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Figure 6. Immunoblot analysis showing overexpression of TNF-a,
TNFR1, TNFR2, and active-caspase-3 in the twy/twy mouse with
moderate and severe spinal cord compression. The major molec-
ular bands detected were 19 kDa in TNF-a, 55 kDa in TNFR1, 81
kDa in TNFR2, and 17 kDa in active-caspase-3. The same blot was
stripped and reprobed with S-tubulin antibodies as internal load-
ing control (B-tubulin; 52 kDa). Representative results of 3 exper-
iments with similar results.

sections revealed that most of the identified apoptotic
cells in the white matter were oligodendrocytes (popula-
tion 78 = 14%) while others included microglia and
astroglial cells. Shuman et al*® and Koda et aP” reported
similar findings in different trauma models of spinal cord
injury. Though insignificant when compared with the
acute spinal cord injury, the longitudinally diffuse and
extensive pattern of oligodendrocyte apoptosis in twy/
twy mouse may be similar to the secondary damage
process observed after acute trauma, and it was very
interesting that increment in the number of apoptotic
cells in this mouse model was proportional to the mag-
nitude of chronic external compression.

A variety of signal transduction pathways are involved
in the complex process of apoptosis.'*** Caspases are a
family of cysteine proteases that play important roles in the
effector phase of apoptosis and are activated through in-
trinsic and extrinsic pathways. Previous studies reported
that spinal cord injury resulted in the induction of apo-
ptosis mediated by caspase-3*® and increased expression
of the death receptors, especially Fas and p75 recep-
tors.>® The p75 neurotrophin receptors play a role in not
only the promotion of neuronal cell death®” but also
neuronal survival.>® On the other hand, the extrinsic
pathway is initiated by ligand of cell surface death recep-
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tors belonging to the TNF/nerve growth factor receptor
superfamily.’® Recent studies have described overex-
pression of TNF-« in apoptotic neuronal and glial cells
including microglia in spinal cord injury and suggested it
was the cytokine that triggers oligodendrocyte apopto-
sis, though the source of this TNF-« in injured spinal
cord was not clear.’®* A previous study suggested that
activated microglia secrete various cytotoxic factors in-
cluding TNF-a in response to axonal regeneration and
induce apoptosis of oligodendrocytes. It was also re-
ported that the population of apoptotic cells following
spinal cord contusion comprised oligodendrocytes and
possibly phagocytic microglia or macrophages.>® Dou-
ble immunofluorescence staining in this study also indi-
cated the expression of TNF-a in local cells including
microglia, while the expression of TNFR1 and TNFR2
was identified in apoptotic oligodendrocytes in the seg-
ment with the most severe cord compression in the ty/
twy mice. The discovery and studies of a “death domain”
in the TNFR1 and in other related receprors has revealed
information on the signaling pathways leading to the
activation of caspase-8 and caspase-3, before apopto-
sis.*! It seems reasonable to suggest, therefore, that fol-
lowing a traumatic injury to the spinal cord, accumula-
tion of TNF-a may act to initiate an apoptotic cascade
via receptor-mediated signaling. Although TNFR1 me-
diates the majority of the apoptotic effects as well as cell
surviving signals while TNFR2 predominantly transmits
cell-surviving signals, their locations and roles in TNEF-
a-induced signaling pathway are still not elucidated and
controversial.** Holmes et al** described immunocyto-
chemical localization of these receptors: TNFR1 was lo-
cated on neuronal cells and afferent fibers within the
dorsal root ganglion, but TNFR2 immunoreactivity was
absent in these locations. On the other hand, Yan ez al?¢
reported possible roles of expression of TNFR1 and
TNFR2 in adult rat spinal cord injury. They reported
overexpression of TNFR1 and TNFR2 in the spinal cord
and that such expression was located on neurons, astro-
cytes, and oligodendrocytes after spinal cord injury. In
chronic spinal cord compression, we found overexpres-
sion of both TNFR1 and TNFR2 primarily in oligoden-
drocytes and the number of those receptor-positive oli-
godendrocytes increased proportionately with the
increased magnitude of mechanical compression in the
twy/twy mouse. Although this source was not demon-
strated in the present study and mechanisms other than
those involving TNF-¢ and TNFRs (TNFR1 and
TNFR2) pathway exist for apoptosis of oligodendro-
cytes,> the above results and those of the present study
suggest the involvement of certain mechanisms in up-
regulation of inflammatory cytokines, including TNF-q,
and that mechanical compression-induced expression of
TNFR1 and TNFR2 may closely contribute to apopto-
sis, particularly that of oligodendrocytes in twy/twy
mouse spinal cord with severe compression, a model that
simulates cervical compressive myelopathy.
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TNF-a OX-42-GFAP-RIP merged

