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Table 2 Summary of plasma OPN levels
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Disease Origin Changes in OPN levels (Reference)Year
Framingham Plasma Age-adjusted means 729 ng/mL in men 658 ng/mL [46] 2006
Offspring Inwomen

Increase with age

Ant AMI Plasma At admission (420 == 195 ng/mL) [43] 2005
Onday 2 (935 =+ 464 ng/mL)
Maximum around day 3 {1139 & 482 ng/mL)

CHF Plasma CHF vs. control (800 = 554 ng/mL, 575 & 229) {40) 2007

CD4+ T cells Tcells (27.34£12.2,16.7 4 10.0)

End stage of CHF Plasma Before and after VAD [41] 2008
(217.4 + 148.4 ng/ml, 412.5 & 146.4 ng/mL)
Before and after total artificial heart (TAH)
(330.6 & 151.7 ng/mL, 434.5 & 135.2 ng/mL)

CHF Plasma CRT responders (108 &= 47 vs. 84 &= 37ng/mlL) {48] 2010
Nonresponder (79 & 58 vs. 115 & 63 ng/mL)

CAD Plasma With statins (80.57 + 14.2) [45] 2010
Without statins (93.47 4= 33.5 ng/ml)

Stable IHD Plasma Median OPN (55 ng ml) [47] 2010

Increase with age

patients with cardiac dysfunction and heart failure [41]. Tamura
et al. reported that plasma OPN concentrations of MI patients
were significantly higher in the coronary sinus than in the aor-
tic root and the transcardiac gradient of plasma OPN concentra-
tion correlated negatively with left ventricular ejection fraction
(LVEF) and positively with LV end-diastolic and end-systolic vol-
ume indexes [42]. Suezawa reported the sequential change of
plasma OPN from patients who underwent successful reperfu-
sion after anterior-wall acute MI, which began to increase on
day 2, reached a maximum around day 3, and then decreased
on day 14 [43]. Plasma OPN levels may be useful in diagnosing
the severity of not only ischemic heart disease, and heart fail-
ure but also arteriosclerosis [44-47]. However, there are some
problems associated with measurement of plasma OPN levels.
Table 2 summarizes the levels of plasma OPN. First, the source of
secreting plasma OPN is not clear and plasma OPN levels are vari-
able in each disease state. Second, since the mechanism of OPN
solublization is not determined, the relationship between organs
or cells and the plasma level is not clear. Third, OPN is derived
from many organs, the molecular weights of which vary depend-
ing on the level of phosphorylation of OPN in the blood, and the
plasma OPN level recognized by specific antibodies may also vary
significantly among recognition sites and types of antibodies. For
example, an antibody that recognizes the entire structure of OPN
may indicate a different one from that indicated by an antibody
that recognizes only the N- or C-terminus. In short, plasma OPN
levels vary in each patient and an increase in the plasma OPN level
may not always correspond to a local increase in OPN production.
Are cardiac levels or plasma levels correlated to LV dysfunction
and dimension, and how did it correlate? Although the plasma
level of OPN is a biomarker to know the repair process of the in-
jured myocardium, further studies would be needed to clarify the
origin and the role of plasma OPN. )

1t is likely that myocardial OPN expression increases concomi-
tantly with systolic and diastolic dysfunction in the remodeled

heart. OPN has the potential to modulate different phases of in-
jury healing and myocardial remodeling. Genetically engineered
mouse studies provide evidence that increased expression of OPN
may play a protective role against LV dilation after MI. However,
in the infarct remodeling stage, OPN may exacerbate unfavor-
able fibrosis. Mineral-corticoid receptor antagonists inhibit OPN
expression within the heart. CRT-induced LV reverse remodeling
is reflected by changes in plasma OPN [48]. However, many ques-
tions would be raised. What is the mechanism and role of cleaved
fragments of OPN in the heart? How does increased expression
of OPN lead to cardiac remodeling resulting in cardiac dysfunction
and heart failure? Suppressed inflammatory response and reduced
response of fibroblasts could be due to decreased OPN expression
in the heart? [49] What is balanced OPN expression according to
the disease cause and stage? Future studies would be needed to
clarify the role and the therapeutic potential of OPN in cardiac fi-
brosis and remodeling process.

Tenascin-C

Tenascins are a family of four multimeric ECM glycoproteins, each
with distinct features; they are named TN-C, X, R, and W [50].
TN-C, found to be the first member of the family, is a typical ma-
tricellular protein, specifically expressed during the development
as well as in wound healing and cancer invasion in various tissues,
and may regulate cell behavior and matrix organization during tis-
sue remodeling [51,52].

