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Fig. 2. The mean d-ROMs (a) and BAP (b) levels and mean BAP/d-ROMs ratio (c) in the ‘stroke type’ patients
(black), ‘non-stroke type’ patients (grey) and controls (white). *** p < 0.01, **** p <0.001, according to the Dunn
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(259.1 £ 42.0 U. Carr; p < 0.005) (fig. 1a). In particular,
the mean d-ROM:s level of the ‘stroke type’ patients (361.0
* 119.6 U. Carr) was significantly greater than that of the
controls (p < 0.01) (fig. 2a). Meanwhile, the mean d-
ROMs level of ‘non-stroke type’ patients (261.5 * 28.0
U.Carr) demonstrated no significant differences com-
pared with those of the controls and ‘stroke type’ patients
(fig. 2a).

The mean BAP level of all patients (2,258.9 * 517.7
pmol/l) was not significantly different compared with
that of the controls (2,057.6 = 149.5 wmol/l) (fig. 1b).
However, compared with the controls, ‘stroke type’ pa-
tients (2,428.9 £ 523.1 wmol/l) demonstrated signifi-
cantly high BAP levels (p < 0.01), and ‘non-stroke type’
patients (1,834.0 £ 59.2 pwmol/l) demonstrated signifi-
cantly low BAP levels (p < 0.001) (fig. 2b). There was no
significant difference between ‘stroke type’ patients and
‘non-stroke type’ patients in terms of the mean BAP lev-
els.

The mean BAP/d-ROMs ratio of all patients (7.87 +
5.05) was significantly lower than that of the controls
(8.13 * 1.30; p < 0.02) (fig. 1c). However, there were no
significant differences among the controls and patient
groups (fig. 2¢).

There was no relationship between the functional sta-
tus evaluated by performance status rating and the d-
ROMs level or BAP level or BAP/d-ROMs ratio.
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Discussion

In the present study, the d-ROMs and BAP tests were
applied to evaluate the redox states in serum of patients
carrying A3243G. These tests demonstrated that oxida-
tive stress represented by the d-ROMs levels was increased
and redox balance represented by the BAP/d-ROMs ratios
was decreased (tendency for oxidation) in the patients
compared with those of the controls (fig. 1). These find-
ings suggested that an imbalance of redox states due to
mitochondrial dysfunction affects the pathogenesis in
patients carrying A3243G.

In the ‘stroke type’ patients in particular, both d-
ROMs levels (oxidative stress) and BAP levels (antioxi-
dant activity) were increased compared with those of the
controls (fig. 2a, b). In vitro studies previously demon-
strated that A3243G enhances ROS generation leading to
oxidative stress [7-10], and enhanced oxidative stress is
proportional to mitochondrial dysfunction [7, 23]. In the
present study, all of the ‘stroke type’ patients have been
treated with antioxidants, and 8 out of 10 patients were
also treated with an oral administration of L-arginine.
Although serum antioxidant activity may be increased by
antioxidants and L-arginine therapy, serum oxidative
stress was still increased in ‘stroke type’ patients. In-
creased oxidative stress even with increased antioxidant
activity suggested a severe deterioration of mitochondri-
al function in patients with a history of stroke-like epi-
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sodes, and that oxidative stress plays a crucial role not
only in the brain lesions of stroke-like episodes [11, 12]
but also systemically in these patients. In other words, a
history of stroke-like episodes indicates that patients who
have these episodes are exposed to underlying oxidative
stress.

In the ‘non-stroke type’ patients, the mean d-ROMs
level (oxidative stress) was not significantly different
compared with that of the controls (fig. 2a). Meanwhile,
the BAP levels (antioxidant activity) were significantly
decreased (fig. 2b). Only 1 of 4 patients was treated with
antioxidants, and antioxidant therapy may not affect an-
tioxidant activity in ‘non-stroke type’ patients. These
findings may reflect that antioxidants are consumed in
order to prevent increase of oxidative stress in these pa-
tients. In addition, the difference of profiles in redox
states between ‘stroke type’ and ‘non-stroke type’ sug-
gested phenotypic diversity in patients carrying A3243G.

