PCR
duplicates O 7 4 V& — VU > 7 %17V, default
parameters % V)T SNV call #1T-7=,

JEF] 1 (Jun_N)IZE W T HSPG2 #&f=FI2 3 T&EE
® homozygous missense SNVs Z[@7E L7=A%.
WL S dbSNP135 128k E ST, 7D
1% LL E @ global minor allelic frequency
(GMAF) 2R 2 7= OB RITRVEEBE I DR
72(WT718S, rs2254357, GMAF = 0.475; G242V,
rs2254358, GMAF = 0.476; N765S, rs989994,
GMAF = 0.068), JEF 1 1ZBEak iz CREERT
o T BB R TR TR EMEESET b
U Y ALF x »x/ SCN4A |2 2077A>C
(p.1693L) A £ % [F]7F L myotonia permanens %
BT NI AT XY U RAVIA =T THBHZ
EWNHIBA L=, 7B, ple93L ZHE T exome
resequencing fi#HT T % heterozygous mutation
THLHZLERAEIETETNS (2 exome
resequencing fEHT CTRIE S L7 EH 1 O
SCN4A 207TA>C £ &),

B2

JEB 2 (Jun_0)iE exome resequencing it <
¥ D3954Y ZEEMNFEFE SN (K2EHF 2 O
HSPG2 D3954Y £ H), S biT, SEIOFHTT
JEG 2 12BN T RR—= LD RAAL L 1T I

LL1088P Z £ % heterozygous (2529 7= (K 3 ).,
FHEMHTICT LV D3954Y & L1088P 3
heteroallelic 2R TH D Z & 2HERT 5,

3

120 AR S TG e 3, 1) ooty et Bviet X o, G ya*eei

FEF] 3 (Chiba)IZBW T/ S LD RAL 2V
IZ G3648R £ £ % heterozygous (238 7= (X 4
JEF] 3 O HSPG2G3648R £ H),

S B IT, coverage XK WA 14 B FriC
heterozygous missense RO EH & [FE L., B
7. resequencing fET #4772 > T\ 5, F£7z, 2
f& 38 @ homozygous SNPs (rs1874792,
rs989994) & 4 FE¥H @ heterozygous SNPs
(rs2229478, rs2254357, rs2254358,
rs35863848) D=, T b HEA L DR
TRV ERESIND,

S BT, coverage X 1& W 2Y 14 B FTIC
heterozygous missense Z B O 2 [FE L,
TE. resequencing fEtT #1772 > T\ 5%, F7-, 2
& 8 ® homozygous SNPs (rs1874792,
rs989994) & 4 FE¥H @ heterozygous SNPs
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HISTORIC INTRODUCTION

Congenital myasthenic syndromes (CMS) are neither new nor uncommon disorders. In 1937,
Rothbart! described four brothers under the age of 2 years with a myasthenic disorder, and by
1972 Sarah Bundey” was able to collect 97 familial cases of myasthenia with onset before the
age of 2 years. After the discovery of the autoimmune origin of myasthenia gravis (MG) in the
1970s and of the Lambert-Eaton syndrome in the 1980s, it became apparent that myasthemc
disorders occurring in a familial or congenital setting must have a different pathogenesis.’ In the
1970s and 1980s, ultrastructural, cytochemical, and in vitro microelectrode studies of CMS
patients revealed a heterogeneous group of disorders: a presynaptic syndrome associated Wlth a
paucity of synaptic vesicles and decreased evoked release of acetylcholine (ACh) quanta 2
presynaptic disease caused by a defect in the resynthes1s or vesicular packaging of ACh;>
synaptic acetylcholinesterase (AChE) deficiency; and two postsynaptic syndromes one
attributed to slow closure of the acetylcholine receptor (AChR) ion channel,® and one associated
with AChR deficiency.”"

During the past two decades, further developments resulted in better understanding of
previously identified CMS and new types of CMS were discovered. The primary sequences of
several genes encoding key endplate associated proteins were determined; discovery of the
crystal structure of the molluscan ACh binding protein and cryoelectron microscopy
investigation of the atomic structure of Torpedo AChR provided a structural models for the
binding'"*? and pore'? domains of the receptor; patch clamping of human intercostal muscles
endplates (EPs) to allow recording and analy51s of single channel currents of the AChR was
accomplished;"® and mammalian expression systems were used for detailed analysis of the
consequences of mutations in endplate associated proteins.