Structure and Function of TN-C

TN-C is a huge ECM molecule of about 300 kDa as an in-
tact monomer and assembled to a hexamer. The multidomain
molecule consists of an N-terminal assembly domain, followed
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by EGF-like repeats, constant and alternatively spliced fibronectin
type I repeats, and a C-terminal fibrinogen-like globulaf do-
main, and each subdomain has a distinct function. Several recep-
tors including integrins, @281, @881, «981, avB3, o781, avps,
EGFR, Annexin II, syndecan-4 (see Refs. 52 and 53 for review)
bind to the respective domains of TN-C and transmit multiple
signals that could trigger various cellular functions. I» vitro stud-
ies have demonstrated that TN-C may control the balance of
cell adhesion and de-adhesion, modulate cell motility, prolifer-
ation, and differentiation and survival, although cell-type speci-
ficity is apparent, possibly using separate receptors depending on
the cell [51,52]. In addition to its spatiotemporal-restricted ex-
pression, the diverse effects on culture cells have suggested that
TN-C would play a significant role in tissue remodeling. However,
unexpectedly, TN-C knockout (TN-C KO) mice generated inde-
pendently by two different groups underwent normal develop-
ment and have a normal life span and fertility, showing no distinct
morphological phenotypes [54,55]. Recently more detailed inves-
tigations have shown several differences, for example, decreased
bronchial branching and enlarged airspaces in lung development
of mice [56], and epithelial cell clusters protruding into the duc-
tal lumens in the prostate TN-C KO [57]. Furthermore, in var-
ious disease models, evident distinction in TN-C KO have been
reported, such as attenuated fibrotic change in immune-mediated
hepatitis [58], allergic inflammation in bronchial asthma [59] and
arthritis [60], and reduced neointimal hyperplasia after vascular
surgery [61,62].

Physiological and Pathological Significance
of TN-C in the Heart

In the heart, TN-C transiently appears during the very early
stage of development, often associated with cell migration and
epithelial-mesenchymal/mesenchymal transformation, at several
important steps such as differentiation of precardiac mesodermal
cells to cardiomyocytes [63]. It is also noteworthy that TN-C might
be involved in maturation of coronary arteries by enhancing re-
cruitment of mural cells to vascular wall [64].

In the normal adult heart, TN-C is barely detected at the chorda
tendinae of papillary muscles and base of valve leaflets, which are
constantly subjected to mechanical loading [65]. However, TN-
C reappears under various pathologic conditions such as acute
MI [66-69], myocarditis [70-72], hibernating myocardium [73],
ischemia-reperfusion [74], hypertensive cardiac fibrosis [75], and
some cases of DCM [76,77] closely associated with tissue injury
and active inflammation. During myocardial tissue remodeling, in-
terstitial fibroblasts in the vicinity of the injured cardiomyocytes
are the major source of TN-C, but cardiomyocytes themselves do
not synthesize TN-C [78]. Various factors including proinflamma-
tory cytokines and growth factors, such as TGF-8, PDGF, bFGF, IL-
18, AIl, hypoxia, ROS, acidosis, and mechanical stretch, increase
the synthesis of TN-C by cardiac fibroblasts in vitro [65,75], which
suggests that TN-C may be involved in ventricular remodeling of
the heart with inflammation, and in ischemia, reperfusion, and
hypertension. During tissue repair after MI, TN-C molecule is ex-
pressed at the acute stage. It appears within 24 h after permanent
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ligation of coronary arteries of experimental animals, peaks at day
5, then becomes downregulated by day 7, exclusively localizing
at the border zone between the infarcted lesion and intact my-
ocardium [67,78,79]. Since the edge of the residual myocardium
is the most active site of tissue remodeling, this characteristic lo-
calization suggests its particular role in myocardial tissue repair.
As a matricellular protein, TN-C has been well known as a “de-
adhesion” protein. As we have previously reported, TN-C may
loosen strong adhesion of cardiomyocytes to ECM and tentatively
attaches the cells, similar to a “Post-it” note [65,67]. Furthermore,
TN-C has the ability to upregulate the expression and activity
of MMPs [41]. These functions release surviving cardiomyocytes
from their rigid linkage to surrounding connective tissue and thus
help cells to reorganize their shape and arrangement at the edges
of residual myocardium during tissue healing after infarction. On
the other hand, TN-C may keep attachment of the cardiomyocyte
during repeated cycles of contraction and relaxation, and protect
against anokisis, transducing signals for survival. Another fascinat-
ing function proposed is that TN-C may act as a “shock absorber”
for mechanical stress based on its elastic property [42] so that it
might protect border zone myocardium subjected to the heaviest
mechanical loading.

Myocardial tissue repair mostly depends on interstitial cells, es-
pecially myofibroblasts, because of the limited ability for regen-
eration of cardiomyocytes. Myofibroblasts play an important role
in wound healing by synthesizing collagens and exerting strong
contractile forces to promote wound healing [80]. Using a my-
ocardial injury model of TN-C-KO mouse, we have found that
TN-C promotes recruitment of myofibroblasts to injured sites by
accelerating migration and differentiation and enhancing traction
forces [78]. Furthermore TN-C promotes deposition of ECM pro-
teins [61] and collagen fibril formation in vivo [81] and is essential
for cardiac angiogenic function [82]. These functions would pro-
tect tissue and expedite healing and may prevent cardiac rupture
and dilatation after infarction.

However, TNC could have double-faced effects for myocardial
repair (Figure 3). In addition to loosening cell adhesion and upreg-
ulating MMPs, TN-C may enhance inflammatory responses [60]
with activation of NF-kappa 8 [59] and cytokine upregulation
[58]. While these functions are useful for clearing damaged tis-
sue and freeing cells for rearrangement, they might cause progres-
sive degradation of ECMs and slippage of myocytes within the LV
wall, resulting in wall thinning and dilatation. Furthermore, an in-
crease of myofibroblasts and pronounced fibrosis generate traction
forces that prevent ventricular dilatation; on the other hand, ex-
cessive fibrosis would lead to stiffer and less compliant ventricles.
Moreover, the situation is complicated by the fact that a compen-
satory system for the lack of TN-C exists [55]. For example, the
recruitment of myofibroblasts in injured sites of myocardium is
delayed in TN-C KO mice that are normalized by day 3 after in-
jury [78], although the compensatory mechanism has not been
identified. Therefore it is not easy to state whether TN-C is harm-
ful, beneficial, or completely redundant for tissue reconstruction
after MI. Our recent study showed ventricular remodeling in TN-
C-KO mouse was significantly reduced and cardiac function was
improved compared with the wild type at day 28 after permanent
ligation of the coronary artery [79]. Therefore, it seems that TN-C
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exerts harmful effects on the infarcted heart at least in later stages,
although the molecular mechanism remains to be elucidated.