Figure 7. Photomicrographs show-
ing double immunostaining for
TNF-a« and immunoreactivity for
microglia 0X-42, astrocyte GFAP
and oligodendrocyte RIP in the
anterior column at spinal cord
level of maximal compression in
twy/twy mice with severe com-
pression. White arrows in A-l:
colocalization of TNF-a, 0X-42,
GFAP and RIP. Overlap of the
markers appears yellow in the
third rows. Note the expression
of TNF-« in microglia, astrocytes,
and oligodendrocytes. Scale
bars = 20 um (A-F), 10 um (G-1).

In conclusion, we observed an increased number of  ing, and the number of these cells increased with the
TUNEL-positive oligodendrocytes in the white matter of ~ magnitude of compression. Longitudinal topographic
the fwy/twy mouse spinal cord that was subjected to  mapping of TUNEL-positive cells showed considerable
progressive mechanical compression vis a tergo with ag-  distribution along the spinal cord axis. The results

RIP merged

TNFR1

Figure 8. Photomicrographs show-
ing double staining for TNFR1,
TNFR2, and active-caspase-3 with
immunoreactivity for oligodendro-
cyte RIP in the anterior funiculus
at spinal cord level of maximal
compression in twy/fwy mice with
severe compression. White ar-
rows in A-I: colocalization of
TNFR1, TNFR2, active-caspase-3
and RIP. Overlap of the markers
appears yellow in the third rows.
Note the expression of TNFR1,
TNFR2, and active-caspase-3 in
aligodendrocytes. Scale bars =
20 pm.

TNFR2

active~
caspase-3
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showed that in the #wwy/try mouse spinal cord, TUNEL-
positive oligodendrocytes were immunoreactive to
TNF-o, TNFR1, and TNFR2. These findings suggest
that TNF-a, and TNFR1 as well as TNFR2 seem to play
at least some roles in the demise of glial cells, which
probably contribute to axonal degeneration and demy-
elination in the fwy/twy mouse spinal cord with severe
compression.
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Osteoporosis represents a significant side effect of glucocorti-
coid therapy, and alendronate has been reported to prevent
this glucocorticoid-induced osteoporosis. Functional imaging
with 18F-fluoride PET allows quantitative analysis of bone metab-
olism in specific skeletal regions. However, only a few studies
have quantitatively determined bone turnover and metabolism
in glucocorticoid-induced osteoporosis by radiologic imaging
techniques including PET. The aim of this study was to examine
changes in regional bone remodeling and turnover as measured
by *8F-fluoride PET, the relationship between these measured
changes and conventional bone metabolism parameters, and
the effect of alendronate treatment. Methods: The study group
consisted of 24 postmenopausal women (mean age, 59.7 y)
who had various diseases, excluding rheumatoid arthritis, and
had been treated with 10 mg or more of oral glucocorticoids
(prednisolone equivalent) per day for more than 6 mo. Treatment
with 5 mg of alendronate per day began at the time of study entry
and continued for 12 mo. 8F-fluoride PET was performed at
baseline, 3 mo, and 12 mo to determine localized bone turnover,
and the results were compared with other bone metabolism pa-
rameters. Results: Lumbar spine standardized uptake values
(SUVs) were significantly lower (P < 0.05) in the osteoporotic
group (T-score = —2.5) than in the group that was healthy or
osteopenic (T-score > —2.5). Patients treated with alendronate
for 12 mo exhibited significant decreases in serum bone-specific
alkaline phosphate (P < 0.05), urinary N-telopeptide for type |
collagen (P < 0.01), lumbar spine SUV (P < 0.01), and femoral
neck SUV (P < 0.01) in association with a gradual increase in
bone mineral density (BMD) of the lumbar spine relative to the
baseline value (P < 0.05). Although there was a significant corre-
lation between BMD and SUV in the lumbar spine at baseline (P <
0.05), there was no correlation between the 2 variables at 12 mo
of treatment with alendronate. Gonclusior: Alendronate treat-
ment resulted in significant decreases in bone metabolism and
turnover in the lumbar spine. It also led to an increase in BMD
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of the lumbar spine in patients with glucocorticoid-induced oste-
oporosis. Our findings suggest that antiresorptive therapy has a
direct bone-metabolism effect on skeletal kinetics in glucocorti-
coid-induced osteoporosis at the clinically important site of the
lumbar spine.

