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Abstract

Clinical chart review of 49 cases with spinal cord injured pain was performed.
Retrospective data about the characteristics of patients, the level of injury, the completeness
of injury and the etiology was collected. Of pathogenesis of spinal cord injury, degenerative
disease was 25 subjects (51%), 12 was traumatic (24%), 4 was vascular (8%) and 4 was
neoplastic disease (8%). Thirty two subjects have injured at the cervical level (65%), 13 at the
thoracic level (27%) and 4 at the lumbosacral level (8%). At-level neuropathic pain was
present in 19 subjects (39%), below—level neuropathic pain was present in 42 subjects (85%).
Gabapentin was effective in 24 patients (41%), clonazepam was effective in 17 (30%) and
tricyclic antidepressants was effective in 21 patients (38%). We analized relationship between
the characteristics of SCI pain and the result of various evaluation; Viswal Analogue Scale
(VAS), Hospital Anxiety Depression Scale (HAD), Pain Disability Assessment Scale (PDAS)
and McGill Pain Questionnaire (MPQ).

Key words: Spinal cord injured pain; Classification of pain; Neuropathic pain; Gabapentin
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Table 1 Characteristics of the study sample
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Characteristic Value

Age (y1)
Mean 61
Range 31-76
Gender, n (%) Male 31(63)
Female 18 (36)
Level of injury, n (%)
Cervical 32(85)
Thoracic 13Q27)
Lumbosacral 4.(8)
Completeness of injury, n (%)
Complete 7 {14}
Imcomplete 34 (69)
No paralysis 8(16)
Etiology, n (%)
Degenerative 25(51)
Tiraumatic 12 (24)
Vascular 4 (8)
Neoplastic 4(8)
Other 4(8)
;B
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mean score {4 SEM)
em B BEBERER S A B

wincomplete and no
paralysis

Fig.1 Pain, disability, anxiety, and depression score of SCI patients. There is no significant differences in pain,
disability, anxiety and depression score between complete and incomplete paralytic patients.
VAS: Visual Analogue Seale, PDAS: Pain Disability Assessment Scale, HAD: Hospital Anxiety Depression Scale, MPQ):
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Cases {total = 49}

30 40 50

§ s

At fevel

Below level

B

10 B At fovel pain

5 fn= 7}

] r

s & Below leyel pain
& & & B 3 B
¥ & &'& & Q&“’F & & {n=30}
‘s.f;b ?‘é & c\“’ \Q
Q&P %&‘ ¥ Both
o & fn=12}
s ¢

Fig.2 A: Classification of SCI pain, B: Pain, disability, anxiety, and depression score of SCI patients. There is no
significant differences in pain, disability, anxiety and depression score between At-level pain, Below-level pain
and both.

VAS: Visual Analogue Scale, PDAS: Pain Disability Assessment Seale, HAD: Hospital Anxiety Depression Scale, MPQ:

MeGill Pain Questionnaire, *p<0.05 Kruskal-Wallis test
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Fig.3 Effectivedrugs for SCI patients.
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Fig.4 Pain, disability, and depression score of SCI patients There is no siginificant differences in pain, disability,
anxiety and depression score between Gabapentin, Clonazepam and Tricyclic antidepressants.
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LAMINAE-SPECIFIC DISTRIBUTION OF ALPHA-SUBUNITS OF
VOLTAGE-GATED SODIUM CHANNELS IN THE ADULT RAT

SPINAL CORD

T. FUKUOKA,* K. KOBAYASH! AND K. NOGUCHI

Department of Anatomy and Neuroscience, Hyogo College of Medi-
cine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan

Abstract—While the voltage-gated sodium channels (VGSCs)
are the key molecules for neuronal activities, the precise
distribution of them in spinal cord is not clear in previous
studies. We examined the expression of mRNAs for a-sub-
units of VGSC (Navs) in adult rat spinal cord before and 7
days after L5 spinal nerve ligation (SPNL) or complete
Freund’s adjuvant (CFA)-induced paw inflammation by in situ
hybridization histochemistry, reverse transcription-polymer-
ase chain reaction, and immunohistochemistry. Nav1.1 and
Nav1.6 mRNAs were present in all laminae, except for lamina
ll, including the spinothalamic tract neurons in laminal iden-
tified by retrograde tracing of Fluoro-gold. Nav1i.2 mRNA was
predominantly observed in the superficial layers (laminae |,
I}, and Nav1.3 mRNA was more restricted to these layers. All
these transcripts were expressed by the neurons character-
ized by immunostaining for neuron-specific nuclear protein.
Nav1.7 mRNA was selectively expressed by a half of mo-
toneurons in lamina IX. No signals for Nav1.8 or Nav1.9
mRNAs were detected. Immunohistochemistry for Nav1.1,
Nav1.2, Nav1.6, and Nav1.7 proteins verified some of these
neuronal distributions. L5 SPNL decreased Navi.1 and
Nav1.6 mRNAs, and increased Nav1.3 and Nav1.7 mRNAs in
the axotomized spinal motoneurons, without any changes in
other laminae of L4—6 spinal segments. Intradermal injection
of CFA did not cause any transcriptional change. Our find-
ings demonstrate that spinal neurons have different compo-
sitions of VGSCs according to their location in laminae.
Pathophysiological changes of spinal neuronal activity may
due to post-transcriptional changes of VGSCs. Comparison
with our previous data concerning the subpopulation-spe-
cific distribution of Nav transcripts in primary afferent neu-
rons provides potentially specific targets for local analgesics
at the peripheral nerve and spinal levels. © 2010 IBRO. Pub-
lished by Eisevier Ltd. All rights reserved.