Clinical Application

In contrast to contradictory and diverse molecular functions, the
expression pattern is clear and specific. Taking advantage of this
character, TN-C could be applicable for diagnosis of myocardial
disease. In the mouse autoimmune myocarditis model, expres-
sion of TN-C is observed in foci of inflammation during the ac-
tive stage, and disappears with healing [70]. Immunostaining of
TN-C appears at a very early stage of inflammation and often is
detectable before histological alteration becomes evident and lo-
calized in broader areas than those featuring inflammatory cell in-
iltrations [70,72]. These findings suggest that TN-C can be a sen-
sitive marker for inflammation in myocardium. We evaluated the
diagnostic value of TN-C expression in endomyocardial specimens
obtained from patients with acute myocarditis, and confirmed that
immunostaining for TN-C not only reflects clinical disease activity
but also significantly improves the diagnostic sensitivity and ac-
curacy of diagnosing inflammation [72]. Recently, a pathogenic
role of inflammation has received considerable attention in the
development and progression of heart failure [83], especially in
the case of DCM [84]. Indeed, analysis of myocardial sample ob-
tained at left ventriculoplasty, showed approximately 50% of 64
DCM patients with severe refractory congestive heart failure had
significant intramyocardial inflammation associated with expres-
sion of TN-C [77]. Therefore, the precise evaluation of inflamma-
tion and distinguishing inflammatory cardiomyopathy from other
types of DCM would be critical to improve management of pa-
tients. Although endomyocardial biopsy could be a direct diag-
nostic procedure, sampling error remains problematic even using
immunostaining for TN-C [72].

While TN-C molecules are deposited in the extracellular spaces
of the inflammatory lesion in the myocardium, soluble forms of
TN-C are also released into the blood stream and can be mea-

b

and angiogenesis, which may protect against
cardiac rupture and ventricular dilatation.

#
\l"’

sured by enzyme-linked immunosorbent assay. In fact, serum TN-
C levels in patients with acute MI are significantly elevated on
admission compared with normal controls, peaks at day 5,
then gradually decreases, reflecting local expression in the my-
ocardium. Interestingly, follow-up examination of 105 patients re-
vealed that patients with high peak levels of TN-C in the acute
stage after infarction have a greater incidence of ventricular re-
modeling 6 months later, and that the peak levels of TN-C were
the most important independent predictor of major adverse car-
diac events during a follow-up period of up to 5.5 years [68]. This
finding may suggest that TN-C may aggravate progression of ven-
tricular remodeling. Conversely, upregulation of TN-C might re-
flect complementary responses, as with brain natriuretic peptide
(BNP). Our recent data that ventricular remodeling after MI in
TN-C-KO mouse was reduced [79] support the former possibility.

An increasing number of reports demonstrated that elevated
serum TN-C reflect the severity of heart failure, LV dysfunction,
and LV remodeling in patients with DCM [85,86], LVH [87], after
resynchronization therapy [88), supported by mechanical circula-
tory support devices [89], and that increased serum TN-C may be a
marker for poor prognosis comparable with BNP [86]. Particularly
interesting is that combining serum TN-C levels with plasma BNP
levels is a stronger predictor of cardiac events in heart failure than
either single biomarker alone (Figure 4) [86]. While BNP is se-
creted from cardiomyocytes in response to increasing cardiac wall
tension, TN-C is synthesized in interstitial fibroblasts as discussed.
Therefore, the combination of two biomarkers could enable more
precise assessment of a whole heart by reflecting both cardiomy-
ocytes and interstitial cells.

TN-C is not synthesized specifically in the myocardium; en-
dothelial cells and vascular smooth muscle cells of various organs
have the potential to synthesize TN-C. In fact, an elevated serum
level of TN-C has been reported in various diseases other than
heart disease, such as chronic hepatitis/liver fibrosis [90], and is
suggested to be a biomarker of disease activity. The elevated lev-
els of circulating soluble inflammatory mediators in heart failure
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Figure 4 Kaplan-Meier analysis of cardiac event-free survival of 110 DCM
patients with a BNP level >219 pg/mL and serum TN-C > 78.4 ng/mL at dis-
charge, andthe four risk groups of patients based on serum TN-C and plasma
BNP concentrations. Both BNP > 219 pg/mL and serum TN-C > 78.4 pg/mL

patients might also stimulate endothelial cells of, for example, the
liver, or lung, to secrete TN-C into the blood stream. Therefore,
it may be necessary to identify the origin of serum TN-C for di-
rect and accurate evaluation of the myocardial lesion. Molecular
imaging could be a promising way. Using In!!! labeled anti-TN-
C, we successfully imaged the in vivo inflammatory lesion in my-
ocarditis and MI rat models [69,71] and in primates (manuscript in
preparation).