MECHANISMS COMPROMISING THE SAFETY MARGIN OF NEUROMUSCULAR
TRANSMISSION

The postsynaptic depolarization caused by a by a single quantum of ACh released from nerve
terminal gives rise to a miniature EP potential (MEPP); depolarization induced by a larger
number of quanta released by a nerve impulse generates an EP potential (EPP). The amplitude of
the EPP must exceed a critical threshold to activate voltage-sensitive sodium channels in and
around the postsynaptic region and thereby generate a muscle fiber action potential.
Neuromuscular transmission fails and a myasthenic disorder results when the EPP fails to reach
this critical threshold. The safety margin of neuromuscular transmission is defined as the
difference between the amplitude of the EPP and the amplitude of the depolarization required to
trigger a muscle fiber action potential.

In each CMS, the safety margin of neuromuscular transmission is compromised by one or
more mechanisms. Thesc mechanisms involve the synthesis or packaging of ACh quanta into
synaptic vesicles, the Ca® -dependent evoked release of ACh from the nerve terminal, and the
efficiency of released quanta in generating a postsynaptic depolarization. Quantal efficiency
depends on the EP geometry, the density and functional state of acetylcholinesterase (AChE) in
the synaptic space, and the density, affinity for ACh, and kinetic properties of AChR.

THE CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Congenital myasthenic syndromes are classified as presynaptic, synaptic basal lamina associated,
or postsynaptic according to the site of the primary defect. Table 1 presents a classification for
CMS based on 306 index patients investigated at the Muscle Research Laboratory of the Mayo
Clinic. In all but 3 of these patients the genetic basis of the CMS was determined. The
classification is still tentative, as future studies are likely to provide further information on the



nature of presynaptic defects, some CMS are still incompletely characterized, and additional
CMS are likely to be discovered. Inspection of Table 1 indicates that 80% of the CMS are
postsynaptic, 14% are accounted for by EP AChE deficiency, and only 6% are presynaptic.

THE INVESTIGATION OF CONGENITAL MYASTHENIC SYNDROMES

A full understanding of how the safety margin of neuromuscular transmission is compromised in
a given CMS is based on clinical, morphologic, in vitro electrophysiologic, and molecular
genetic studies (Table 2). The clinical evaluation must include detailed electromyographic (EMG)
and serologic studies. The morphologic evaluation should include careful examination of the fine
structure of the EP. The in vitro electrophysiologic studies must be sufficiently complete so they
provide information on parameters of quantal release and the factors affecting the efficiency of the
released quanta. A surprising number of CMS stem from a kinetic abnormalities of the AChR.
These can be recognized by examination of the decay phase of the miniature EP current (MEPC),
and more accurately by patch-clamp analysis of currents flowing through single AChR channels.
Since 1994, genetic analysis has become an important facet of CMS investigations.

Because only few medical centers are able to perform all or some of the above studies,
mutations analysis of DNA isolated from blood or other tissues has been increasingly used to
identify CMS disease genes. Targeted mutation analysis became feasible after it was realized that
distinct clinical and EMG phenotypes can point to the disease gene. However, these phenotypes
are often nonspecific; detection of a single or even two recessive variant in an endplate related
gene of a CMS patient does not establish that the disease gene has been correctly identified, even if
the mutation is not present in 200-400 normal control alleles; and in silico evaluation of the
significance of a mutation is not consistently reliable or can be misleading. Given these caveats, if
the clinical data provides no clues for targeted mutation analysis, one can still search mutations in
endplate proteins in descending order of their currently known relative frequency in different, as
shown in Table 1. Importantly, taking all CMS mutations identified in our laboratory, 53% were in
subunits of AChR. Moreover, 34% of all observed mutations were low expressor mutation in the €

subunit whereas only 3% of the low-expressor mutations were detected in the a, B, or § subunits of
AChR.