Key words: Nav, neuropathic pain, complete Freund’s adju-
vant.

The spinal gray matter is classified into 10 different lami-
nae containing morphologically and functionally different
neurons (Rexed, 1952). Among them, laminae -V are

*Corresponding author. Tel: +81-798-45-6416; fax: +81-798-45-6417.
E-mail address: tfukuoka@hyo-med.ac.jp (T. Fukuoka).
Abbreviations: CCl, chronic constriction injury; CFA, complete
Freund’s adjuvant; DRG, dorsal root ganglion; FG, fluoro-gold; {HC,
immunohistochemistry; ISHH, in situ hybridization histochemistry;
NeuN, neuron-specific nuclear protein; NHS, normal horse serum;
RT-PCR, reverse transcription-polymelase chain reaction; SPNL, spi-
nal nerve ligation; TBS, Tris-buffered saline; VGSC, voltage-gated
sodium channels.

mainly involved in sensory processing. Lamina Il neurons
are especially important, receiving modulatory input from
supraspinal regions. Lamina | contains projection neurons
to some upper brain regions. On the other hand, spinal
motoneurons innervating all skeletal muscles of the ex-
tremities and body trunk are located in lamina IX.

Voltage-gated sodium channels (VGSCs) are key mol-
ecules involved in action potential generation and propa-
gation of all neurons throughout the nervous system. The
main component of these channels is the a-subunits in-
cluding the pore-forming loop, the voltage sensor, and a
Na* selective filter. To date, nine different a-subunits
(Navs) have been cloned and named Nav1.1-1.9 (Goldin
et al.,, 2000). Although these Navs appear to be differently
expressed throughout the nervous system and their distri-
bution has been widely examined, our knowledge about
the precise distribution of these Navs in spinal cord is
limited (Felts et al., 1997; Toledo-Aral et al., 1997; Krze-
mien et al., 2000; Tzoumaka et al., 2000; Lindia and Ab-
badie, 2003).

Recently, using high sensitive riboprobes for Nav1.1—
1.3, and Nav1.6-1.9 mRNAs, we have revealed a more
precise description of the distribution of these transcripts
among the histochemically-identified neuronal subpopula-
tions of adult rat dorsal root ganglion (DRG) than in previ-
ous studies (Black et al., 1996; Sangameswaran et al.,
1996; Felts et al., 1997; Toledo-Aral et al., 1997; Dib-Hajj
et al., 1998; Novakovic et al., 1998; Fukuoka et al., 2008).
The first purpose of this study was to examine, in detalil, the
exact localization of Nav1.1-1.3, and Nav1.6-1.9 mRNAs
and proteins in the naive adult rat spinal cord. The second
purpose was to reveal the transcriptional changes of these
Navs in pathological states, especially in relation to L5
spinal nerve ligation (SPNL) and peripheral inflammation
induced by intradermal injection of complete Freund’s ad-
juvant (CFA).

EXPERIMENTAL PROCEDURES
Animals

Male Sprague-Dawley rats (Nippon Dobutsu Co., Nishinomiya,
Japan; 230-280 g) were housed in plastic cages, 3-4 per cage,
and food and water were available ad libitum. The room was
maintained on a 12-h light/dark cycle in a constant 22-24 °C
temperature. All surgical procedures and drug injections were
done on rats that were deeply anesthetized with sodium pento-
barbital (50 mg/kg and additional doses as needed, i.p., Kyoritsu
Seiyaku Co., Tokyo, Japan). All animal experimental procedures
conformed to the regulations of the Hyogo Coliege of Medicine
Committee on Animal Research and adhered to the National
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Institute of Health Guide for the Care and Use of Laboratory
Animals. All efforts were made to minimize the number of animals
used and their suffering. ST

1 3

Surgical procedures and behavioral tests

Four rats received a unilateral L5 SPNL, as described previously
(Kim and Chung, 1992; Fukuoka et al., 2008). Another four rats
received an intradermal injection of 100 ul CFA (Calbiochem, La
Jolla, CA, USA) into the plantar surface of the left hind paw. Tests
of thermal and mechanical withdrawal thresholds of plantar sur-
face of the bilateral hind paws were done in all rats just before, and
1, 3, and 7 days after surgery or injection. The withdrawal latency
of the hind paw to a radiant heat was automatically measured
using the plantar test (model 7370, Ugo Basile, Comerio, Italy).
The three latencies per side were averaged to obtain the with-
drawal latency. Mechanical withdrawal threshold was assessed
with a dynamic plantar aesthesiometer (model 37450, Ugo
Basile). The mean value of three trials with at least 5 min intervals
between trials was taken as the withdrawal threshold. Data were
expressed as mean=SEM. Differences in the values over time
were tested using one-way repeated measures ANOVA followed
by Fisher's protected least significant difference test. Two-tailed
P-values less than 0.05 were considered to be significant. After
the final behavioral measurement, all rats were deeply anesthe-
tized with pentobarbital (75 mg/kg i.p.) and processed for tissue
preparation as described below.