In the present study, we presented redox states in the
serum of patients carrying A3243G using the d-ROMs
and BAP tests. Rapid evaluation of redox states in serum
has been difficult to date. To assay oxidative stress in se-
rum, the spin trap method using electron spin resonance
(ESR) has been the most reliable method [24]. However,
performing ESR is cumbersome, thus it is difficult to ap-
ply this method in clinical practice. The d-ROMs test can
evaluate oxidative stress in serum by measuring oxides
due to hydroperoxides, and this test has been validated by
ESR [25]. Likewise, each endogenous antioxidant can be
measured, but there has been no method estimating the
whole activity of endogenous antioxidants in serum to
date. The BAP test provides a reliable indicator of the an-
tioxidant activity in serum by measuring the ability to
reduce ferric to ferrous ions [15]. Moreover, the d-ROMs
and BAP tests only need a small amount of blood, and
require only 15 min for measurement. Therefore, these
methods are prompt and reliable, and suitable for evalu-
ating redox states in patients.

Previous studies using postmortem organs or positron
emission tomography imaging have demonstrated re-
gional enhancement of oxidative stress in the brain le-
sions of stroke-like episodes and the heart lesions of car-
diomyopathy in patients carrying A3243G [11-13]. Al-
though enhanced oxidative stress due to A3243G has
been proven in these lesions, systemic oxidative stress in
patients carrying A3243G has not been evaluated to date.
The present study demonstrated a systemic and underly-
ing imbalance of redox states in these patients.

The present study has some limitations. (1) The ‘non-
stroke type’ group included only 4 patients. (2) The mean
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age of ‘non-stroke type’ patients was likely older than that
of ‘stroke type’ patients. (3) The ‘stroke type’ group in-
cluded only 2 of 10 patients with cardiomyopathy or dia-
betes, which might affect the systemic redox states. (4) All
of the 10 ‘stroke type’ patients received antioxidant ther-
apy, but only 1 of the 4 ‘non-stroke type’ patients received
antioxidant therapy. (5) This study did not show any sig-
nificant difference in either value of oxidative stress or
antioxidant activity between the ‘stroke type’ and ‘non-
stroke type’ groups. (6) The possibility that the ‘non-
stroke type’ patients in this study will also subsequently
develop stroke-like episodes cannot be ruled out. Further
studies are necessary to confirm our preliminary results.

Taken together, the d-ROMs and BAP tests clearly
demonstrated an abnormality of redox states in patients
carrying A3243G. In particular, enhanced oxidative
stress in patients with a history of stroke-like episodes
may reflect severe mitochondrial dysfunction, which
would contribute to the emergence of stroke-like epi-
sodes. In addition, in patients without stroke-like epi-
sodes, consumption of antioxidant activity may indicate
latent oxidative stress. These findings suggested that pa-
tients carrying A3243G are always exposed to underlying
oxidative stress, and further antioxidant therapy would
be beneficial to prevent an intensification of the symp-
toms.
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Abstract

Leigh syndrome (LS) is a progressive untreatable degenerating mitochondrial disorder caused by either mitochondrial or nuclear
DNA mutations. A patient was a second child of unconsanguineous parents. On the third day of birth, he was transferred to neo-
natal intensive care units because of severe lactic acidosis. Since he was showing continuous lactic acidosis, the oral supplementation
of dichloroacetate (DCA) was introduced on 31st day of birth at initial dose of 50 mg/kg, followed by maintenance dose of 25 mg/
kg/every 12 h. The patient was diagnosed with LS due to a point mutation of an A-C at nucleotide 599 in exon 6 in the pyruvate
dehydrogenase Elo gene, resulting in the substitution of aspartate for threonine at position 200 (N200T). Although the concentra-
tions of lactate and pyruvate in blood were slightly decreased, his clinical conditions were deteriorating progressively. In order to
overcome the mitochondrial or cytosolic energy crisis indicated by lactic acidosis as well as clinical symptoms, we terminated the
DCA and administered 0.5 g/kg/day TID of sodium pyruvate orally. We analyzed the therapeutic effects of DCA or sodium pyru-
vate in the patient, and found that pyruvate therapy significantly decreased lactate, pyruvate and alanine levels, showed no adverse
effects such as severe neuropathy seen in DCA, and had better clinical response on development and epilepsy. Though the efficacy of
pyruvate on LS will be evaluated by randomized double-blind placebo-controlled study design in future, pyruvate therapy is a pos-
sible candidate for therapeutic choice for currently incurable mitochondrial disorders such as LS.
© 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