TN-C could be a key molecule to diagnose cardiac remodeling
and also might be a target for the prevention of adverse ventricular
remodeling.

SPARC

Secreted protein, acidic and rich in cysteine (SPARC, osteonectin,
BM-40), a 32-kDa glycoprotein, mediates cell-matrix interac-
tions during wound healing and regulates the production and/or
assembly of the ECM [10,91]. SPARC binds to collagen and it
is suggested that SPARC plays a significant role in postsynthetic
procollagen processing and the development of mature cross-
linked collagen fibrils [11]. SPARC expression increases primarily
in inflammatory cells and fibroblasts after ML Deletion of SPARC
increases cardiac rupture, dysfunction, and mortality after MI,
associated with a decrease of organized, mature collagen fibers.
Treatment with TGF-8 prevented cardiac rupture and improved
mortality of SPARC-KO after MI [92]. Pressure overload causes el-
evation of SPARC expression associated with increased soluble and
insoluble collagen and collagen fibrils in myocardium of wild-type
mice. In SPARC-KO, insoluble collagen incorporation and my-
ocardial diastolic stiffness were decreased, although an increased
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at discharge had strong prognostic values for heart failure with DCM (P <
0.01). Cardiac event rate of the group with serum TN-C > 78.4 ng/mL and
BNP > 219 pg/mL was significantly higher than those of the other groups.
Reproduced from Fujimoto et al. [77).

fibrillar collagen content was comparable with that of wild-type
mice, [93] Therefore, it is suggested that SPARC could regulate
collagen fibrils formation, a critical determinant of cardiac func-
tion. However, so far, no studies reported clinical data of SPARC
in patients with heart disease and its role in heart failure remain
to be elucidated.

CCN Family

The CCN family is a group of at least six secreted proteins and
regulates biological processes including cell differentiation, prolif-
eration, adhesion, migration, apoptosis, and ECM production, in
many cell types [94]. CCN proteins bind to avpB3, «681, avB5
integrins, fibronectin, LRP1, BMP4, VEGF, and TGF-8. The CCN
family has four functional domains, an insulin-like growth factor
binding protein (IGFBP) domain, a Von Willebrand factor domain,
a TSP-homology domain, and a cysteine knot, heparin-binding
domain. Thus, they play essential roles in development, wound
healing, and angiogenesis [12,95]. CCN2 is a secreted 36-38 kDa
protein, main member of the CCN family, and also known as con-
nective tissue growth factor (CTGF). CCN2 binds TGF-8 and en-
hances the ability of TGF-8 to bind TGF- receptors at low TGF-8
concentrations and hence indirectly affects Smad-responsive pro-
moters [96], promoting many profibrotic effects of TGF-8. CCN2
is overexpressed in numerous fibrotic diseases and the degree
of overexpression correlates with the severity of disease [97].
CCN2 is highly expressed in the developing cardiovascular sys-
tem. CCN2-null mice show no prominent cardiovascular defects
but severe skeletal malformation [98].

CCN2 expression is increased in the hypertrophied and fail-
ing myocardium of experimental animal models [99] and
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endomyocardial biopsy samples from patients {100]. A recent re-
port suggests CCN2 may be a novel potential biomarker of car-
diac dysfunction in patients with chronic heart failure [101]. CCN2
might directly promote myocyte hypertrophy and cardiac fibrosis.
However, it is uncertain whether CCN2 overexpression directly
leads to a fibrotic pathology or can lead to the initiation or exacer-
bation of fibrosis and cardiac remodeling in concert with signaling
pathways.

CCN1 is essential for cardiovascular development, and deletion
of CCN1 causes early embryonic lethality due to a severe defect
of angiogenesis [102]. Pressure overload, ischemia, and neurohor-
monal factors, such as Ang II or alphal-adrenergic stimuli, induce
myocardial expression of CCN1, suggesting CCN1 may play an im-
portant role in the adaptation of the heart to cardiovascular stress.
However, human clinical data have been lacking so far, as well as
for other CCN members except CCN2.

TSP Family

The five current members of the TSP family can be divided in two
subgroups according to their molecular structure. TSP-1 and -2 are
trimeric proteins that do not contribute directly to tissue integrity.
TSP-3, -4, and -5 are pentameric. It has been recognized that TSP-
1 and -2 play an important role in wound healing [6-9].

TSP-1 is secreted from platelets, macrophages, fibroblasts, ECs,
and SMCs, which may suppress the recruitment of inflammatory
cells production, activation of inflammatory cytokines, and me-
diate inhibition of MMP activity. TSP1 induces a conformational
change in the latent TGF- complex to transform it to be bioactive
[103]. Furthermore, TSP-1 can inhibit angiogenesis through sup-
pression of VEGF production and release [104]. Indeed, the ab-
sence of TSP-1 results in increases in cardiac and skeletal muscle
capillary vessels [104].

Similar to TSP-1, TSP-2 inhibits angiogenesis and protease activ-
ity. Unlike TSP-1, TSP-2 does not activate TGF-81, but may mod-
ulate collagen matrix assembly.

Expression of TSPs is low in normal heart, but expression of
TSP-1, -2, -3, and -4 are increased in pressure-overloaded heart
failure model and patients with cardiac hypertrophy secondary to
aortic stenosis [7,105]. Paradoxically, lowering expression levels
of TSP-1 has been reported in myocardial biopsy samples from pa-
tients with end-stage heart failure [106]. Coronary ligation model
of TSP-1 KO mice shows an enhanced inflammatory response with
subsequent expansion of granulation tissue and myofibroblast in-
filtration into the viable myocardium, resulting in LV remodeling
[107].