Retrograde tracing of spinal neurons projecting to
the thalamus

Three rats were anesthetized with pentobarbital (50 mg/kg i.p.)
and received an injection of Fluoro-gold (FG; Fluorochrome Inc.,
Englewood, UK) into the brain. Briefly, the skull was fixed into a
stereotaxic frame (Narishige, Tokyo, Japan). Each rat received a
pressure injection of 100200 nl 4% FG through a glass micropi-
pette attached to the needle of a 10 ul Hamilton microsyringe into
the thalamus on the right side. Injections were centered in the
ventrolateral thalamic nucleus according to the atlas of Paxinos
and Watson (1986) (2 mm caudal from Bregma, 2 mm lateral, and
6.2 mm of depth) because injections around this region label
spinothalamic tract neurons in the rat (Burstein et al., 1990).
Seven days after injection, the rats were deeply anesthetized with
pentobarbital (75 mg/kg i.p.) and processed for tissue preparation
as described below.

Tissue preparation

At the fixed time, the rats were sacrificed by decapitation under
deep anesthesia. The lumbar (L4—-6) and cervical (C5-6 for FG
study only) spinal cord segments were quickly dissected out,
rapidly frozen in powdered dry ice, cut on a cryostat at a 16 um
thickness, and thaw-mounted onto Mas-coated glass slides (Mat-
sunami, Osaka, Japan). We used three other rats as naive control
without any of the above-mentioned surgeries or injections. With
regard to the sections obtained from the rats that received FG
injections, we took photographs of the sections containing FG-
labeled neurons before in situ hybridization histochemistry (in situ
hybridization histochemistry (ISHH)) through an OLYMPUS BX50
microscope under incident UV light with a 330-385 nm band pass
filter. The adequate fields were digitized with the connected Nikon
DXM-1200 digital camera, captured, and saved as TIFF files using
ACT-1 software (Nikon, Tokyo, Japan).

Reverse transcription (RT)-polymerase chain
reaction (PCR) and ISHH

Total RNA was extracted from adult rat spinal cord. Reverse
transcription-polymelase chain reaction (RT-PCR) and ISHH us-

ing the «®°S-UTP-labeled cRNA probes for Navi.1~1.3 and
Nav1.6-1.9 were carried out as described previously (Fukuoka et
al., 2008).

Immunohistochemistry (IHC) for Navs

Three naive rats were deeply anesthetized with pentobarbital (100
mg/kg i.p.) and perfused through the ascending aorta with freshly
prepared 4% formaldehyde in 0.1 M PB. The L4-5 spinal cords
were removed, postfixed in the same fixative for 4-5 h, and then
cryoprotected in 20% sucrose in 0.1 M PB at 4 °C overnight.
Twenty-five micrometres free-floating transverse sections were
cut on a cryostat and collected into Tris-buffered saline (TBS).
These spinal cord sections were immunostained using the follow-
ing rabbit polyclonal antibodies at the indicated dilution: Nav1.1
(1:300, ASC-001), Nav1.2 (1:3000, ASC-002), Nav1.6 (1:1000,
ASC-009), and Nav1.7 (1:1000, ASC-008, all purchased from
Alomone Laboratories, Jerusalem, Israel). Western blot data of rat
brain membranes using these antibodies are provided in the data
sheets. All immunohistochemical staining of spinal cord (Fig. 5)
was abolished when the diluted primary antibodies were preincu-
bated with the same weight of the epitope peptides provided from
the manufacture (data not shown). These antibodies have been
used for immunohistochemistry of rat tissue sections in previous
studies except for the anti-Nav1.2 antibody (Black et al., 2004;
Wittmack et al., 2004). The anti-Nav1.2 antibody, however, has
been well characterized by immunoblot of Nav1.2 knockout mice
brain membranes (Planells-Cases et al., 2000). The detail immu-
nohistochemical procedure was described previously (Fukuoka et
al., 2001).

IHC combined with ISHH

In order to distinguish the neurons from other cells, we used a
monoclonal antibody (MAB377, Chemicon, Temecula, CA, USA)
for neuron-specific nuclear protein (NeuN). The cryostat sections
were fixed in 4% formaldehyde in 0.1 M PB for 20 min. After
washing in 0.1 M Tris-buffered saline (TBS) three times each for
5 min, these sections were pre-incubated in TBS containing 10%
normal horse serum (NHS) for 30 min, followed by incubation in
the first antibody (1:1000) in TBS containing 5% NHS for 15 min
at room temperature. The sections were washed in TBS and then
incubated in biotinylated anti-mouse IgG (1:200; Vector Labora-
tories, Burlingame, CA, USA) in phosphate-buffered saline con-
taining 5% NHS and 100 U/ml RNase inhibitor for 1 h at room
temperature, followed by incubation in 30% methanol and 1%
hydrogen peroxidase in TBS for 15 min to inactivate endogenous
peroxidase. Then, the sections were incubated in avidin-biotin-
peroxidase complex (Elite ABC kit; Vector) for 30 min at room
temperature. The horseradish peroxidase reaction was developed
for 4-5 min in TBS containing 0.05% 3,3'-diaminobenzidine tet-
rahydrochloride (Wako, Tokyo, Japan) and 0.01% hydrogen per-
oxidase. After three washes in TBS, sections were immediately
processed for ISHH.