Clinical Observations

HISTORY AND EXAMINATION
A typical clinical history for CMS is one of ocular, bulbar, or respiratory muscle symptoms
worsened by crying or activity in the neonatal period; fluctuating ocular palsies and abnormal
fatigability on exertion during infancy and childhood; normal or delayed motor milestones;
sometimes progression of symptoms during adolescence or adult life; and negative tests for anti-
antibodies directed against AChR, MuSK, and the P/Q type voltage-gated calcium channel. Some
syndromes (e.g., the slow channel syndrome® and familial limb-girdle myasthenia) may not present
until the second or third decade of life; and in patients with choline acetyltransferase (ChAT)
deficiency, the symptoms can be episodic, with severe weakness and respiratory insufficiency
appearing with fever, excitement, or without known cause.>® A positive family history is consistent
with the diagnosis. A negative family history does not exclude autosomal recessive inheritance,
parental mosaicism for a dominant mutation, or one parent being hemizygous for a dominant gene
mutated in the other parent.

On examination, the most important clue to a defect of neuromuscular transmission is
increasing weakness on sustained exertion. This can be documented by observing increasing ptosis
during sustained upward gaze, measuring the arm elevation time, counting the number of deep
knee bends the patient can perform, or by repeated manual testing of selected muscles at short
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intervals. Patients with severe involvement of the trunkal muscles, as in EP AChE deficiency or in
the slow-channel syndrome, rapidly develop postural scoliosis and shift their weight from one foot
to another on standing."* Selectively severe weakness of cerv1cal and of wrist and finger extensor
muscles is found in older patients with EP AChE deficiency' and in the slow-channel syndrome. 8
Pupillary light reflexes are delayed in patients with EP AChE deficiency." Ocular muscle
mvolvement can be absent or mild in some cases of EP AChE deficiency,'* the slow-channel
syndrome,’ rapsyn deficiency, or limb-girdle myasthenia caused by mutations in Dok-7,"° or other
genes. The tendon reflexes are preserved but are hypoactive or absent in a CMS resembling the
Lambert-Eaton syndrome in some cases of EP AChE deficiency,'* and in severe cases of the slow-
channel syndrome.” Table 3 lists the differential diagnoses of CMS. Most entities can be excluded
by careful physical examination that reveals weakness increased by exertion and by demonstration
of a decremental EMG response.

THE INTRAVENOUS EDROPHONIUM TEST
The test is negative in EP AChE deficiency and can be negative between spells of weakness in
ChAT deficiency, and usually negative or inconsistently positive in the slow-channel syndrome
and Dok-7 myasthenia. A negative edrophonium test does not exclude the diagnosis of a CMS; a
positive test can be consistent with the diagnosis but does not differentiate it from autoimmune MG.

EMG STUDIES
Diagnosis of a CMS must be supported by a decremental EMG response at low-frequency (2-3 Hz)
stimulation in at least one muscle, or by abnormal jitter and blocking during single fiber EMG. The
decremental response can be absent in patients with ChAT deficiency when asymptomatic. In this
case, the decremental response is elicited by 10 Hz stimulation for 5 to 10 minutes or by exercise
for several minutes before stimulation. >

In patients taking high doses of AChE inhibitors, in patlents with EP AChE deficiency,**
and in the slow-channel syndrome,® single nerve stimuli evoke a primary compound muscle action
potential (CMAP) followed by one or more repetitive CMAPs, each separated by an interval of 5
to 8 ms. The repetitive potentials are smaller and decrement faster than the primary response at all
frequencies of stimulation. Therefore, the test must be done in patients not exposed to AChE
inhibitors, after a period of rest, and initially with single nerve stimuli.

Observations in the EMG laboratory can provide an objective estimate of responsiveness to
ACHhE inhibitors or other cholinergic agents. For example, one can compare the decrement
observed in a given muscle before and 30 minutes after a subcutaneous dose of neostigmine
methylsulfate, or 60 to 90 minutes after an oral dose of 3,4-diaminopyridine (3,4-DAP).

SEROLOGIC TESTS
A positive AChR antibody test excludes the diagnosis of a CMS but a negative antibody test does
not confirm it because some patients with autoimmune MG are also seronegative. Seronegative
MG can sometimes be excluded by other findings. Absence of immune deposits (IgG and
complement) from the EP, or an in vitro electrophysiologic abnormality different from that in MG,
is strong evidence against seronegative MG.