In TSP-2 knockout mice, angiotensin II induced fatal cardiac
rupture in as high as 70% of surviving mice with cardiac failure
[108]. Moreover, lack of TSP-2 results in progressive cardiac fail-
ure and dilatation with aging [109]. Thus, the protective effects of
TSP-1 and TSP-2 after myocardial injury may lead to novel thera-
peutic interventions to attenuate adverse LV remodeling.

Periostin

Periostin is a 90 kDa protein with four domains that are highly re-
lated in its amino acid sequence to the ancestral fasciclin gene in
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Drosophila and is expressed within the peri-osteum, peri-odontal
ligament [110]. Periostin binds multiple ECM proteins, such as TN-
C, fibronectin, collagen V, collagen I, and heparin, in addition to
several integrin including wv/83, ov/83. Periostin plays an evolv-
ing role in collagen fibrillogenesis by directly binding collagen I
[111] and/or cooperatively interacting with other molecules such
as TN-C, thus affecting the structural integrity of the adult heart
matrix or stretch-sensitive signaling [112]. In the embryonic heart,
periostin is expressed in epicardium and valve leaflets and their
supporting apparatus, and plays an important role in their de-
velopment by increasing collagen compaction in the endocardial
cushion tissue and promoting the mesencymal cells into fibroblas-
tic lineage while blocking their transformation to cardiomyocyte
[113,114].

Periostin is not present in the adult ventricular myocardium but
the expression is increased after aortic banding and showing par-
allel changes in interstitial fibrosis [115]. TGFBs and BMPs are the
main mediators of periostin in the development, and VEGF, CCN2,
and interleukins might regulate periostin expression in the remod-
eling process [15].

Periostin null mice show increased susceptibility to cardiac rup-
ture and exhibit decreased circumferentia] strain and passive stiff-
ness after MI [116,117]. However, periostin-null mice that survive
the initial myocardial insult were less susceptible to fibrotic scar-
ring and exhibited better ventricular performance than wild-type
controls [116,117], which is similar to the cases of TNC-KO. Re-
cently a report has suggested periostin can induce re-entrance of
the differentiated cardiomyocytes to the cell cycle following car-
diac injury [118]. However, this hypothesis is still controversial
[119]. Although the role of periostin in the heart is very com-
plicated, it is clear that periostin could be a regulator of cardiac
remodeling and hypertrophy and may be a reasonable pharmaco-
logical target to mitigate heart failure.

Future Directions and Conclusion

Matricellular proteins modulate cell function by interacting with
cell-surface receptors, proteases, hormones, and other bio-effecter
molecules, as well as with structural matrix proteins. Integrated
networks of these matricellular proteins and interactions between
matrix and matricellular proteins are beyond the scope of this
review. Clearly, this review article does not cover all the pro-
teins that are now considered to be matricellular. Several mem-
bers of the CCN, tenascin-X, the galectins, plasminogen activa-
tor inhibitor type 1 (PAI-1), and autotaxin are excluded from
this review.

In response to pressure and volume overload, ischemia, oxida-
tive stress, and injury, the heart changes its shape, structure, and
function. Matricellular proteins are upregulated in these circum-
stances, modulate cell function and cell-matrix interactions, and
induce ECM deposition. Generally, matricellular proteins loosen
cell-ECM adhesion and, possibly, cell-cell adhesion, which would
help cells to move for rearrangement and allow inflammatory cells
and capillary vessels to spread during tissue remodeling. Some ma-
tricellular proteins may cause myocyte hypertrophy, which may
also lead to myocyte necrosis and apoptosis. Matricellular pro-
teins have diverse functions and could exert both harmful and
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Figure 5 A hypothetical scheme showing the possible role of the matri-
cellular proteins in cardiac remodeling and heart failure. Expression of ma-
tricellular proteins increases in response to many stresses. Matricellular
proteins loosen cell-matrix adherence and induce migration and infiltration
of macrophages, endothelial cells, fibroblasts, and myofibroblasts. Matricel-

beneficial effects in a context-dependent manner during myocar-
dial tissue remodeling. Ablation of most matricellular proteins
often causes inappropriate alterations in inflammation, angiogen-
esis, and ECM deposition, which result in impairment of tissue re-
pair and cardiac rupture after myocardial injury such as infarction.
Meanwhile, the knockout animals which survive the acute stage
show improved cardiac function with less fibrosis as observed in
cases of periostin-KO and TN-C-KO.

