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nemia seen in these transgenic “skinny” mice provides a
unique experimental system in which the long-term effects
of leptin are investigated in vivo [98-101, 105, 108, 109].
Skinny mice exhibit augmented glucose metabolism and
increased insulin sensitivity of both skeletal muscle and
liver [105], supporting the concept that leptin acts as an
antidiabetic hormone in vivo [110-112]. These studies
suggest the potential usefulness for leptin treatment of
diabetes and obesity.

Crossbreeding of transgenic skinny mice with A-ZIP/F-1
mice, a mouse model of severe lipoatrophic diabetes

Generalized lipodystrophy, caused by a systemic deficiency
of adipose tissue, is characterized by severe insulin
resistance and hypertriglyceridemia [113]. A form of
diabetes, called lipoatrophic diabetes, eventually develops,
although the precise mechanism by which this paucity of fat
results in diabetes has remained to be elucidated. Plasma
leptin concentrations are markedly reduced or absent in
patients with lipoatrophic diabetes and in rodent models of
this disease [114—117]. Given leptin’s antidiabetic action,
leptin deficiency may play a role in the pathogenesis of
lipoatrophic diabetes; thus, leptin may be a drug for
lipoatrophic diabetes.

A mouse model of severe lipoatrophic diabetes (A-ZIP/
F-1) was generated by expressing in adipose tissue a
protein that inactivates basic-zipper transcription factors
[116]. To assess the pathophysiological role and therapeutic
potential of leptin in lipoatrophic diabetes, we crossed
transgenic skinny (LepTg/+) and A-ZIP/F-1 (A-ZIPTgH)
mice to produce double transgenic mice (LepTg/+:A-
ZIPTg/+) virtually lacking adipose tissue and expressing
approximately tenfold higher levels of leptin than normal
controls [118]. LepTg/+:A-ZIPTg/+ mice were hypophagic
in comparison to A-ZIPTg/+ mice and exhibited decreased
hepatic steatosis. Glucose and insulin tolerance tests
displayed increased insulin sensitivity and normal glucose
tolerance in LepTg/+:A-ZIPTg/+ mice, which was compa-
rable to LepTg/+ mice. Pair-feeding experiments demon-

strated that the effects of leptin were not solely due to
decreased food intake. Leptin also helped to prevent
diabetic nephropathy in generalized lipoatrophic diabetes
mice [101]. These results demonstrate that leptin can
improve insulin resistance and diabetic manifestations in a
mouse model of severe systemic lipodystrophy, indicating
that leptin is therapeutically useful in the treatment of
lipoatrophic diabetes [118].

Leptin replacement therapy in Japanese patients
with generalized lipodystrophy

We previously reported a novel homozygous mutation of
MC4R in a Japanese woman with severe obesity (body
mass index (BMI) 62 kg/m?) [119]. MC4R mutations have
been identified at a relatively high frequency (3—4%) in
morbidly obese patients in Europe; all of the mutations
reported to date occur in an autosomal-dominant fashion,
with the exception of a single unique pedigree in the UK.
[120, 121]. Although both parents were heterozygous for
the mutation, neither exhibited such a severe obese
phenotype (BMI 27 and 26 kg/m?, respectively, which are
preobese according to WHO criteria). As genetic back-
grounds and lifestyles vary significantly between European
and Asian countries, it is necessary to examine the effect of
lifestyle on the phenotypes resulting from genetic mutations
and on treatment efficacy in each country.

Four-month leptin replacement therapy has been
reported to improve glucose and lipid metabolism in
lipodystrophy patients in the USA [122]. To elucidate the
efficacy, safety, and mechanisms underlying leptin replace-
ment therapy in Asian patients with generalized lipodys-
trophy, we treated seven Japanese patients, two acquired
and five congenital types, with physiological replacement
dose of leptin [123, 124]. Leptin replacement therapy
dramatically improved fasting glucose (mean+SE, 172+
20 t0120+12 mg/dl, P<0.05) and triglyceride (mean + SE,
7004272 to 260+98 mg/dl, P<0.05) levels within 1 week.
Leptin replacement reduced insulin resistance, as demon-
strated by the euglycemic clamp method. Improvement of
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Fig. 4 Time course of daily urinary albumin secretion, creatinine
clearance, and HbAlc levels during leptin treatment of a 16-year-old
fernale patient with acquired generalized lipodystrophy