Morphology

ROUTINE HISTOCHEMICAL STUDIES
These may show no abnormality or only type 2 fiber atrophy. In patients with postsynaptic CMS,
there is frequently type 1 fiber preponderance. Type 1 fiber preponderance is not specific but when
combined with type 2 fiber atrophy it suggests the diagnosis of a postsynaptic CMS.



In patients with the slow-channel syndrome, small groups of atrophic fibers and various
myopathlc alterations, mcludmg tubular aggregates and vacuolar changes near the endplate, occur
in severely affected muscles.® Tubular aggregates also appear in one type of limb- girdle CMS.

The mean muscle fiber diameter must be determined in all muscle specimens used for
MEPP measurements as the MEPP amplitude is related by an inverse exponential function to the
fiber diameter.'®

CYTOCHEMICAL LOCALIZATION OF AChE
EP AChE is concentrated in the basal lamina of the primary and secondary synaptic clefts.'” The
light microscopic localization of AChE reveals the position and configuration of the synaptic gutter
but provides no information on the pre- or postsynaptic components of the EP. When AChE is
localized on fixed and teased fibers and the EP is viewed face-on, the normal synaptic gutter has an
oval outline and branches like arms, resembling a pretzel. In the slow—channel syndromes where
the postsynaptic regions are destroyed by cationic overloadmg, in autoimmune MG, and in
CMS caused by mutations that curtail AChR expression,'” the EPs are remodeled due to sprouting
of terminal or ultraterminal axons and formation of new endplate regions. The AChE reaction now
reveals multiple small EP regions dispersed over an extended length of the muscle fiber surface.
Inaccurately, this is sometimes described as "elongation" of the EP and the axial length of the fiber
surface on which AChE-positive zones are dispersed is designated as "the length of the
endplate" '*%°

In congenital EP AChE deficiency, there is no reaction for AChE in either fresh or ﬁxed
muscle.”"* When this diagnosis is suspected, AChE should be localized in the presence of 10° M
is0-OMPA to inhibit any butyrylcholinesterase activity at or near the EP.

IMMUNOCYTOCHEMICAL STUDIES
Immunocytochemical studies have many uses. They can (1) reveal an absence of immunoreactive
ACHE in EP AChE deficiency;' (2) prove or disprove the diagnosis of autoimmune MG by
showing presence or absence of immune deposits (IgG, C3, and the C5b-9 membrane attack
complex) at the EP; (3) provide a qualitative estimate of the abundance of AChR,”*"* at the EP;
and (4) demonstrate presence, absence, or reduced expression of other EP-specific proteins, for
example the veswular ACh transpoﬂer synapsin 1, and ChAT in the nerve terminal; and Dok-7,"
agrin, rapsyn,“plectin, Na,1.4,** and utrophin in tlle postsynaptic region. Subunit-specific anti-
ACHR antibodies can reveal absence of the adult-type & subunit and reappearance of the fetal-type
y subunit of AChR at the EPs.”*! However, immunocytochemical locahzatlons are not helpful
when a mutation does not decrease expression of the mutant protein,”* or when a monoclonal
antibody is directed against an epitope upstream of a truncating mutation.'®

ELECTRON MICROSCOPY AND ELECTRON CYTOCHEMISTRY
Electron microscopy analysis of the EP is essential in the investigation of novel CMS. The size and
density of the synaptic vesicles, the size of the nerve terminal and its relation to the Schwann cell,
the structure of the junctional folds, and alterations in organelles of the junctional sarcoplasm
cannot be observed in any other way. Quantitative electron microscopy allows morphometric
reconstruction of the endplate ° yields data for structure-function correlations, and can pomt to the
mechanism that impairs neuromuscular transmission. For example (1) electron microscopy is
required to demonstrate the paucity of synaptic vesicles in a unique CMS associated with reduced
quantal release.* Without visualizing the synaptic vesicles, this disorder could be confused with the
Lambert-Eaton syndrome. (2) In endplate AChE deficiency, smallness of the nerve terminals and
their encasement by Schwann cells explains the decrease in quantal release by nerve impulse.”*