Key Words: glucocorticoid; osteoporosis; '8F-fluoride positron
emission tomography (PET); bone metabolism; alendronate

J Nucl Med 2009; 50:1808-1814
DOI: 10.2967/jnumed.109.062570

The use of glucocorticoids in the treatment of patients
with various diseases is associated with increased bone loss
and the risk of bone fractures. Glucocorticoid-induced oste-
oporosis is the result of a combination of systemic effects
on mineral metabolism and local effects on bone quality.
Glucocorticoids decrease intestinal absorption of calcium
and increase renal calcium excretion (/,2). Another impor-
tant effect of glucocorticoids on bone is inhibition of bone
formation by a decrease in the number of osteoblasts and
hampering of their function (3). Glucocorticoids also in-
crease the rate of bone resorption by stimulating the for-
mation and action of osteoclasts. Although a daily dose of
7.5 mg or more of prednisone for at least 6 mo can induce
osteoporosis (4,5), lower doses of the drug have also been
linked to such changes (6). Several international guidelines
for the prevention and treatment of glucocorticoid-induced
osteoporosis have been developed (7-10). In general, these
guidelines recommend the use of bisphosphonate supple-
mentation, in addition to supplementation with calcium and
vitamin Ds, especially in patients at high risk of fractures.
Alendronate is effective in preventing and treating gluco-
corticoid-induced osteoporosis (I/-13).

Functional imaging with !8F-fluoride PET allows quan-
titative analysis of bone metabolism in specific skeletal re-
gions (/4). The preferential rapid uptake of !SF-fluoride
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reflects sites of high osteoblastic activity related to bone
remodeling (/5,16). Furthermore, 8F-fluoride has been
used to measure bone blood flow, and a significant corre-
lation was reported between '8F-fluoride uptake and oste-
oblastic activity, as determined by bone morphometry (17).
Extension of these studies to regional bone metabolism
showed significant relationships between regional skeletal
kinetic parameters measured by '®F-fluoride PET (/8) and
the number and activity of osteoblasts, as well as bone for-
mation and mineral apposition rate (/9,20). The plasma
clearance technique used in these studies has also been used
clinically to correlate changes in bone metabolism with the
type and severity of metabolic bone disease, such as oste-
oporosis (27), renal osteodystrophy (19), and Paget disease
(22,23). However, only a few studies have quantitatively de-
termined bone turnover and metabolism in glucocorticoid-
induced osteoporosis by radiologic imaging techniques
including PET (24). To our knowledge, there is no infor-
mation on regional changes in bone metabolic activity (e.g.,
lumbar spine) in patients treated with alendronate for
glucocorticoid-induced osteoporosis.

The present prospective study was designed to determine
the effects of alendronate treatment on regional bone turn-
over, measured by '3F-fluoride PET and by global bio-
chemical markers and bone mineral density (BMD), in
postmenopausal women with glucocorticoid-induced oste-
oporosis.

MATERIALS AND METHODS

Subiects

The study population consisted of 24 Japanese postmenopausal
women (mean age, 59.7y; range, 50-69 y) free of rheumatoid
arthritis, who had been treated with at least 10 mg of oral glu-
cocorticoids (prednisolone equivalent) per day for more than
6 mo. The underlying conditions included systemic lupus eryth-
ematosus in 5 patients, pemphigus in 4, pemphigoid in 4, poly-
myositis or dermatomyositis in 3, asthma in 3, multiple sclerosis
in 2, malignant lymphoma in 2, and Behget disease in 1. None had
a history of fractures. Excluding these diseases, none of the pa-
tients had any other disease or took any medications, including
calcium, that affected bone metabolism before baseline measure-
ments.

Treatment with 5 mg of oral alendronate once daily was initiated
on the day after the first '8F-fluoride PET scan and continued for the
duration of the study (12 mo). All examinations, including !8F-
fluoride PET, strictly followed the Ethics Review Committee
Guidelines of Fukui University, and written informed consent was
obtained from all patients. The ®F-fluoride PET study was under-
taken as an Advanced Medical Technology Development Project at
Fukui University.