fatty liver was also confirmed by changes in computed
tomography (CT) attenuation, and liver volume was
calculated by CT imaging. By 4 months, six of seven
patients were able to discontinue all antidiabetic drugs,
including insulin (Fig. 3). The decreased fasting plasma
glucose levels, triglyceride levels, and liver volumes in all
seven patients were well maintained throughout the therapy
period with no adverse effects. The longest period of leptin
replacement therapy has now extended beyond 7 years.

Leptin treatment was also effective at combating diabetic
complications. The macroalbuminuria seen in two patients
regressed to microalbuminuria, while microalbuminuria in
two additional patients normalized. The creatinine clear-
ance of patients with glomerular hyperfiltration decreased
with improved glucose tolerance (Fig. 4), which was
consistent with previous findings in the lipoatrophic
diabetes model mice [101].

We also examined the effect of leptin therapy on a 16-
year-old girl with severe hypertriglyceridemia who suffered
from repeated episodes of acute pancreatitis (Fig. 5). After
the initiation of leptin therapy, her triglyceride levels
normalized; she did not have any additional episodes of
acute pancreatitis (Fig, 5). These results clearly demonstrate
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the safety and efficacy of the long-term leptin replacement
therapy in patients with generalized lipodystrophy. While
these results are impressive, it is important to remember
that the efficacy of leptin replacement therapy in patients
from Japan, a country in which the prevalence of obesity is
relatively low, is excellent.

Leptin therapy for more prevalent forms of diabetes

To assess the therapeutic potential for leptin treatment in
insulin-deficient diabetes, we generated diabetic animals by
treating wild-type and LepTg/+ mice with a relatively low
dose of streptozotocin (STZ 180 g/g body weight) [125].
Plasma insulin concentrations were reduced (<0.10 ng/ml),
resulting in severe hyperglycemia in both wild-type and
LepTg/+ mice 2 weeks after STZ treatment. LepTg/+ mice
were more sensitive to exogenously administered insulin
than wild-type mice; STZ-treated LepTg/+ mice became
normoglycemic at doses of insulin that did not improve the
hyperglycemia in STZ-treated wild-type mice. To clarify if
combination therapy with leptin and insulin is beneficial for
insulin-deficient diabetes, we also examined the effect of
chronic coadministration of leptin and insulin in STZ-
treated wild-type mice. We demonstrated that subthreshold
doses of insulin, which do not affect glucose homeostasis,
are effective at improving diabetes in STZ-treated wild-type
mice in combination with leptin. These results indicate that
leptin therapy may be used as an adjunct for insulin therapy
in insulin-deficient diabetes.

We also investigated the therapeutic usefulness of leptin
in a mouse model of type 2 diabetes mellitus with increased
adiposity [126], generated using a combination of a low-
dose STZ (120-g/g body weight) and a high-fat diet (HFD,
45% of energy as fat; STZ/HFD). In STZ/HFD mice,
continuous infusion of leptin (20-ng/g body weight per
hour) reduced food intake and body weight gain and
improved glucose and lipid metabolism with enhanced
insulin sensitivity. Leptin therapy also decreased the
triglyceride content of both the liver and skeletal muscle.

Pravastatin S

Leptin treatment (month)
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These results indicate a beneficial effect of leptin therapy
for type 2 diabetes mellitus with increased adiposity, which
cotresponds to a BMI in the range of 25-30 kg/m? [126].

Our previous and ongoing studies utilizing transgenic
skinny mice and other animal models have demonstrated
the pleiotropic actions of leptin in the regulation of energy
homeostasis and food intake [98-101, 105, 108, 109} and
its clinical usefulness as a therapy for multiple conditions,
particularly diabetes mellitus [108, 118, 124, 125]. Tg
skinny mouse may be a useful model to study the long-term
effects of leptin therapy in vivo and to evaluate the clinical
implications of leptin therapy.