Image analysis

In order to objectively evaluate the change in expression of Nav
mRNA in the L5 spinal motoneurons following L5 SPNL, we
analyzed the density of silver grains over all neuronal profiles with
obviously large cell bodies in the ventral horns of the randomly
selected L5 sections using a computerized image analysis system
(NIH Image, version 1.61). At a magnification of 200X and with
bright-field illumination, upper and lower thresholds of gray level
density were set such that only silver grains were accurately
discriminated in the picture, and the percentage of the grain-
occupied area in the each outlined neuronal profile was calculated
by the computer. In the same manner, four background areas
between motoneurons in the same ventral horn were randomly
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established for each picture. The mean percentage of the four
background areas was taken as the background grain density of
the picture. To reduce the risk of biased sampling of the data
owing to varying emulsion thickness, the percentage of grain-
occupied area of each neuronal profile was divided by the back-
ground grain density giving a signal/noise (S/N) ratio. The S/N
ratio of an individual neuron was plotted and compared between
ipsilateral and contralateral side to L5 SPNL. At least 50 profiles
from four rats were evaluated for each side and each transcript.
We used Wilcoxon Signed Rank test for statistical analysis.

Photomicrographs

The representative pictures were digitized with a Nikon DIAPHOT-
300 microscope connected to a Nikon DXM-1200 digital camera
with darkfield or brightfield illumination. We used Adobe Photo-
shop 6.0 (Adobe Systems, Mountain View, CA, USA) to adjust the
brightness and contrast of the images and to make all figures. In
order to make Fig. 4, we compared the ISHH sections with the
before-saved TIFF images and identified the spinothalamic neu-
rons in the ISHH sections using at least two landmarks in the
tissue and the image, such as other conspicuous cells.

RESULTS
Nav transcripts in the naive spinal cord

Dark-field photomicrographs of the transverse sections of
spinal cord processed for ISHH clearly revealed unique
distributions of Nav1.1-1.7 transcripts in laminae-specific
manners (Fig. 1).

Nav1.1 and Nav1.6. The distributions of Nav1.1 and
1.6 transcripts were very similar (Fig. 1A, D). These signals
were seen throughout the gray matter including the spinal
motoneurons in ventral horn. Lamina Il was, however, clearly
seen as a band with lower signals for these mRNAs. At
higher-magpnifications, this tendency was verified (Fig. 2A, D).
This was especially the case for signals of Nav1.6 mRNA.
The signals were almost completely absent in the inner part
of lamina Il (Fig. 2D). On the other hand, some lamina | cells
were strongly labeled for these mRNAs (arrowheads in Fig.
2A, D). In addition, many large-sized celils with high signals
were present mainly in lamina V.

Nav1.2 and Nav1.3. ISHH for Nav1.2 mRNA showed
relatively even labeling throughout the gray matter with
somewhat heavier labeling over the dorsal horn as com-
pared to the ventral horn, with a tendency to concentrate in
the superficial layers (Figs. 1B and 2B). Signals for Nav1.3
mRNA were mainly accumulated in the superficial layers,
while some positive signals were observed in deeper lay-
ers, too (Figs. 1C and 2C). In contrast to Nav1.1 and 1.6,
lamina If contained strong signals for Nav1.2 and Nav1.3
mRNAs, and the large-sized cells in lamina IV were not
labeled for these mRNAs (Fig. 2B, C). The silver grains for
Nav1.2 and 1.3 transcripts were concentrated over the
nuclei of naive spinal motoneurons (see the contralateral
side of L5 SPNL in Fig. 8B, C). Therefore, these signals
appeared like small cells in ventral horn with darkfield
illumination (Fig. 1B, C). A similar intracellular distribution
has also been observed in naive DRG neurons (Fukuoka
et al., 2008). Anyway, expression of these mRNAs in naive
spinal motoneurons was very low.

Nav1.7. A limited number of spinal motoneurons
(Fig. 1E, arrowhead in Fig. 8E) were moderately labeled
for Nav1.7 mRNA, while other motoneurons completely
lacked this transcript (Fig. 8E, O). No signals were de-
tected in other parts of the naive spinal cord.

Nav1.8 and Nav1.9. There was no signal for these
transcripts in any part of the naive spinal cord (Fig. 1F, G).
RT-PCR clearly revealed the presence of Nav1.1-Nav1.7
transcripts, and the absence of Nav1.8 and Nav1.9
mRNAs in spinal cord (Fig. 1H).

Spinal neurons express multiple Nav mRNAs

In order to characterize the celis expressing Nav mRNAs in
spinal cord, we used ISHH combined with IHC for NeuN
(Fig. 3). NeuN-immunoreactive (ir) neurons, but not other
cells stained in light purple by hematoxylin, expressed
Nav1.1, Nav1.2, Nav1.3, and Nav1.6 transcripts. Signals
for Nav1.1 and Nav1.6 mRNAs were accumuiated over
some neurons in lamina | (arrows in Fig. 3A, G), but not
those in lamina Il (seen in the lower part of each panel).
Many, but not all, neurons in laminae lil and IV also ex-
pressed these mRNAs (Fig. 3B, H). Signals for Nav1.2 and
Nav1.3 mRNAs were detected in lamina Il (Fig. 3C, E). In
deeper layers of the dorsal horn, however, Nav1.3 mRNA
was not detected (Fig. 3F), while Nav1.2 signals were seen
in some lamina Il neurons (arrowhead in Fig. 3D). The
lack of Nav1.3 signals in the deeper layers may due to the
facts that these signals are relatively weak and ISHH loses
its high sensitivity after IHC procedure.