Keywords: Leigh syndrome; PDH Elo mutation; Pyruvate; Lactic acidosis; Therapy

1. Introduction severity of biochemical defects caused by mutations in
both nuclear and mitochondrial genes involved in

LS, originally reported as subacute necrotizing energy metabolism. Though many molecular defects
encephalomyelopathy by Dr. Denis Leigh in 1951 [1], are reported to be associated with LS [3], the underlying
is an early-onset progressive neurodegenerative disorder gene defects remain unidentified in nearly half of the
characterized by developmental delay or regression, lac- patients [4,5]. Since LS is associated mainly with the
tic acidosis, and bilateral symmetrical lesion in the basal respiratory chain deficiency, there is no established
ganglia, thalamus, and brainstem [2]. The clinical pre- treatment except for a limited number of patients such
sentations of the disease are heterogeneous, due to the as those with thiamine-responsive pyruvate dehydroge-

nase deficiency [6], or those with defects in the biosyn-

* Corresponding author. Tel.: +81 942 31 7565; fax: +81 942 38 thetic pathway of coenzyme Q [7]. We have proposed
1792 that pyruvate has a therapeutic potential for mitochon-

E-mail address: yasukoga@med.kurume-u.ac.jp (Y. Koga). drial diseases, because: (a) pyruvate can stimulate the
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glycolytic pathway by reducing the NADH/NAD ratio
in the cytoplasm, (b) pyruvate can activate PDHC by
inhibiting pyruvate dehydrogenase kinase, and (¢) pyru-
vate can scavenge hydrogen peroxide by non-enzymatic
reaction [8]. Recently, we reported that pyruvate pro-
duced a slightly favorable change in the plasma lactate
and pyruvate levels in LS with cytochrome ¢ oxidase
deficiency [9]. In the present report, we describe a clini-
cal experience of pyruvate therapy in a child with LS
having PDH deficiency caused by a novel mutation in
PDH Ela gene.

2. Patient and methods
2.1. Patient

The S-years-old boy, presented as severe psycho-
motor retardation with severe lactic acidosis, was born

weighing 1797 g at full term gestational age as the
second child of unconsanguineous parents. He was
transferred to neonatal intensive care units because of
fatal distress with the severe lactic acidosis. The concen-
trations of lactate and pyruvate in blood were 6-10
times higher than normal range, with normal lactate/
pyruvate ratio (Table 1). He was under respiratory care
with medication of severe metabolic acidosis. Amino-
gram of his plasma showed an elevated alanine concen-
tration of 1.82 mM (normal range, 0.21-0.52). Since he
was showing continuous lactic acidosis, the oral supple-
mentation of DCA was introduced on 31st day of birth
at initial dose of 50 mg/kg, followed by maintenance
dose of 25 mg/kg/every 12 h. Though he showed severe
floppy infant, his mechanical ventilation has been termi-
nated at the 45th day of birth, and starting oral admin-
istration of ingredient nutrient. Although the
concentrations of lactate and pyruvate in blood were

Table 1
Biochemical parameters during therapy with none, DCA, or pyruvate.

None (n = 8) DCA therapy (n = 12) Pyruvate therapy (n = 10)
Lactate (mM) (normal: 0.03-0.17) 9.6 +0.54 8.6 +£2.63 5.28 4+ 1.73*°
(Range: minimum-maximum) (8.70-10.10) (3.56-12.70) (2.73-17.75)
Pyruvate (mM) (normal: 0.003-0.10) 0.69 £0.13 0.61 +0.19 0.42 = 0.13%°
(Range: minimum-maximum) (0.49-0.82) (0.31-0.93) (0.26-0.68)
L/P ratio (normal: 10~15) 14.5+£3.10 142+2.12 12.6 +1.52
(Range: minimum-maximum) (10.6-18.7) (11.5-17.9) (10.5-15.1)
Alanine (mM) (normal: 0.21-0.52) 1.7+0.28 1.134+0.27% 0.77 £ 0.38%
(Range: minimum~-maximum) (1.11-1.82) (0.76-1.51) (0.39-1.42)

All date are presented as mean 4+ SD during each treatments.

Lactate, pyruvate L/P ratio, and alanine were analyzed the significance between periods of none, DCA and pyruvate therapy using the two-tailed

Mann-Whitney U-test. P value less than 0.05 showed significant.

# It showed significance between none and DCA or pyruvate therapy.
" It showed significance between DCA and pyruvate therapy. #: number of measurements.

Table 2
Entire clinical course and symptoms.