Conclusions

Currently, the primary targets of our ongoing translational
research of CNP and leptin are achondroplasia and lip-
oatrophic diabetes, respectively. Demonstration of the
efficacy of CNP therapy for achondroplasia and leptin
replacement therapy for lipoatrophic diabetes has relied
heavily on basic and preclinical studies using excellent
animal models. Although lipoatrophic diabetes is a rare
disease in humans, the safety and efficacy of leptin
replacement therapy for patients with lipoatrophic diabetes
have been well established. Achondroplasia, while also a
rare disease in humans, may be effectively managed with
CNP therapy.

It has been possible to establish the safety and efficacy
of these hormones in rare human diseases through studies
that began with excellent animal models. These studies
provided us with novel treatments for common human
diseases, which were explored as adjacent to or in extension
of these rare human diseases, as seen in the study of
hypertension. Research on the SHR animal model and
study of a relatively rare cause of hypertension, renovascular
hypertension, led to more detailed studies on the blockade of
renin—angiotensin system, bringing research forward to the
current widespread field of cardiovascular disorders in
translational research. These lessons teach us the importance
of the breakthroughs using animal models and rare human
diseases.
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GROWTH FACTORS-CYTOKINES

Circulating C-Type Natriuretic Peptide (CNP) Rescues
Chondrodysplastic CNP Knockout Mice from Their
Impaired Skeletal Growth and Early Death

Toshihito Fujii, Yasato Komatsu, Akihiro Yasoda, Eri Kondo, Tetsuro Yoshioka,
Takuo Nambu, Naotestu Kanamoto, Masako Miura, Naohisa Tamura,
Hiroshi Arai, Masashi Mukoyama, and Kazuwa Nakao

Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto
606-8507, lapan

C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth through'a sub-
type of membranous guanylyl cyclase receptor, GC-B. Although its two cognate natriuretic peptides,
ANP and BNP, are cardiac hormones produced from heart, CNP is thought to act as an autocrine/
paracrine regulator. To elucidate whether systemic administration of CNP would be a novel medical
treatment for chondrodysplasias, for which no drug therapy has yet been developed, we investigated
the effect of circulating CNP by using the CNP transgenic mice with an increased circulating CNP under
the control of human serum amyloid P component promoter (SAP-Nppc-Tg mice). SAP-Nppc-Tg mice
developed prominent overgrowth of bones formed through endochondral ossification. In organ cul-
ture experiments, the growth of tibial explants of SAP-Nppc-Tg mice was not changed from that of their
wild-type littermates, exhibiting that the stimulatory effect on endochondral bone growth observed
in SAP-Nppc-Tg mice is humoral. Then we crossed chondrodysplastic CNP-depleted mice with SAP-
Nppc-Tg mice. Impaired endochondral bone growth in CNP knockout mice were considerably and
significantly recovered by increased circulating CNP, followed by the improvement in not only their
longitudinal growth but also their body weight. In addition, the mortality of CNP knockout mice was
greatly decreased by circulating CNP. Systemic administration of CNP might have therapeutic
potential against not only impaired skeletal growth but also other aspects of impaired growth
including impaired body weight gain in patients suffering from chondrodysplasias and might
resultantly protect them from their early death. (Endocrinology 151: 4381-4388, 2010)

CNP in the growth plate by using type II collagen pro-

Recent studies have elucidated that C-type natriuretic
moter exhibit prominent skeletal overgrowth (S, 6).

peptide (CNP) is a crucial regulator of endochondral

bone growth (1, 2). The biological actions of CNP are After these discoveries, we planned to translate this

thought to be mediated by the production of intracellular
second-messenger cGMP through a subtype of membra-
nous guanylyl cyclase receptor, guanylyl cyclase (GC)-B
(3). We have exhibited that both CNP and GC-B are ex-
pressed in the proliferative and prehypertrophic chondro-
cyte layers of the growth plate (1) and that CNP or GC-B
knockout mice develop severely short stature phenotype
owing to their impaired endochondral bone growth (1, 4).
On the contrary, mice with targeted overexpression of
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strong stimulatory effect of the CNP/GC-B system on bone
growth into clinical treatment for patients suffering from
diseases with impaired skeletal growth. Chondrodyspla-
sias are a group of genetic disorders characterized by im-
paired skeletal growth. The many different forms of chon-
drodysplasias add to produce a significant number of
affected individuals with significant morbidity and mor-
tality (7). Nevertheless, no efficient drug therapy has been
developed to date for the treatment of chondrodysplasias.