Meassurement of BMD

BMD was measured at the time of study entry (baseline), 6 mo,
and 12 mo. BMD of the lumbar spine (I.1-L4) in the posteroan-
terior projection and femoral neck (left side), expressed in g/cm?,
was measured with dual-energy x-ray absorptiometry (QDR 1000;
Hologic). In our university, the coefficient of variance at these
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sites was less than 2%. The BMD scan was performed within 2 wk
of the '8F-PET scan and measurement of biochemical markers.

Measurement of Blochemical Markers

Serum bone-specific alkaline phosphate (BSALP), a marker of
bone formation, was measured in nonfasting patients at baseline
and at 3, 6, and 12 mo. Urinary N-telopeptide for type I collagen
(NTx), a marker of bone resorption, was measured in fasting pa-
tients (morning, second urine) at baseline and at 3, 6, and 12 mo.
Blood and urine specimens were collected on the same day as the
PET examination and stored frozen (—20°C) until measurement.
BSALP and NTx were measured quantitatively using Metra BAP
(Quidel Corp.) and Osteomark NTx (Inverness Medical Innova-
tions), respectively, in a fully automated enzyme immunoassay
apparatus (plate enzyme immunoassay multisystem EMS-01;
Nippon Advanced Technology), and the serum and urinary values
were estimated from the respective optical absorption rate.

BEFluoride PET

8F-fluoride PET was performed using the Advance system
(GE Healthcare). This system allows simultaneous acquisition of
35 transverse slices with interslice spacing of 4.25 mm, with septa
(2-dimensional mode). Performance tests showed that the intrinsic
resolution of the scanner was 4.0-5.3 mm in the axial direction
and 4.6-5.7 mm in the transaxial direction. The field of view and
pixel size of the reconstructed images were 512 and 4 mm,
respectively. A dose of 185 MBq of '8F ions was injected into the
anterocubital vein over a period of 10 s. Fifty minutes after the
tracer injection, the patient was positioned supine in the PET
scanner, and an emission scan was started at a rate of 2 min per
bed position from the skull to the mid thigh (7-8 bed positions).
After the emission scan, postinjection transmission scanning was
performed for 1 min per bed position at the same position as for
the emission scan, using a standard %%Ge/%®Ga rod source for
correction of attenuation. The acquired data were reconstructed by
an iterative method with selection of 14 subsets and 2 iterations.
The reconstructed tissue-activity images were converted into
standardized uptake value (SUV) images corrected for the injected
dose and patient’s body weight using the following equation:

SUV = tissue activity (kBq/mL) x body weight (kg)/injected
'8F jon dose (MBq).

The images were processed using Dr. View software (AJS Co.
Ltd.) on a Linux workstation. With this software and hardware,
8F-fluoride PET images were visualized and conformed into
3-dimensional sections. A region of interest (18 X 18 mm) was
placed at the center of each vertebral body from L1 to L5 in the
sagittal plane (Fig. 1A) and at the center of the left femoral neck in
the coronal plane (Fig. 1B). The mean SUVs of the lumbar verte-
brae and femoral neck were plotted as localized bone metabolism
parameters against the values of BMD or biochemical markers.
18F-fluoride PET images were obtained at baseline, 3 mo, and
12 mo.

Siatistical Analysis

All values were expressed as mean = SD. The unpaired ¢ test
was used to compare differences in bone turnover markers be-
tween patients with low and high BMD T-scores at baseline. The
paired ¢ test was used to compare differences in bone turnover mar-
kers (BSALP, NTx, and SUV) and BMD between baseline and 3,
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6, or 12 mo of treatment. The correlations between BSALP, NTx,
lumbar spine BMD, and lumbar spine SUV at baseline and 12 mo
of treatment were examined by Pearson correlation coefficients. A
P value of less than 0.05 was considered to represent statistical
significance. All statistical analyses were conducted using SPSS
software (version 15.0).