Clinical course

None DCA

Pyruvate

Study periods 1 month (1 m) 17 months (2-18 m)
Hospitalization (day) 31 124

Emergency visit (time) 0 14

Diagnosis by EEG Infantile epilepsy

Convulsion

West syndrome or Lennox—Gastaut syndrome

Frequency 15 or more/days 18 or more/days

Duration 5-15 s/Epilepsy 5-20 s/Epilepsy

Series formation None Series formation

Anticonvulsants Phenobarbital Carbamazepine 10 mg/kg/day

20 mg/kg/day Valproate 10-15 mg/kg/day

Clobazam 1.0 mg/kg/day
Zonisamide 2-4 mg/kg/day

JMDRS 58 58

Developments Severe floppy infant ~ Cannot head control

Cannot sit alone
Cannot rolling over
Floppy infant

Eating mainly by S-tube

Respiratory care

58 months (1 year 6 months—6 years 4 months)
3

4

Lennox—Gastaut syndrome

2-3/months

5-10 s/Epilepsy

No series formation
Carbamazepine 10 mg/kg/day
Valproate 15 mg/kg/day
Clobazam 1.5 mg/kg/day
Zonisamide 2-4 mg/kg/day
57

Floppy infant

Head control (21 months)
Rolling over (42 months)
Sit alone (56 months)
Eating mainly by mouth
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slightly decreased by DCA, his clinical conditions were
deteriorating progressively. He could not fix the head
control, and roll over at 6 months of age. He was diag-
nosed with West syndrome at 6 months-old because of
his intractable generalized convulsions. Though he
received two types of anti-convulsants as shown in
Table 2, his convulsion did not stop and showed several
seizures a day with series formation. Brain MRI on
7-months-old showed a premature myelination and
atrophy in frontal lobe with callosal hypoplasia, and
brainstem abnormality. He showed severe floppiness,
loose head control, inability to sit alone and roll over,
feeding difficulty, and no significant words at the age
of 18 months-old. His EEG pattern changed to Len-
nox—Gastaut syndrome at that time (Fig. 1A). Nerve
conduction velocity in both motor and sensory nerve
showed low amplitude with delayed velocity indicating

A

Fig. 1. (A) EEG taken at 18 months old. A grossly abnormal inter-
ictal EEG showed continuous, high-amplitude, sharp-slow-waves or
spike-slow-waves indicating a multifocal and generalizing sharp-slow-
wave-discharges at 1.5-2.5 Hz. Patient showed intractable epilepsy
with 15-20 times a day of grandmal, and/or myoclonic type seizure.
(B) EEG taken at 36 months old. An abnormal inter-ictal EEG pattern
showed with continuous, sharp-slow-waves or spike-slow-waves.
However it showed low-amplitude and less multi-focality. Patient
showed no grandmal or myoclonic type seizure by daily base
frequency.
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severe neuropathy. At this point, we thought that severe
neuropathy seen in the patient may caused by the severe
adverse effects of DCA, since he received the DCA sup-
plementation for more than 17 months period. Because
of the severe neuropathy, we decided to terminate the
DCA at his age of 18 months-old, and after received
written informed consent, we started the oral supple-
mentation of sodium pyruvate at 0.5 g/kg/day TID.
Three months later, he started to roll over and showed
the facial expression of happiness and sadness. He could
start to chatter and swallow the liquid food. Six months
after starting pyruvate supplementation, he had almost
no epileptic seizure and was demonstrated the significant
improvement by EEG (Fig. 1B). The entire clinical
course is summarized in Fig. 2 and Table 2.

The lactate and pyruvate concentrations in cerebral
spinal fluid were 8.23 mM, and 1.26 mM under the
period of DCA therapy, and 4.6l mM and 0.68 mM
under the period of pyruvate therapy (Fig. 2).

2.2. Lactate, pyruvate, LIP ratio and alanine
determination

In order to investigate the energy state of patient in
each time period of therapy, we measured the plasma
level of lactate, pyruvate and aminogram including
alanine, 8 times in the periods of 31 days with free
of DCA and pyruvate, 12 times in 17 months during
DCA therapy, and 10 times in 58 months during pyru-
vate therapy. Analysis of amino acids was performed
on protein-free extracts of fresh plasma using
described methods.

2.3. Enzyme assays

The PDHC activity in cultured skin fibroblasts was
assayed using two different concentrations of TPP (0.4
and 1104 mM) after the activation of PDHC using
DCA as previously described [10].

2.4. Genetic analysis

Mutation analysis of the Elo gene, a major cause
of PDHC deficiency, was performed using genomic
DNA from cultured skin fibroblasts. For the genetic
analysis of the 11 exons of the Ela gene, the individ-
ual exons were amplified using primer pairs and con-
ditions as described previously [11].

2.5. Statistical analysis

Statistical analysis of the biochemical data includ-
ing lactate, pyruvate, L/P ratio, and alanine was per-
formed using two-tailed Mann-Whitney U-test or
Student’s #-test. A value of P <0.05 was considered
as statistically significant.
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Fig. 2. Entire clinical course.