Matricellular proteins may essentially function to maintain car-
diac structure against many stresses. At the same time, they also
have the potential to cause cardiac fibrosis leading to cardiac dys-
function, as shown in Figure 5. Furthermore, cardiac dysfunction
enhances inflammatory cytokines, and, in turn, induces proteins
production and release of matricellular, a modulator of inflamma-
tion. Further and extensive research is needed to understand and
clarify the exact mechanisms of matricellular proteins during car-

Cardiovascular Therapeutics 00 (2011) 1-12® 2011 Blackwell Publishing Ltd

lular proteins regulate MMP activity involved in regulating ECM deposition
during cardiac remodeling process leading to heart failure. MP, matricellu-
lar proteins; ECs, endothelial cells; SMCs, smooth muscle cells; TGFg, trans-
forming growth factor; EGF, epidermal growthfactor; PDGF, platelet-derived
growth factor; VEGF, vascular endothelial growth factor.

diac remodeling and heart failure, which should make it possible
to induce desirable myocardial tissue remodeling by manipulating
matricellular proteins.
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Summary Although sarcoidosis may exhibit histopathologic features similar to those of a newly emerging
clinical entity, immumoglobulin G4-related sclerosing disease, sarcoidosis is currently not considered to be
associated with immunoglobulin G4-related immunoinflammation. Not many studies on this association
have been reported. We investigated serum immunoglobulin G4 levels among patients with sarcoidosis with
or without cardiac involvement (cardiac sarcoidosis and non—cardiac sarcoidosis patients). The mean serum
immunoglobulin G4 level among the 65 patients with sarcoidosis was 56.8 = 43.0 mg/dL, which did not
significantly differ between patients with cardiac sarcoidosis (54 + 48 mg/dL, n = 12) and patients without
cardiac sarcoidosis (58 + 42 mg/dL; n = 53). Serum level of soluble interleukin 2 receptor, a potent marker
that may reflect sarcoidosis activity, was elevated in cardiac sarcoidosis (910 £ 683 U/L) and noncardiac
sarcoidosis (689 & 399 U/L) but did not significantly differ between the groups. Tmmunohistochemistry of
cardiac or lymph node specimens from patients with cardiac sarcoidosis showed only sparse or no infiltration
of immunoglobulin G4—positive lymphocytes, in contrast to the moderate to severe infiltration of CD68-
positive macrophages and CD45-positive lymphocytes. Although the number of study subjects was small,
these findings collectively suggest that regardless of the presence or absence of cardiac involvement,
sarcoidosis does not belong to or overlap with immunoglobulin G4--related sclerosing disease.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction
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abdominal aortic aneurysm [2], Mikulicz disease, and
Sjoegren syndrome [3], leading to the proposal of a new
clinicopathologic entity, IgG4-related sclerosing disease [4].
Although the clinical spectrum of IgG4-related sclerosing
disease or its identity as a novel clinical entity has not been
established, it has been proposed that diagnosis of IgG4-
related sclerosing disease can be defined by elevated serum
IgG4 and histopathologic features such as greater than 50%
infiltration of IgG4/IgG-positive plasma cells [5]. Currently,
sarcoidosis is not considered to be IgG4 related. However, a
small fraction of IgG4-related sclerosing disease may be
misdiagnosed as other lymphoproliferative diseases because

of the resemblance of clinicopathologic pictures [6] as well
as the fact that a substantial fraction of autoimmune
pancreatitis, the first disease to be diagnosed as IgG4 related,
may occur concomitantly with other autoimmune diseases,
including sarcoidosis [7}.

Recent studies have suggested that cardiac involvement,
although less common, may be one of the features of IgG4-
related sclerosing disease [8,9]. Sarcoidosis with cardiac
involvement, termed cardiac sarcoidosis, is reported to be
more prevalent in Japan than in the United States and is
responsible for approximately 58% to 85% of deaths from
sarcoidosis [10-12]. To date, there has been little information
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available regarding whether serum 1gG4 levels are increased
in patients with sarcoidosis, especially those who have been
diagnosed with cardiac involvement. Therefore, we analyzed
serum IgG4 levels in 65 patients with sarcoidosis, including
12 patients with cardiac sarcoidosis.

2. Materials and methods

2.1. Study patients and diagnosis of
cardiac sarcoidosis

The study was approved by the Ethical Committee of the
Osaka Medical College, Osaka, Japan, and Hayama Heart
Center, Kanagawa, Japan. Sixty-five patients with active
sarcoidosis who attended our hospital and/or Hayama Heart
Center between 2002 and 2010 were enrolled in the current
study. Among these patients, 12 (6 men and 6 women) were
diagnosed as having cardiac sarcoidosis according to the
diagnostic guidelines proposed by the Japan Society of
Sarcoidosis and Other Granulomatous Disorders [13].

2.2. Laboratory measurements

Serum IgG4 levels, soluble interleukin 2 receptor
(sIL-2R), and C-reactive protein (CRP) were measured by
turbidimetry (SRL, Tokyo, Japan), enzyme-linked immuno-
sorbent assay, and a latex agglutination immunophotometric
assay. Serum levels of angiotensin-converting enzyme
(ACE) were measured by the Kasahara method [14]. The
upper reference ranges of IgG4, sIL-2R, and ACE were
105 mg/dL, 519 U/mlL, and 21.4 U/L, respectively.

2.3. Histologic and immunohistochemical
examinations

Biopsy specimens of 5 of the 12 patients with cardiac
sarcoidosis enrolled in the study were available. In addition, a
biopsy specimen was available for 7 other patients with cardiac
sarcoidosis. Specimens of left ventricular (LV) myocardium or
lymph nodes were obtained from surgically excised LV
muscles, biopsy, or autopsy. Sections of paraffin-embedded
specimens with a thickness of 4 to 6 um were incubated with
antibodies against cell surface markers (CD45 [Leica,
Newecastle, UK], CD38 [Leica], and CD68 [DAKO, Glostrup,
Denmark]) or IgG4 (Cappel, Cochranville, PA), and antigens
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Fig. 1 Scatter plot of serum IgG4 and sIL-2R levels in patients with
sarcoidosis. Patients with cardiac sarcoidosis and non-—cardiac
sarcoidosis patients are represented by red and blue circles, respectively.

were visualized by using the 3,3-diaminobenzidine tetrahy-
drochloride method (ScyTek Laboratories, Logan, UT).