RESULTS

Table 1 summarizes the baseline characteristics of the
study group. The mean time since menopause was 9.8 y
(range, 3-19 y). The mean T-scores of the lumbar spine and
the femoral neck were —2.2 (range, —4.43 to —0.16) and
—2.9 (range, —4.8 to —0.6), respectively. The mean dose of
oral glucocorticoids (prednisolone equivalent) before and

TABLE 1. Baseline Characteristics
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during the study was 13.7 * 2.3 mg/d. The values of both
BSALP and NTx showed marked variability among the sub-
jects, and the mean NTx tended to be higher than the nor-
mal value in our institution. The SUVs of the lumbar spine
and the femoral neck were 5.2 = 0.72 and 2.5 = 047,
respectively, and the former was significantly higher than
the latter.

According to the baseline BMD T-score of the lumbar
spine, based on the World Health Organization criteria (25)
for the diagnosis of osteoporosis, patients were categorized
into a healthy/osteopenic group (T-score > —2.5) or an
osteoporotic group (T-score = —2.5) (Table 2). The mean
values of BSALP, NTx, and femoral neck SUV at baseline
tended to be higher in the osteoporotic group, but the dif-
ferences were not significant. On the other hand, the lumbar
spine SUV was significantly lower in the osteoporotic group
(P < 0.05).

Table 3 shows the serial changes in BSALP, NTx, SUV,
BMD, and T-score at 3, 6, and 12 mo of alendronate treat-
ment. Treatment for 12 mo tended to reduce BSALP, NTx,
lumbar spine SUV, and femoral neck SUV but gradually
increased BMD and the T-score of the lumbar spine and
femoral neck, relative to baseline values. Although alen-
dronate treatment over a span of 12 mo significantly
increased the level of BMD of the lumbar spine (P <
0.05), such treatment significantly reduced BSALP (P <
0.05), NTx (P < 0.01), and SUV levels of both the lumbar
spine (P < 0.01) and the femoral neck (P < 0.01) during
the same period. Figure 2 shows percentage changes in
these parameters at 3, 6, and 12 mo. The percentages for
BSALP were 76.8% and 73.1% at 6 and 12 mo, respec-
tively (P < 0.05), whereas those for NTx were 53.7%,
44.2%, and 40.5% at 3, 6 and 12 mo, respectively (P <
0.01). The percentages for lumbar spine SUV were 92.4%
and 85.6% at 3 and 12 mo, respectively, and the percent-
ages for femoral neck SUV were 90.4% and 75.7% at 3 and
12 mo, respectively. The percentage changes in lumbar
spine SUV were significant at 3 mo (P < 0.05) and 12 mo
(P < 0.01), as was the percentage change in femoral neck
SUV at 12 mo (P < 0.01). The increase in BMD for the
lumbar spine at 12 mo was 8.2%, which was significant
relative to baseline (P < 0.05).

At 12 mo of alendronate treatment, lumbar spine SUV
was decreased in all patients. BSALP decreased in 19 pa-
tients (79%) but increased in 5 patients, and NTx decreased
in all 24 patients (100%). On the other hand, femoral neck
SUV decreased in 20 patients but increased in 4 patients.
Of the 20 patients who showed a decrease, 17 (85%)
showed a decrease in BSALP and 20 (100%) showed a
decrease in NTx. Of the 4 patients who showed an increase
in femoral neck SUV, 2 showed a decrease in BSALP and
4 showed a decrease in NTX.

Figure 3 shows the correlations between BSALP, NTx,
lumbar spine BMD, and lumbar spine SUV at baseline and
at 12 mo of treatment with alendronate. BSALP correlated
significantly with SUV at baseline (P < 0.05) but not at
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12 mo. NTx did not correlate significantly with SUV at
baseline or at 12 mo. BMD and SUV showed a significant
correlation at baseline (P < 0.05) but not at 12 mo.

DISCUSSION

The skeletal effects of glucocorticoids are observed
mainly in regions with a high content of trabecular bone,
particularly the ribs and spine, and seem to depend on the
duration and dosage of therapy (26). A prednisone dosage
exceeding 7.5 mg daily for at least 6 mo is associated with
an increased risk of bone loss and fractures (4,5), and even
lower doses of the drug have also been linked to such
changes (6). A metaanalysis report of 23 studies indicated
that the cumulative glucocorticoid dose was consistent with
doses that produced bone loss (27); however, the correla-
tion between a specific daily dose or cumulative dose and
bone loss or risk of fractures was inconsistent in several
individual studies (26). Patients in the present study had
been treated with oral glucocorticoids at more than 10 mg/d
for more than 6 mo but had no history of fractures. Patients
were also selected on the basis of not being on any medi-
cations, including calcium, that could have affected bone
metabolism Because of this strict criterion for this pro-