Spinothalamic tract neurons express Nav1.1 and
Nav1.6 mRNAs

We found ISHH signals for Nav1.1 and Nav1.6 in lamina |
(Figs. 2 and 3). This layer contains projection neurons
whose axons ascend through the spinal cord and end in
some brain regions, including thalamus (Kobayashi, 1998).
Thus, we injected FG into the thalamus to retrogradely
label spinal projection neurons, and then examined the
expression of these two transcripts. As reported previously
(Kobayashi, 1998; Al-Khater et al., 2008), much many
spinal projection neurons were labeled in cervical dorsal
horn (1.7 neurons/section in C5—6) than the lumbar segment
(~0.2 neurons/section in L4-6). Of the identified cervical
projection neurons, 100% (22/22) and 92% (24/26) were
labeled for Nav1.1 and Nav1.6 mRNAs, respectively. At the
lumbar segments, all (8/8 each) identified projection neurons
were labeled for these transcripts. Fig. 4 represents exam-
ples of the latter. .

Immunohistochemical staining of Navs in spinal cord

In order to verify the neuronal expression of Nav proteins,
we explored immunohistochemistry of the naive rat spinal
cord (Fig. 5). At low power view, the overall gray matter
was lightly immunostained for Nav1.1, Nav1.2, and Nav1.6
(Fig. 5A, D, G). At higher power view, however, several
densely stained components were observed. Anti-Nav1.1
antibody intensely labeled motoneurons in the spinal ven-
tral horn (Fig. 5A), large cells in lamina | (arrows in Fig.
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Fig. 1. (A-G) Darkfield photomicrographs of a transverse section of naive rat L5 lumbar spinal cord showing in situ hybridization signals for Nav1.1,
Nav1.2, Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 mRNAs, respectively. The upper side of each panel is the dorsal side of the spinal cord. Note
the laminae-specific distributions of Nav1.1-1.7 mRNAs. There were no signals for Nav1.8 or Nav1.9 in any part of spinal cord. Scale bar, 1 mm. (H)
Expression of Nav mRNAs in naive spinal cord by RT-PCR. Nav1.1-Nav1.7 transcripts were detected near the expected sizes (Navi.1, 541 base;
Nav1.2, 371 base; Nav1.3, 395 base; Nav1.6, 510 base; Nav1.7, 442 base), while Nav1.8 and Nav1.9 were not detected. GAPDH, positive control.

5B), and many cells in deeper layers (Fig. 5C). In addition,
some small cells in the outer part of lamina 1l were also
moderately labeled (arrowheads in Fig. 5B). For Nav1.2,
many short varicose fibers were intensely, and some neu-
ron-like profiles were moderately stained in the dorsal horn
(arrowheads in Fig. 5E). In the deeper layers, many in-
tensely labeled long varicose fibers were observed, while
almost no immunopositive cells were identified (Fig. 5F). A
limited number of spinal motoneurons were just detectable

in the ventral horn (arrowheads in Fig. 5D). The back-
ground staining was denser in the superficial dorsal horn
as compared to the deeper layers (Fig. 5E, F). Nav1.6-
immunoreactivity was found in many spinal motoneurons
(Fig. 5G), some neurons in lamina | or the outer part of
lamina Il (arrows in Fig. 5H), and many neurons in the
deeper laminae (arrowheads in Fig. 5I). Nav1.7-immuno-
reactivity was largely restricted to the superficial layers of
the dorsal horn (Fig. 5J). Close observation revealed many
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Fig. 2. High-magnification images showing the laminae-specific distribution of Nav1.1 (A), Nav1.2 (B), Nav1.3 (C), and Nav1.6 (D) mRNAs in naive
dorsal horn. A representative drawing of the borderlines between laminae is shown in panel (E). llo and lli, outer and inner parts of lamina Ii,
respectively. Note the strong signals for Nav1.1 and Nav1.6 mRNAs in lamina | (arrowheads in A, D), and those in deeper layers (laminae Ill and V).
In contrast, signaling was very low in lamina II. Signals for Nav1.2 mRNA were seen all layers, while those for Nav1.3 were mostly restricted to the

superficial layers of dorsal horn. Scale bar, 200 um.

intensely stained fibers were distributed these layers (Fig.
5K). Although spinal motoneurons had just detectable
staining (arrowheads in Fig. 5L), no other cell profiles were
identified in the gray matter.

Pain behavior

Both L5 SPNL and CFA injection induced significant
changes of mechanical threshold and withdrawal latency
on the ipsilateral side (Fig. 6). Significant decreases were
observed within a few days and continued until 7 days after
surgery. There was no significant change on the contralat-
eral side (P>0.05).

Nav transcripts in spinal cord after L5 SPNL

We examined at least 30 L4 -6 spinal sections pooled from
four animals for each probe. Transcriptional changes of
Nav mRNAs were restricted in the spinal motoneurons of
the L5 segment 7 days after L5 SPNL (Fig. 7), when
thermal hyperalgesia and mechanical allodynia were

present. No significant changes were observed in other
parts of the L5 spinal segment or any parts in other exam-
ined spinal segments (L4 and L6; data not shown).

Nav1.1and Nav1.6 ISHH signals for these two mRNAs
were slightly decreased in the directly axotomized spinal
motoneurons (arrowheads in Fig. 7A, D). Brightfield view
and quantitative evaluation demonstrated these changes
were statistically significant (Fig. 8). The axotomized mo-
toneurons, however, still had relatively high level of signals
(median S/N ratio ~40).

Nav1.2. Change in Nav1.2 expression was small and
barely observable (Figs. 7B and 8B, C), however, the level
was increased slightly in the axotomized motoneurons
(P=0.037; Fig. 8L).