2.4, Statistical analysis

Data are expressed as mean = SD for continuous variables
and as number (percentage) for categorical variables. Spearman
correlation analysis was performed to estimate correlations
between variables. Comparison between 2 groups was
performed by Wilcoxon rank sum test or unpaired Student
¢ test. P <.05 was considered to be statistically significant.

3. Results
3.1. Patient characteristics

The mean age and prevalence of male sex did not
significantly differ between the groups (Table 1). Compared
with non—cardiac sarcoidosis patients, heart failure, com-
plete atrioventricular block, and ventricular tachycardia were
found to be more prevalent in patients with cardiac
sarcoidosis. Use of cardiac medications, such as -blockers,
diuretics, digitalis, spironolactone, and amiodarone, was
more frequent in patients with cardiac sarcoidosis.

3.2. Laboratory data

Serum levels of CRP, aspartate aminotransferase, blood
urea nitrogen, and creatinine were significantly higher in
patients with cardiac sarcoidosis. No statistical difference
was found between serum levels of 1gG4, sIL-2R, and ACE
of patients with cardiac sarcoidosis and non—cardiac
sarcoidosis patients (Table 2). Among the 12 patients with
cardiac sarcoidosis, 2 (17%), 9 (75%), and 3 (25%) had
IgG4, sIL-2R, and ACE levels higher than the upper normal
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limit, respectively. Among the non—cardiac sarcoidosis
patients, 7 (13%), 32 (60%), and 22 (42%) had IgG4, sIL-
2R, and ACE levels higher than the upper normal limit,
respectively. The correlation between IgG4 and sIL-2R was
found to be nonsignificant (Fig. 1).

3.3. Histologic and immunohistochemical analysis

Of the 12 patients whose serum IgG4 levels were
available, the histologic specimens of 5 patients were also
available (Table 3). The gross photograph from one of the
patients (case 10 in Table 3) demonstrates dilated and
partially thinned LV wall with scar lesion formation, and
sarcoid granulomas and interstitial fibrosis are shown
microscopically in these lesions (Fig. 2). In the patients
listed in Table 3, the cardiac tissue showed sarcoid
granulomas with multinucleated giant cells in cases 1 to
10 (Supplementary Figure). On the other hand, in cases 11
and 12, the cardiac tissues had been obtained by
endomyocardial biopsy, which showed granulomatous
degeneration with inflammatory cell infiltrates, and multi-
nucleated giant cells that occasionally contained asteroid
bodies can be observed. In the latter 2 cases, although
multinucleated giant cells were not apparent (Supplemen-
tary Figure), cardiac sarcoidosis was diagnosed with the
histopathologic findings in lymph node tissues showing
sarcoid granulomas and the presence of cardiomyopathy. In

the tissue sample of a patient (case 6), who had slightly
elevated levels of IgG4 and sIL-2R, increased infiltration of
CD45-positive T lymphocytes and CD68-positive macro-
phages was observed. In contrast, CD38-positive B
lymphocytes and IgG4-positive cells were sparse (Fig. 3).
In lymph node specimens from another patient with cardiac
sarcoidosis (case 11) who had normal serum IgG4 levels,
increased infiltration of CD45-positive T lymphocytes and
CD68-positive macrophages was found; however, IgG4-
positive cells as well as CD38-positive B lymphocytes were
sparse (Fig. 4). IgG4 staining of heart specimens that were
judged to be 1+ (Table 3) is shown in Fig. 5.

4. Discussion

In the current study, we measured serum IgG4 levels in 65
patients who were diagnosed with sarcoidosis. The mean
serum IgG4 level was 56.8 + 43.0 mg/dL, and 9 (14%)
patients had an IgG4 level above the upper reference range
(105 mg/dL). In addition, among the 12 patients with cardiac
sarcoidosis, 2 (17%) had an IgG4 level above the upper
reference range. The mean IgG4 level did not differ
significantly between patients with cardiac sarcoidosis and
non—cardiac sarcoidosis patients. On the other hand, 41
(63%) of the 65 patients with sarcoidosis had increased
serum levels of sIL-2R, a marker that may reflect sarcoidosis
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Fig. 2 Gross anatomy and histologic findings of cardiac sarcoidosis (case 10 in Table 3). A, Macroscopic analysis. The dilated LV wall
showed thinning (arrows), and the scar-like white lesion was observed (asterisks). B, C, and D, Microscopically, many sarcoid granulomas and
interstitial fibrosis were evident. B and C, Masson-trichrome staining. D, Hematoxylin-eosin staining. (Ori ginal magnification: X100 in B and

%400 in C and D.)

activity [15], although the mean sIL-2R level did not differ
corresponding to the presence or absence of cardiac
involvement. Together with the finding that the relationship
between serum IgG4 and sIL-2R was insignificant, these
results suggest that serum IgG4 levels may not represent a
" biomarker for or reflect the disease activity of sarcoidosis,
regardless of cardiac involvement.
IgG4-related sclerosing disease is a newly emerging
 disease entity, and a certain fraction of various lymphopro-
liferative disorders, such as Mikulicz disease, Sjoegren
syndrome, and Castleman disease, may be 1gG4 related
[3,16]. However, whether IgG4-related sclerosing disease is
truly a separate clinical entity needs to be elucidated, and if

yes, the extent covered by this disease requires further
evaluation to avoid diagnostic confusion [16]. We propose
the possibility that other disorders that occasionally present
similar clinical features, such as sarcoidosis, Wegener
granulomatosis, and malignant lymphoma, should be ruled
out before the diagnosis of [gG4-related sclerosing disease or
alternatively, 1gG4+ multiorgan lymphoproliferative discase
is made [5].