TABLE 3. Serial Changes in Bone Turnover Markers and BMD Durin:

3.0 (0.59)

spective study, and because treatment guidelines in Japan
call for treating most osteoporotic patients with bisphosph-
onate-containing medications at 3 mo after the initiation of
glucocorticoids, only 24 patients could be enrolled. The
mean BMD of the lumbar spine at baseline (0.78 g/cm?) for
our patients was below the cutoff for fracture-prone Japa-
nese individuals (0.82 g/cm?). These individuals repre-
sented glucocorticoid-treated osteoarthritic patients free of
rheumatoid arthritis who were treated with more than
5.0 mg of glucocorticoids per day (70).

Patients with glucocorticoid-induced osteoporosis are re-
ported to have abnormalities in global biochemical markers
of bone turnover and metabolism, although the reported
changes have been inconsistent (28,29). Theoretically, the
use of glucocorticoids is associated with reductions in
markers of bone metabolism reflecting decreases in bone
formation, although markers of bone resorption show in-
consistent changes during the same treatment. In a report of
a randomized placebo-controlled trial, prednisone rapidly
and significantly decreased both markers of bone formation
and markers of bone resorption (30). In the present study,
the mean baseline BSALP of our postmenopausal women
was within the reference range; however, the mean baseline
NTx tended to be above the reference range though a

Treatment with Alendronate
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statistical comparison of our patients and controls without
glucocorticoid therapy was not performed. It is possible
that certain factors such as age, sex, time since menopause,
and background disease may affect the level of bone
resorption.

Bisphosphonates induce apoptosis of osteoclasts and
inhibit bone resorption (/3,37). Randomized clinical trials
showed that treatment with bisphosphonates prevents cor-
ticosteroid-induced bone loss (32). Alendronate, a member
of the bisphosphonate family, is effective in the prevention
and treatment of glucocorticoid-induced osteoporosis (11—
13,32) and has been reported to prevent bone loss and im-
prove the BMD of lumbar vertebrae by reducing both bone
formation and resorption and suppressing bone metabolism
(13). Similarly, alendronate treatment in the present study
significantly reduced the levels of both biochemical mar-
kers (bone formation and resorption), and the decrease in
urinary NTx (a marker of bone resorption) was significant;
the suppression effect was approximately 60% after 12 mo.
Furthermore, dual-energy x-ray absorptiometry measure-
ment of the lumbar spine showed that 12 mo of alendronate
treatment increased BMD by 8.2%. A previous study in
postmenopausal women with osteoporosis indicated that the
alendronate-induced change in BMD was primarily due to
changes in bone resorption (33). Considered together, these
results suggest that alendronate treatment prevented further
reduction in lumbar BMD by reducing bone resorption.

Several studies have examined the feasibility of !3F-
fluoride PET for direct assessment of bone turnover in
clinically important skeletal sites such as the lumbar spine.
Previous studies of patients having disease with high bone
turnover showed a significant relationship between bone
turnover and biochemical markers (19,22). Brenner et al.
(34) reported that the SUV of 8F-fluoride PET correlated
well with markers of bone metabolism; the net uptake of
fluoride into the mineral compartment (K;) was measured
using arterial blood sampling and kinetic analysis. We also
obtained similar results with 8 postmenopausal women, who
showed a significant correlation between K; and SUV (data
not shown). On the other hand, there are some reports of a

1812

significant correlation between K, and the histomorpho-
metric parameters (19,20). It is possible that tubular re-
absorption of fluoride is affected by patient hydration,
which could theoretically affect SUVs. None of our patients
presented with renal dysfunction during the course of this
study. Therefore, SUVs were substituted for markers of re-
gional bone turnover or bone metabolism because of the
simplicity of data acquisition and calculation. However,
further research is required to investigate the relationship
between regional SUV and histomorphometric parameters.
Previous studies of osteoporosis in postmenopausal women
with !8F-fluoride PET indicated that such patients exhibit
low regional bone formation activity, a good relation
between bone turnover and changes in BMD, and a
risedronate-related decrease in levels of global markers of
bone formation, compared with untreated groups (21,35).
Although our osteoporotic patients on glucocorticoid treat-
ment did not show a significant change in BSALP and NTx
(used as global markers of bone turnover) as measured at
baseline, such treatment significantly reduced lumbar spine
SUV in the osteoporotic patients, compared with healthy or
osteopenic patients. These findings indicate that the decrease
in bone turnover in the lumbar spine measured by SUV
reflects the degree of osteoporosis. In this regard, it was
reported previously that fluoride clearance relative to bone
minerals depends not only on the rate of bone metabolism
but also on the area available for tracer clearance (36). It is
possible that a reduction in bone mass, as is often seen in
patients with osteoporosis, also reduces the number of sites
available for bone remodeling activity, which could indi-
rectly influence the measured SUV in our study (22).
Accordingly, further studies involving measurements of
PET parameters (such as K; and SUV) and various bone
histomorphometric parameters, particularly in trabecular
bones, are necessary to determine the relationships between
the measured PET values and the bone surface area and
volume of such bones.