Nav1.3 and Nav1.7 SPNL clearly increased the sig-
nals for these two mRNAs in the axotomized motoneu-
rons (arrows in Fig. 7C, E). These changes were also
obvious with brightfield illumination (Fig. 8C, E, H, J),
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Fig. 3. Navs are expressed only by spinal neurons. Brightfield photomicrographs of superficial layers (laminae | and 1, A, C, E, G) and deeper layers
(laminae lll and IV, B, D, F, H) of spinal dorsal hom sections treated with combined immunohistochemistry for the neuronal marker NeuN (brown) with ISHH
for Navt.1 (A, B), Nav1.2 (C, D), Navi.3 (E, F), and Nav1.6 (G, H) mRNAs. The upper side of each panel is the dorsal side of spinal cord. Nuclei of glial
cells are stained pale violet with Hematoxyline. Note that NeuN-ir neurons exclusively expressed these mRNAs. Arrows indicate examples of double-labeled

lamina | neurons. Scale bar, 20 um.

and image analysis confirmed that these changes were
significant (Fig. 8M, O).

Nav transcripts after CFA induced inflammation

The expression of Nav mRNAs in the spinal cord 7 days
after CFA injection, when thermal hyperalgesia and me-
chanical allodynia had developed, was qualitatively and
quantitatively similar to that in the naive spinal cord (Fig.

1). No changes were observed for all examined Navs in
any regions of the examined lumbar spinal segments (at
least 28 L4—6 spinal sections pooled from four rats for
each probe; data not shown).

DISCUSSION

Previous studies on Nav expression in the adult rat spinal
cord have demonstrated that Nav1.1, Nav1.2 and Nav1.6
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Fig. 4. Projection neurons express Nav1.1 and Nav1.6 transcripts. Microinjection of Fluorogold unilaterally into the thalamus retrogradely labeled a
limited number of cells in the lateral spinal nucleus (A) and the marginal zone (C) in the L5 spinal segment. All these labeled neurons express Nav1.1
(B) and Nav1.6 mRNAs (D). Scale bar, 20 um. For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.

are present, Nav1.3 exhibits very low expression, and
Nav1.7 is absent within the gray matter (Westenbroek et
al., 1989; Felts et al., 1997; Krzemien et al., 2000; Tzou-
maka et al., 2000; Lindia and Abbadie, 2003; Jarnot and
Corbett, 2006). In this study, we confirmed some of these
data, and extended them by detection of Nav1.3 and
Nav1.7 mRNAs and by demonstrating laminae-specific
neuronal distributions of these Navs.

Laminae-specific expression of Navs

The distributions of Nav1.1-1.3 and Nav1.6 mRNAs in the
spinal dorsal horn were characteristic (Fig. 1). Given the
higher level of signals for Nav1.1 and Nav1.6 mRNAs in
the gray matter as compared to other Navs (Fig. 1A, D), it
is clear that these two a-subunits are the main component
of VGSCs in most of spinal neurons, except for in lamina II.
One of the striking regions with high signals for Nav1.1 and
Nav1.6 was lamina | (Figs. 2A, D and 5B, H). Neurons in
this layer play important roles in nociception and many of
them have ascending axons to brain regions that contrib-
ute to sensory processing, including the thalamus, para-
brachial region, and medullary reticular formation (Men-
etrey et al., 1982; Burstein et al., 1990; Craig, 1995). We
demonstrated that almost all (92-100%) spinothalamic
tract neurons in lamina | intensely expressed Nav1.1 and
Nav1.6 mRNAs (Fig. 4). Therefore, these two subunits
seem to compose the main VGSCs that contribute action
potential propagation for long distance through spinal cord.
Other cells with noticeable Nav1.1 and Nav1.6 labeling
were the large-sized cells in lamina IV (Fig. 2A, D). Since
these cells were not labeled for Nav1.2, or Nav1.3 (Fig. 2B,
C), they appear to possess only Nav1.1 and Nav1.6 as
VGSCs. Although their identities are not clear in this study,
given their large cell body in lamina IV, they may be
“antenna cells,” whose dendrites are so wide and long that
they penetrate lamina Il, and this type of neuron is thought
to be a major output from lamina 1l (Willis and Coggeshall,
2004).

Neurons in the lamina I, especially the inner part of
this layer, appear to have different compositions of VGSCs
from those of other laminae neurons with low expression of

Nav1.1 and Nav1.6 mRNAs. Given that lamina Il neurons
are interneurons having short axons and dendrites con-
fined within the lamina (Willis and Coggeshall, 2004), they
may not need a high level of Nav1.1 and Nav1.6. In com-
pensation for this, Nav1.2 mRNA was relatively concen-
trated (Figs. 1B and 2B) and Nav1.3 mRNA was more
restricted to this layer (Figs. 1C and 2C), suggesting that
the native sodium currents recorded in this lamina are
mainly composed of these two a-subunits. Since the lam-
ina Il neurons receive noxious input through the unmyeli-
nated C and finely myelinated A8 primary afferents and
play important modulatory roles in nociceptive transmis-
sion, selective blockade of Nav1.3 may provide somewhat
selective interruption of nociceptive transmission at the
spinal level. Regarding nociceptive input, all neurofila-
ment-negative primary afferents, presumably including no-
ciceptors, express VGSCs composed of Nav1.7/1.8/1.9
and lack other Navs, including Navi.2 and Navi1.3
(Fukuoka et al., 2008). Since Nav1.7, Nav1.8, and Nav1.9
are absent in any sensory processing laminae of dorsal
horn (Fig. 1), the nociceptive input from C-fiber afferents
should be relayed between membranes with completely
different VGSCs at the first synapse in dorsal horn. Sys-
temic or intrathecal application of selective blockers to
Nav1.8 and Nav1.9 may exert a nociceptor-specific pre-
synaptic conduction block with minimum effect on the spi-
nal cord function (Jarvis et al., 2007).