Abbreviations: CNP, C-type natriuretic peptide; DIG, digoxigenin; GC, guanylyl cyclase; HE,
hematoxylin and eosin; PCNA, proliferating cell nuclear antigen; SAP, serum amyloid P.
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In our previous report, we achieved targeted overexpres-
sion of CNP in the growth plate of a mice model of achon-
droplasia (8), the most common form of chondrodyspla-
sias with a constitutive active mutation in the fibroblast
growth factor receptor 3 gene (9), and successfully
treated its impaired skeletal growth and short stature
phenotype (5).

In contrast to atrial natriuretic peptide and brain na-
triuretic peptide, the two cognate natriuretic peptides of
CNP that act as cardiac hormones produced predomi-
nantly from atrium and ventricle of heart, respectively (10,
11), CNP is thought to be an autocrine/paracrine regula-
tor, rather than an endocrine regulator (12, 13). Because
we have to evaluate the effect of circulating CNP on en-
dochondral bone growth in case we use CNP as a drug for
chondrodysplasias via systemic administration, we gen-
erated CNP transgenic mice with increased circulating
CNP as a model of systemic administration of CNP (14):
these transgenic mice carried the human serum amyloid P
(SAP) component promoter/mouse CNP fusion gene
(SAP-Nppc-Tg), and the expression of the transgene was
targeted to the liver (15). SAP-Nppc-Tg mice exhibited
prominent overgrowth of bones formed through endo-
chondral ossification (14), and furthermore, we success-
fully rescued achondroplastic model mice from their im-
paired bone growth by crossing them with SAP-Nppc-Tg
mice (16).

In the present study, we further investigated the effect
of circulating CNP by using SAP-Nppc-Tg mice. At first,
to certify the humoral effect of the overexpressed CNP in
SAP-Nppc-Tg mice on endochondral bone growth, we
performed organ culture experiments by using tibial ex-
plants from SAP-Nppc-Tg mice and compared them with
those from cartilage-targeted CNP transgenic mice under
the control of type II collagen promoter (Col2-Nppc-Tg
mice) (5). Then we studied the effects of circulating CNP
on the chondrodysplastic CNP knockout (Nppc ™) mice
by crossing them with SAP-Nppc-Tg mice.

Materials and Methods

Animals

Generation of CNP transgenic mice under the control of hu-
man SAP component promoter (SAP-Nppc-Tg mice) was re-
ported previously (14). These mice carried the human SAP/
mouse CNP fusion gene, and CNP overexpression in these mice
was targeted to the liver (15). SAP-Nppc-Tg mice were intended
to have increased circulating CNP levels, and plasma CNP con-
centrations measured by RIA were 84% higher in SAP-Nppc-Tg
mice than in wild-type mice (14). Generation of CNP transgenic
mice under the control of mouse type Il collagen promoter (Col2-
Nppe-Tg mice) (5) and CNP knockout mice (Nppc™™ mice) (1)
was also described previously.

Endocrinology, September 2010, 151(9):4381-4388

To generate Nppe™/™ mice carrying SAP-Nppc transgene,
male Nppc*’/™ mice were mated with female SAP-Nppc-Tg mice,
and female F1 offspring heterozygous for both the transgene and
the Nppc allele ablation were mated with male F1 offspring het-
erozygous only for the Nppc allele ablation to generate Nppc ™'~
mice with the transgene expression (Nppc™/~/SAP-Nppc-Tg
mice). For generation of homozygous SAP-Nppc-Tg mice, male
and female heterozygous SAP-Nppc-Tg mice were mated, and
the genotype of the resultant transgenic mice was determined by
quantifying SAP-Nppc transgene using StepOnePlus real-time
PCR systems (Applied Biosystems Inc., Foster City, CA).

The care of the animals and all experiments were conducted
in accordance with the institutional guidelines of Kyoto Univer-
sity Graduate School of Medicine.