Follow-up studies have demonstrated that bone resorption
significantly decreases within 1 mo of the commencement
of antiresorptive therapy, and consequent to the coupling
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between resorption and formation, a secondary suppression
of bone formation occurs within 3 mo (37). In a quantitative
study of regional bone metabolism using !8F-fluoride PET, K;
decreased significantly after 6 mo of risedronate therapy in
postmenopausal women (38). In the present prospective
study, BSALP and NTx started to decrease within 3-6 mo
of alendronate treatment; they had decreased by 27% and
60%, respectively, from baseline at 12 mo of alendronate
therapy. These changes in global bone turnover markers were
also coupled with similar decreases in SUV in both the
lumbar spine and the femoral neck, reflecting regional bone
turnover or metabolism, although not similarly so in all
patients. Interestingly, there was a significant correlation
between BSALP at baseline and the SUV, but not at 12 mo.
Changes in NTx at baseline and 12 mo were not significant
relative to SUV; for BSALP, the slope of the negative line
tended to decrease after treatment, and for NTx, the slope of
the positive line tended to decrease after treatment (Figs. 3A
and 3B). These results suggest that the rate of decrease of both
BSALP and NTx was more than that of regional SUV after
alendronate treatment. The decreases in SUV were accom-
panied by a small but significant increase in lumbar spine
BMD at 12 mo after treatment, though no such change was
noted for femoral neck BMD. Interestingly, larger studies of
antiresorptive therapy tend to report weaker correlations
between biochemical markers and changes in BMD for

18R FLuorbE PET For OsTeOPOROSIS ¢ Uchida et al.
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the femoral neck than for the lumbar spine (39). On further
consideration, our patients with higher baseline regional
SUV and biochemical markers did not show the greatest
increases in BMD in response to alendronate, although there
have been some reports that subjects with higher global bone
turnover and suppressive effects of biochemical markers
show greater increases in BMD (40). It could be that for
some reason their regional or global bone turnover at baseline
had been influenced by glucocorticoid treatment, background
disease, or other factors and tended to be insensitive to
alendronate. In general, alendronate exerts a potent inhibitory
effect on bone resorption without interfering with bone
calcification. Its effect is associated with increased BMD
and decreased bone resorption markers, and a secondary
decrease in bone formation including osteoblastic activity,
thus producing normalization of bone metabolism. Although
we cannot ignore the fact that both SUV and BMD could be
associated with relatively large measurement errors and that
the mechanism of action and potency of alendronate may
differ in terms of BMD in each patient, our results indicate
that alendronate treatment caused a further decrease in SUV
with a subsequent increase in BMD at the same level in
the lumbar spine, though it was not significant at 12 mo of
treatment, and that SUV and BMD correlate significantly
in postmenopausal osteoporotic women on steroid therapy
before antiresorptive therapy.
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CONCLUSION

To our knowledge, this was the first study of regional bone
metabolism in the lumbar spine measured using '8F-fluoride
PET in patients with glucocorticoid-induced osteoporosis.
The study also examined various bone metabolism markers
before and after alendronate treatment. The results demon-
strated decreased bone turnover in the lumbar spine, repre-
sented by SUVs, and a correlation between these changes and
the severity of osteoporosis. Furthermore, the results showed
a significant decrease in bone metabolism associated with
increased BMD in the lumbar spine after 12 mo of treatment
with alendronate. These results suggest that antiresorptive
therapy has a direct bone-metabolism effect on skeletal
kinetics in glucocorticoid-induced osteoporosis at the clini-
cally important site of the lumbar spine.
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