We detected high signals for Nav1.1 and Nav1.6 mR-
NAs in spinal motoneurons (Fig. 8A, D). These observa-
tions are consistent with previous studies (Westenbroek et
al., 1989; Schaller et al., 1995; Porter et al., 1996; Garcia
et al., 1998; Lindia and Abbadie, 2003). In addition, we
detected signals for Nav1.2 and Nav1.3 mRNAs in these
neurons for the first time (Fig. 8B, C). Furthermore, we
found that roughly 10-20% of motoneurons expressed
Nav1.7 mRNA (Fig. 2E), which was not detected previ-
ously (Felts et al., 1997). Spinal motoneurons send their
long axons through the ventral root and join the primary
afferent fibers of DRG neurons in peripheral nerve. Since
the main a-subunits in naive spinal motoneurons are
Nav1.1 and Nav1.6 (Figs. 1 and 8), and nociceptor type
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Fig. 5. Immunohistochemistry of Nav1.1 (A-C), Nav1.2 (D-F), Nav1.6 (G-1), and Nav1.7 (J-L) in the rat naive lumbar spinal cord transverse sections. The
positions of the middle and the right-hand panels were indicated in the left-hand panels. For Nav1.1, the whole gray matter was lightly stained, and
intensely-stained neurons were identified in ventral homn (arrows in A), lamina | (arrows in B), outer part of lamina Il (arrowheads in B), and deeper laminae
of dorsal hom (C). For Nav1.2, the spinal gray matter was lightly stained with few moderately-stained motoneurons (arrowheads in D). Among the
densely-stained short varicose fibers, some moderately-stained neuron-like profiles were identified in the superficial layers (arowheads in E). In the deeper
layers, while many fine varicose fibers were densely immunostained (F) almost no positive cells were found. For Nav1.6, the spinal gray matter was lightly
stained with many moderately-stained motoneurons (G). In addition, some neuron-like cell profiles in lamina | (arrows in H) and deeper layers (arrowhead
in I) were moderately stained. For Nav1.7, the superficial layers of the dorsal hom were selectively stained (J). These layers contained many labeled varicose
fibers, but not cell profiles (K). The motoneurons were lightly stained at just detectable level (arrowheads in L). Scale bars=500 um in (A, D, G, J); 50 um
in others.
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Fig. 6. Pain behavior induced by unilateral L5 spinal nerve ligation
(A, B) and intradermal CFA injection to the plantar surface of the hindpaw
(C, D). The closed and open circles represent ipsilateral and contralat-

eral side, respectively. Withdrawal fatency to radiant heat (thermal;
A, C) and withdrawal threshold to increasing pinpoint pressure

C-fiber neurons completely lack these two subunits and
express Nav1.8 and Nav1.9 that are not detected in spinal
cord {(Fukuoka et al., 2008), the selective blockade of the
latter two Navs may achieve selective pain elimination at
the peripheral nerve level, too.

Nav proteins in spinal neurons

We demonstrated that spinal neurons in the naive adult rat
spinal cord express multiple Nav mRNAs (Fig. 3). Although
many immunohistochemical studies have examined about
Nav expression in spinal cord, there are few reports that
demonstrate the localization of Nav proteins in the neuro-
nal cell bodies, except for the spinal motoneurons. This is
largely due to the fact that Nav proteins are highly localized
at several parts other than cell bodies of spinal neurons,
such as axon initial segment, nodes of Ranvier, and along
the myelinated axons (Krzemien et al., 2000; Lindia and
Abbadie, 2003; Jarnot and Corbett, 2006; Duflocq et al.,
2008). Using commercially available well-characterized
antibodies, we observed localization of Nav proteins in
some neuron-like cell bodies consistent with our ISHH
data; (1) Nav1.1 in lamina | and deeper laminae, including
the motoneurons (Fig. 5A-C). (2) Nav1.2 in superficial
layers (Fig. 5D-F). (3) Nav1.6 in lamina | and deeper
laminae, including the motoneurons (Fig. 5G-1). (4) Exclu-
sive expression of Nav1.7 in the spinal motoneurons (Fig.
5J-L). However, the immunopositive cells (Fig. 5) are
much less than the Nav mRNA-expressing cells (Figs. 1
and 2), indicating the high sensitivity of our ISHH methods.
These observations suggest that neuronal cell body may
have relatively small role in action potential propagation.
Of course, it is clear that the neuronal electrophysiological
characters are determined by the channel proteins, but not
directly by their mRNAs. This is also the case of the real
molecular targets of sodium channel blockers. However, it
is also the fact that proteins are translated from their tran-
scripts. At least, neurons lacking a Nav transcript could not
have the corresponding channel protein in any region of
their structural components. Therefore, the laminae-spe-
cific neuronal expression of Nav transcripts should indicate
some difference in electrophysiological properties of their
dendrites and axons of the spinal neurons in these lami-
nae.