Organ culture

Tibias from fetal SAP-Nppc-Tg mice and their wild-type lit-
termates (on d 16 of pregnancy), newborn Col2-Nppc-Tg mice
and their wild-type littermates, and newborn Nppc™/~/SAP-
Nppc-Tg mice and their Nppc™ littermates were dissected out
and cultured for 4 d in Biggers, Gwatkin, Judah tissue culture
medium for bone and cartilage (Invitrogen, Carlsbad, CA) with
BSA (6 mg/ml; Wako Pure Chemical Industries, Ltd., Osaka,
Japan), ascorbic acid (150 pg/ml; Wako), and penicillin/strep-
tomycin (10,000 U/ml; Wako) in 12-well plates. Tibias from
newborn Nppc™™ mice were incubated with vehicle or CNP at
the dose of 107, 10™%, or 10~7 M for 4 d. Ar the end of the
culture period, the longitudinal length of tibial explants was
measured using a linear ocular scale mounted on a dissecting
microscope at X 10 magnification.

Skeletal analysis

Mice were subjected to soft x-ray analysis (30 kVp, 5 mA for
1 min; Softron type SRO-MS3; Softron, Tokyo, Japan), and the
lengths of bones were measured on the soft x-ray film.

Histological analysis

For light microscopy, sections were cut from paraffin-em-
bedded specimens. For Alcian Blue-hematoxylin and eosin (HE)
staining, sections were deparaffinized with xylene and rehydrated
through an ethanol series and distilled water. The sections were
treated with 3% acetic acid for 3 min and Alcian Blue (Muto Pure
Chemicals Co., Ltd., Tokyo, Japan) for 20 min. Then they were
treated with hematoxylin (Muto) for 2 min, eosin alcohol (Muto)
for 1 min, dehydrated, and then mounted with malinol (Muto).

As for in situ hybridization analyses for type Il and type X col-
lagens, 414- and 658-bp DNA fragments corresponding to the nu-
cleotide positions 138-551 and 2893-3550 of mouse Col241 and
Col10al cDNA (GenBank accession no. NM_031163 and
0099235), respectively, were subcloned into pPGEMT-Easy vector
(Promega, Madison, WI) and were used for the generation of
sense or antisense RNA probes. Digoxigenin (DIG)-labeled RNA
probes were prepared with DIG RNA labeling mix (Roche,
Stockholm, Sweden). Paraffin-embedded sections were hybrid-
ized with DIG-labeled RNA probes at 60 C for 16 h. The bound
label was detected using 4-nitro blue tetrazolium chloride-5-bro-
mo-4-chloro-3-indoyl-phosphate, 4-toluidine salt, an alkaline
phosphate color substrate. The sections were counterstained
with Kernechtrot (Muto).

For immunohistochemical detection of proliferating cell nu-
clear antigen (PCNA), tissue sections were incubated with mouse
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FIG. 1. Organ culture experiments using tibial explants from two
different CNP transgenic mice. A and B, Graphs indicating percent of
the longitudinal lengths of tibial explants at the end of incubation
(white bars) compared by those of tibial explants at the beginning of
incubation (black bars). Fetal (GD16) wild-type (Wt) vs. SAP-Nppc-Tg
explants (A), and neonatal wild-type (W) vs. Col2-Nppc-Tg explants (B)
are shown, C, Histological pictures of the growth plates of tibial
explants at the end of 4-d culture period. From top to bottom, pictures
of wild-type (Wt), SAP-Nppc-Tg, and Col2-Nppc-Tg explants are
shown. Left three panels exhibit Alcian Blue-hematoxylin and eosin
(HE) staining, and middle three and right three panels show in situ
hybridization analyses for type Il collagen (Co/2a7) and type X collagen
(Col10a1), respectively. Scale bar, 100 pm.