As previously discussed, sarcoidosis is one of the discases
that should be distinguished from IgG4-related sclerosing
disease. Whether a certain fraction of IgG4-related sclerosing
disease has been misdiagnosed as sarcoidosis or whether a
certain fraction of sarcoidosis overlaps with IgG4-related
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Fig. 3  Histologic and immunohistochemical analyses of the cardiac specimen from a patient with cardiac sarcoidosis (case 6 in Table 3). All
panels were from serially cut sections. A, Hematoxylin and eosin staining. Large noncaseating sarcoid granulomas are observed. They are mainly
composed of lymphocytes, macrophages, multinucleated giant cells, and interstitial components. B, Higher-magnification image of the boxed area
in A. C, CD38 staining showing CD38-positive B cells. D, CD68 staining. CD68-positive macrophages and multinucleated giant cells are
observed. E, CD45 staining showing CD45-positive T cells. F, 1gG4 staining. (Original magnification: x40 in A and D and x100in B, C,E, and F.)

Fig.4 Histologic and immunohistologic analyses of the mediastinal lymph node from a patient with cardiac sarcoidosis (case 11 in Table 3).
All panels were from serially cut sections. A, Hematoxylin and cosin staining. B, Higher-magnification image of the boxed area in A. C, CD38
staining. D, CD68 staining. CD68-positive macrophages and multinucleated giant cells are observed. E, CD45 staining. T, IgG4 staining.
(Original magnification: x40 in A and D and x100in B, C, E, and F.)
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Fig.5 1gG4 staining. Images of cardiac specimens that were judged to be “1+” on IgG4 staining are shown. A, Cardiac specimen from case
2. B, Higher-magnification image of the boxed area in A. C, Cardiac specimen from case 3. D, Higher-magnification image of the boxed area
in C. E, Cardiac specimen from case 5. F, Higher-magnification image of the boxed area in E. (Original magnification: x40 in A, C, and E and

%100 in B, D, and F.)

sclerosing disease has not been fully discussed so far. Our
data suggest that sarcoidosis, which had been diagnosed as
such at our institute, may not be a misdiagnosis of or overlap
with IgG4-related sclerosing disease. Given that a population
of greater than 50% IgG4-positive infiltrated plasma cells is a
prerequisite condition for diagnosing IgG4-related sclerosing
disease 5], this notion is supported, especially in cardiac
sarcoidosis, by the findings from immunohistochemical
analysis such as the absence or sparse presence of IgG4-
positive cells in sarcoid granulomas in cardiac tissue and
lymph nodes (Figs. 2 and 3), even in the presence of
mildly elevated serum IgG4 levels. In addition, it has
recently been reported that IgG4-related sclerosing
disease may be characterized by predominant activation
of the T-helper 2-mediated immune reaction [17]. In
contrast, our previous finding indicated that cardiac
sarcoidosis is characterized by activation of the T-helper
I-mediated immune response [18].

The strength of the current study is that we could perform
immunohistochemical analysis on several cardiac tissues
obtained from left ventriculoplasty, enabling the screening of
numerous cardiac tissue samples from a variety of locations
from patients presumably having extensive granulomatous
degeneration of the heart. However, our study has several
limitations. First, histologic assessment was not possible for
all patients with cardiac sarcoidosis who were subjected to
serum IgG4 measurement. Second, granuloma-positive
noncardiac tissue was not stained for 1gG4 in non—cardiac
sarcoidosis patients; therefore, the prevalence of histologic

IgG4 positivity is not available for these patients. Third,
although none of the patients with cardiac sarcoidosis had a
history of corticosteroid therapy at the time of blood
sampling and/or tissue acquisition, a few non-—cardiac
sarcoidosis patients had already been taking steroid drugs
at the time of blood sampling.

In conclusion, among the 65 patients diagnosed with
sarcoidosis, the mean serum IgG4 level was 56.8 + 43.0 mg/dL.
The mean serum IgG4 level and the prevalence of an IgG4
level above the upper reference range did not significantly
differ between patients with cardiac sarcoidosis and non—
cardiac sarcoidosis patients. Immunohistochemical staining
of cardiac and lymph node samples from patients with
cardiac sarcoidosis showed only sparse or no infiltration of
IgG4-positive lymphocytes, in contrast to the moderate to
severe infiltration of CD68-positive macrophages and CD45-
positive lymphocytes. In conclusion, it appears that among
patients with sarcoidosis, especially among patients with
cardiac sarcoidosis, the infiltration of IgG4-positive lympho-
cytes is, when present, only sparse, supporting the notion that
sarcoidosis does not belong to or overlap with IgG4-related
sclerosing disease.

Supplementary data

Supplementary materials related to this article can be
found online at doi:10.1016/j.bumpath.2011.07.002.
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