L5 SPNL induced a change in Navs expression only
in spinal motoneurons

L5 SPNL and chronic constriction injury (CCI) of the sciatic
nerve are widely used neuropathic pain models. Dorsal
horn neurons exhibit abnormal electrophysiological char-
acters including spontaneous background activity after L5

(mechanical; B, D) to the bilateral plantar surface were measured just
before (Pre), and at 1, 3, and 7 post-operative days (p. o. d.). Both
groups developed thermal hyperalgesia and mechanical allodynia on
the ipsilateral side (P<(0.05, by repeated measures ANOVA), but not
on the contralateral side (P>0.05). Note that these behavioral
changes continued until 7 p. o. d. when the results from the histochem-
ical studies were examined. n=4; error bars=SEM. ¥ P<0.05,
## P<0.01, #* P<0.001 vs. Pre, by Fisher's post hoc test.
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Fig. 7. Darkfield photomicrographs of transverse section of rat L5 lumbar spinal cord showing in situ hybridization signals for Nav1.1 (A), Nav1.2 (B),
Nav1.3 (C), Nav1.6 (D), Nav1.7 (E), Nav1.8 (F), and Nav1.9 (G) mRNAs 7 d after L5 spinal nerve ligation. The left and right side of each image are
the ipsilateral (axo.) and contralateral (contra.) side, respectively. Note that the axotomized spinal motoneurons in the ventral horn slightly decreased
Nav1.1 and Nav1.6 mRNAs (arrowheads in A, D), and significantly increased Nav1.3 and Nav1.7 mRNAs (arrows in C, E). No significant differences
were cbserved in the dorsal hom for all Navs. There were no signals for Nav1.8 or 1.9 in any part of the spinal cord. Scale bar, 1 mm.

SPNL (Pertovaara et al., 1997; Suzuki and Dickenson,
2006) and CCl (Laird and Bennett, 1993). Since de novo
expression of Nav1.3 transcript has been demonstrated in
spinal dorsal horn 10 days after CCl (Hains et al., 2004),
we examined the change in expression of Navs 7 days
after L5 SPNL. Although, we verified the development of
mechanical allodynia and thermal hyperalgesia at the time
point (Fig. 6), we could not detect any changes of Nav
expression in dorsal horn (Fig. 7). Therefore, CCl may

involve unknown pathomechanisms that increase this Nav
in the spinal cord other than those induced by simple spinal
nerve lesion. On the other hand, we found upregulation of
Nav1.3 and Nav1.7 and downregulation of Nav1.1 and
Nav1.6 in spinal motoneurons (Figs. 7 and 8). Previous
studies report the upregulation of Nav1.3 in directly axoto-
mized facial motoneurons (lwahashi et al., 1994), but not in
spinal motoneurons following axotomy resulting from spi-
nal cord injury (Hains et al., 2002). It has been demon-
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Fig. 8. Axotomy-induced changes of Nav expression in spinal motoneurons. Brightfield photomicrographs of ventral horns of rat L5 lumbar spinal cord
showing in situ hybridization signals for Nav1.1 (A, F, K), Nav1.2 (B, G, L), Nav1.3 (C, H, M), Nav1.6 (D, |, N), and Nav1.7 (E, J, O) mRNAs 7 days
after L5 spinal nerve ligation. The upper and middle panels are the contralateral (cont.) and ipsilateral (axo.) side, respectively. Scale bar, 1060 um.
The bottom panels show scatter plots of ISHH signals of individual motoneurons pooled from at least six sections from four rats and the statistical
results comparing both sides. # P<0.05, * P<0.01, ¥ P<0.001, by Wilcoxon Signed Rank test. Note the significant decrease of Nav1.1 and Nav1.6,

and the increase of Nav1.3 and Nav1.7 mRNAs.

strated that the axotomized spinal motoneurons exhibit a
relatively higher frequency of firing (Gustafsson, 1979).
The rapid repriming property of Nav1.3 may contribute to
this electrophysiological change as suggested in primary
afferent neurons (Cummins et al., 2001), while the contri-
bution of the upregulated Nav1.7 is still unclear.

Navs in the spinal cord after CFA-induced
inflammation

CFA-induced peripheral inflammation causes electrophys-
iological changes in second-order sensory neurons, in-
cluding increased responsiveness, enlargement of recep-
tive field, and increased background activity (lwata et al.,
1899). Of course, some of these changes are caused by
central sensitization of spinal neurons (Ren et al., 1996;
Guo et al., 2002). On the other hand, intradermal injection
of CFA induces upregulation of several sensory-related
molecules in dorsal horn neurons, including NK-1 (Ji et al.,
2002), NMDA receptor (Ohtori et al., 2002), and ASICs
(Wu et al., 2004). The same inflammation, however, did

not induce any transcriptional changes of Navs in lumbar
spinal neurons. The electrophysiological changes in this
pathological state may involve some post-translational
modulation of Navs such as phosphorylation and glycosi-
lation (Tyrrell et al., 2001; Vijayaragavan et al., 2004;
Wittmack et al., 2005).

CONCLUSION

Spinal neurons possess VGSCs with different composition
of a-subunits according to their laminae location. Compar-
ison with our previous data conceming the subpopulation-
specific distribution of Nav transcripts in DRG neurons
provide the precise distribution of Navs in the spinal cord
and peripheral nerves. Selective blockade of some Navs
may exert a differential functional influence on sensory
transmission and motor function.
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