monoclonal anti-PCNA antibody (Dako, Glostrup, Denmark),
and immunostaining was performed using Histofine mouse stain
kit (Nichirei Corp., Tokyo, Japan) according to the manufac-
turer’s instructions. Under the microscope (X400), three visual
fields in the proliferative chondrocyte zone of the growth plate
were randomly selected, and all cells and PCNA-positive cells in
each field were counted. Then labeling index was calculated as
the mean of these three values. Terminal deoxynucleotidyl trans-
ferase-mediated deoxyuridine triphosphate nick end labeling
staining was performed using in situ apoptosis detection kit
(Takara Bio Inc., Otsu, Japan) according to the manufacturer’s
instruction.
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FIG. 2. Effect of circulating CNP on the longitudinal growth of Nppc™
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square), Nppc™'~/SAP-Nppc-Tg (open triangle), and Nppc™~ (closed triangle) mice. B,
Gross appearance of wild-type (Wt), Nppc™~/SAP-Nppc-Tg, and Nppc ™~ mice at the
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. Tibia

Statistical analysis

Data are expressed as means = sE. The statistical significance
of differences in mean values was assessed by Student’s ¢ test. The
difference in survival rates among genotypes was assessed by
Kaplan-Meier analysis.

Results

Organ culture experiments using tibial explants
from SAP-Nppc-Tg mice

We generated two lines of CNP transgenic mice under
the control of an SAP promoter, and both of them exhib-
ited prominent skeletal overgrowth phenotype (14). We
used one of them with milder skeletal phenotype as the
SAP-Nppc-Tg mice for further experiments. To confirm
whether the effect of SAP-Nppc-transgene on skeletal
growth is humoral, we performed organ culture exper-
iments by using tibias from SAP-Nppc-Tg mice and
compared them with those from CNP transgenic mice
with targeted overexpression of CNP in the cartilage by
using mouse type II collagen promoter (Col2-Nppc-Tg
mice) (5).

At the end of the 4-d culture period, the
length of tibial explants from SAP-Nppc-Tg
mice was not changed from that from their
wild-type littermates, whereas the length of
tibial explants from Col2-Nppc-Tg mice
was about 13% larger than that from their
wild-type littermates (Fig. 1, A and B). His-
tological analyses revealed that the widths
of both nonhypertrophic and hypertrophic
chondrocyte layers of the growth plates in
SAP-Nppc-Tg explants, shown to express
type I and type X collagens by i situ hy-
bridization analyses, respectively, were not
changed from those in wild-type explants,
whereas they were larger in Col2-Nppc-Tg
explants (Fig. 1C).
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At the first week after birth, Nppc ™"/
SAP-Nppc-Tg mice were smaller than
their wild-type littermates, and the naso-
anal length of Nppc™'~/SAP-Nppc-Tg
mice was almost the same as that of
Nppc™™ mice (Fig. 2A). Bur they grad-
ually became larger than Nppc™™ mice
and became close to their wild-type lit-
termates (Fig. 2, A and B). The nasoanal
length of Nppc™/"/SAP-Nppc-Tg mice
was significantly larger than that of
Nppc™'~ mice at the age of 3 wk in male
and at the age of 4 wk in female (male:
56.6 * 1.1 mm and 51.9 = 1.3 mm, re-
spectively,n = 15 and 11 each, P <0.01,
and female: 63.3 = 1.2 mm and 53.8 =
0.7 mm, respectively,n = 10 and 10 each,
P < 0.01). In accordance with the above
observation, most bones formed through
endochondral ossification in Nppc™~/
SAP-Nppc-Tg mice grew longer than those
in Nppc™~ mice. At the age of 3 wk, lum-
bar spine, radius, femur, and tibia of
Nppc™"~ISAP-Nppc-Tg mice were signifi-
cantly longer than those of Nppc™™ mice,

um. D, Width of hypertrophic chondrocyte layers of the growth plates of tibias from
wild-type (white bar), Nppc™'~/SAP-Nppc-Tg (gray bar), and Nppc™~ (black bar) mice.

** P <0.01.

In addition, in situ hybridization analyses exhibited
that the patterns and intensities of the staining for type II
and type X collagens as the differentiation markers for
nonhypertrophic and hypertrophic chondrocytes, respec-
tively, were not different between in SAP-Nppc-Tg and
wild-type explants. Furthermore, the proliferation of the
growth plate chondrocytes in SAP-Nppc-Tg explants,
estimated by immunohistochemical staining for PCNA,
was almost the same as that in wild-type explants (la-
beling index: 60.4 + 3.4 vs. 60.0 = 2.4%). These results
exhibit that CNP generated by SAP-Nppc-transgene af-
fects endochondral bone growth in an endocrine
manner.