3. Results

Since patient showed lactic acidosis with normal lac-
tate/pyruvate ratio, we measure the PDHC activity in
cultured skin fibroblasts cells. The PDHC activity was
0.94 in the presence of DCA and 0.4 mM TPP (normal:
4.07 + 0.68 nmol/min/mg protein). Mutation analysis of
PDH Ela subunits revealed a point mutation of an A—C
at nucleotide 599 in exon 6, resulting in the substitution
of aspartate for threonine at position 200 (N200T).
Though this mutation has not been reported before,
we considered it as the responsible gene defect in this
patient because; (1) no other mutations were found in
entire PDH Ela gene, (2) conserved amino acid in differ-
ent species, (3) mother has the mutation in hemizygous
condition, and (4) no same mutation found in 50 normal
females.

The laboratory data before, and after the treatment
by DCA, and after pyruvate treatment are shown in
Table 1 and Fig. 2. The concentration of lactate and
pyruvate in blood before the treatment was 51-58 times
higher than normal range, with normal lactate/pyruvate
ratio (Table 1). The concentration of alanine was also
increased 2.1-3.5 times higher than normal range. After
the treatment by DCA, though the concentration of lac-
tate and pyruvate showed no significance, the concentra-
tion of alanine was significantly decreased. The patient
showed intractable seizures, and decreased the activity
of daily living. After the treatment by pyruvate, the con-
centration of lactate and pyruvate were significantly
decreased in comparison with those without therapy,
and with DCA treatment, with significantly decreased
level of alanine (Table 1 and Fig. 2). The concentrations
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of lactate and pyruvate in the CSF were also signifi-
cantly decreased with significantly decreased plasma
level of alanine (Fig. 2).

4. Discussion

LS, the most dominant sub-type of mitochondrial
disorders in children, are clinically more severe and
patients usually die before the first decade of the life.
In another words, LS showed the most severe cytopathy
among subtypes of mitochondrial disorders. Therapeu-
tic target of mitochondrial angiopathy is now on-going
of L-arginine as an investigator-mediated clinical trial
on MELAS [12]. However there are no clinical trial of
therapeutic approach for mitochondrial cytopathy espe-
cially LS. Since the severe adverse events of DCA
reported in 2006 [13], the new therapeutic drugs to pre-
vent or improve the mitochondrial cytopathy or lactic
acidosis have to be developed as a substitute for DCA.

In the present study, we reported a patient with LS
caused by a novel PDH Ela mutation who responded
to pyruvate administration for 3 years period. Pyruvate
therapy significantly decreased the lactate, pyruvate
and alanine levels, showed no adverse effects such as
severe neuropathy seen in this patient under the DCA
therapy, and had better clinical response on development
and epilepsy. It was reported that pyruvate percolates
through the blood brain barrier via monocarboxylate
transporters and provides an excellent energy state for
neurons and astroglia [14]. As shown in our patient
(Fig. 2), pyruvates decreased lactate and alanine levels
not only in blood but in CSF, and improved the electro-
encephalogram in our patient, suggested that pyruvate
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may pass through blood-brain barrier and improve the
metabolic condition in the brain in our patient. We have
proposed that pyruvate has a therapeutic potential for
mitochondrial diseases, because: (a) pyruvate can stimu-
late the glycolytic pathway by reducing the NADH/
NAD ratio in the cytoplasm [8], (b) pyruvate can activate
the pyruvate dehydrogenase complex (PDHC) by inhib-
iting the pyruvate dehydrogenase kinase [8,9], and (c)
pyruvate can scavenge the hydrogen peroxide by a
non-enzymatic reaction [15]. Pyruvate improved the
hemodynamic condition by intracoronary infusion in
patients with congestive heart failure [16,17], or the neu-
rological recovery following cardiopulmonary arrest and
resuscitation [18]. In our patient, we determined the daily
supplement of pyruvate by the presence of diarrhea as
adverse effects or by the capacity of amount of oral
administration. In our patient, daily administration of
sodium pyruvate resulted in 0.5d/kg/day TID. The exact
pharmacological mechanisms why serum pyruvate is also
decreased after the pyruvate therapy, have to be clarified
in future study, by using proteome analysis or compre-
hensive multiple analysis of total cell metabolism.
Considering the progressive nature of LS, pyruvate
may prevent the neurodegeneration and lactic acidosis
in our patient. Though the efficacy of pyruvate on LS
will be evaluated by randomized double-blind placebo-
controlled study design in future, pyruvate therapy is a
possible candidata for therapeutic choice for currently
incurable mitochondrial disorders such as LS.
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