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syndrome groups demonstrated that
telomeres were significantly shorter in
Sjogren syndrome group (D; p=0.02).

markers weaker or non-existent in the Sjogren syndrome
group.

Electron microscopy findings: To determine ultrastructural
changes in lacrimal gland, we analyzed samples using electron
microscopy. Electron microscopy revealed that the structure
of each lacrimal acinar unit was compact and uniform in the
non-Sjbgren syndrome group. Myoepithelial cells were
smooth in shape (Figure 3B). Mild acinar atrophy and fibrosis
were observed more frequently in the Sjogren syndrome
group (Figure 3E). Infiltration of inflammatory cells was
observed in both groups, being particularly marked in the
Sjégren syndrome group. High magnification revealed that
the structure of mitochondrial cristae was severely damaged
and swollen in the Sjogren syndrome group (Figure 3F)
compared to that in the non-Sjdgren syndrome group (Figure
30), indicating that mitochondrial damage may be related to
Sj6gren syndrome.

DISCUSSION

In this study, we successfully measured telomere intensity in
lacrimal gland epithelial cells by telo-FISH and investigated
relative telomere length in each cell. We believe that this is
the first report of a telomere length analysis in lacrimal gland.

The results showed that the telomeres in lacrimal gland
cells in the Sj6gren syndrome group were significantly shorter
than those in the non-Sjégren syndrome group (p=0.02).
Patchy invasion by inflammatory cells and the destruction of
lacrimal gland structure were observed frequently in the
Sjogren syndrome group. It should be noted that these results

were obtained even though we selected only those areas in
which acinar unit structure was preserved for telo-FISH.
Furthermore, even though the clinical findings were similar
between the two groups, telomere length showed a significant
difference.

These results suggest that telomere length is related to
severe dry eye diseases where normal lacrimal gland function
has been disrupted by chronic inflammation. Recently, it has
been reported that renal failure shortens cardiac telomeres,
and that short telomeres are a risk factor for idiopathic
pulmonary fibrosis [10,11]. The present results are consistent
with these earlier reports indicating a strong association
between organ dysfunction and telomere shortening,
suggesting telomere shortening as a risk factor for lacrimal
gland dysfunction as well. Telomere shortening has been
reported in several inflammatory diseases such as vascular
disease, type 2 diabetes, Fanconi anemia, and ataxia
teleangiectasia [12-15]. Lacrimal gland epithelial cell
turnover was not clearly defined until recently, however, so
further study is necessary to investigate the relationship
between telomere length and inflammation in this tissue.

Progenitor cell marker expression (p63, nucleostemin,
and ABCG2) was weaker in the Sjogren syndrome group than
in non-Sjogren syndrome group. p63 is often used as a
progenitor cell marker for keratinocytes and corneal epithelial
cells with high proliferative potential [20]. Nucleostemin has
been reported in proliferating cells in various tissues,
including bone marrow, and may be used as a progenitor
marker for stratified epithelial cells [21,22]. ABCG2 and
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Figure 2. Immunostaining for progenitor markers. In non-Sjogren syndrome, p63 (red) was expressed in 2—4 cells in each acinar unit (A) and
all ductal basal cells (B; case 7). In Sjogren syndrome, p63 was weakly expressed with irregular pattern. (case 2; F, G). Nucleostemin was
expressed with a similar pattern in non-Sjogren syndrome (case 7; C) and Sjogren syndrome (case 2; H). Nuclei were counterstained with
DAPI (blue). ABCG2 (red) was expressed in intercellular junction and cytoplasm in acinar unit (F, I), and weaker in Sjogren syndrome. Nestin
was expressed strongly in some location in Sjogren syndrome (E, J). Scale bars indicate 50 um (A-C, E-H, J) and 20 um (D, I), SS=Sjsgren
syndrome, non-SS=non Sj6gren syndrome.

nestin have been recognized as one of progenitor cell markers
in adult tissue. Surprisingly, nestin-positve cells were
observed more frequently in the Sjdgren syndrome, which
maybe partially explained that nestin expressed only in
repairing/regeneration location, but not in quiescent cells
[19,25]. These results suggest that telomere length shortening
in lacrimal progenitor cells indicates the pathophysiological
conditions necessary for development of Sjdgren syndrome.
Although most tissues are known to have their own tissue-
specific stem cells, the existence of stem cells in lacrimal
gland has yet to be proven. The results of telo-FISH may
indicate the existence of progenitor cells in lacrimal gland
[30]. Further investigation is needed to characterize the
progenitor cells and their homeostasis in lacrimal gland.

Electron microscopy revealed that the structure of
mitochondrial cristae was severely damaged in the Sjdgren
syndrome group (Figure 3F) compared to in the non-Sjogren
syndrome group (Figure 3C). There were some reports about
the associations among telomere length, mitochondrial
function and oxidative stress [31-36]. Mitochondria are the

most important source of reactive oxygen species in cells
under physiologic conditions, and premature senescent cells
sorted from young cultures displayed mitochondrial
dysfunction, increased oxidative stress and short telomeres
[31]. Another report showed that improvement in
mitochondrial function results in less telomeric damage and
slower telomere shortening, while telomere-dependent
growth arrest is associated with increased mitochondrial
dysfunction [32]. Furthermore, telomere-shortening rate and
cell replicative life spans can be greatly modified by DNA-
damaging oxidative stress [5], which has been shown to
accelerate telomere shortening during DNA replication [37].
The mitochondrial structural changes observed in this study
may contribute to the increase in oxidative stress induced by
Sjogren syndrome. However the relationship between
mitochondrial damage and telomere shortening was not clear
in this study, and further study was necessary to clarify the
molecular mechanism. The results of this study indicate that
1) telo-FISH is a viable method of assessing telomere length
in lacrimal gland; and 2) telomere length in Sjégren syndrome
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Figure 3. Electron microscopy of lacrimal gland. Representative H&E staining and electron microscopy photographs of non-Sjégren syndrome
(case 9; A, B, C) and Sjogren syndrome patient (case 4; D, E, F) were shown. Scale bar indicated 5 pm (B and E) and 2 pm (C and F). Structure
of lacrimal acinar unit was compact and uniform in non-Sjégren syndrome patients (A and B), but mild acinar atrophy and fibrosis were
observed more frequently in Sjogren syndrome patients (D and E). High magnification revealed that structure of mitochondrial cristae (arrows)
was severely damaged and swollen in Sjogren syndrome patient (F) compared to that in non-Sjogren syndrome patient (C).

is shorter than in non-Sjogren syndrome, possibly due to
acceleration of the cell cycle to maintain lacrimal gland cell
homeostasis, and associated with lower levels of expression
of p63 and nucleostemin.

Taken together, this suggests that dysfunction in lacrimal
gland may be related to epithelial cell telomere shortening.
Further study is needed, however, to clarify the underlying
molecular mechanism.
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