The impaired endochondral bone growth of
Nppc™'~ mice was recovered by circulating CNP
Next we investigated the effect of circulating CNP on the
chondrodysplastic phenotype of CNP knockout mice by
crossing them with SAP-Nppc-Tg mice. Because Nppc™~
mice are thought to be infertile, we crossed Nppc™ ™ mice
with SAP-Nppc-Tg mice and obtained Nppc™ ™ /SAP-

Nppc-Tg mice: Then these Nppc*'~/SAP-Nppc-Tg mice

were crossed with Nppc™™ mice to generate Nppc™~/
SAP-Nppc-Tg mice.

although they were still significantly
shorter than those of their wild-type litter-
mates (Fig. 3).

Histological analysis revealed that the
width of the growth plate of tibias from Nppc™'~/SAP-
Nppc-Tg mice was significantly larger than that from
Nppc™™ mice and was comparable with that from wild-
type mice (Fig. 4, A and B). Width of every zone of the
growth plate, especially that of hypertrophic chondro-
cyte zone expressing type X collagen as shown by in situ
hybridization analysis, was significantly larger in
Nppc™'"/SAP-Nppe-Tgtibia than thatin Nppc ™'~ tibia
and was comparable with that in wild-type tibia (Fig. 4,
A, C, and D).

The intensities or patterns of the staining for both type
I and type X collagens by in situ hybridization were not
different between that in Nppc™/~/SAP-Nppc-Tg and
that in Nppc ™ tibias, indicating that the differentiation
for nonhypertrophic and hypertrophic chondrocytes in
Nppc™™ growth plate was not affected by circulating
CNP (Fig. 4C). Furthermore, immunohistochemical de-
tection of PCNA revealed that the rate of PCNA-positive
chondrocytes in Nppc™/"/SAP-Nppc-Tg growth plate
was not changed from that in Nppc™™ growth plate (la-
beling index: 23.0 + 7.3 vs. 25.4 *+ 1.4%), exhibiting that
the proliferation of the chondrocytes in Nppc ™~ growth
plate was not altered by circulating CNP. In addition, we
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SAP-Nppc-Tg §

FIG. 5. Organ culture experiments using tibial explants from neonatal
Nppc™'~ and Nppc~/~/SAP-Nppc-Tg mice. A, The graph indicating
percent of the longitudinal length of tibial explants at the end of
incubation (white bars) compared with that of tibial explants at the
beginning of incubation (black bars). B, Histological analyses of the
tibial explants at the end of the 4-d culture period. Upper panels show
histological pictures of the growth plates of Nppc™ explants, and
lower panels show those of Nppc™/~/SAP-Nppc-Tg explants. Left
panels exhibit Alcian Blue-hematoxylin and eosin (HE) staining, and
middle and right panels show in situ hybridization analyses for type Il
collagen (Col2a7) and type X collagen (Col10a1), respectively. Scale
bar, 100 um.

could scarcely find out the difference in the state of apo-
ptosis of the growth plate chondrocytes between.that in
Nppc™'~/SAP-Nppc-Tg and thatin Nppc™' tibias by ter-
minal deoxynucleotidyl transferase-mediated deoxyuri-
dine triphosphate nick end labeling staining (data not
shown).

To further confirm whether the SAP-Nppc-transgene
product humorally affects the endochondral bone growth
in Nppc™™ mice, organ culture experiments using tibial
explants from neonatal Nppc™'"/SAP-Nppc-Tg and
Nppc™'~ mice were performed. At the end of the 4-d cul-
ture period, longitudinal length of tibial explants from
Nppc™'~/SAP-Nppc-Tg mice was not changed from that
from Nppc™™ mice (Fig. SA). Histological analyses re-
vealed that the widths of both nonhypertrophic and hy-
pertrophic chondrocyte layers of the growth plate, ex-
pressing type Il and type X collagens, respectively, were
not different between in Nppc™/"/SAP-Nppc-Tg and
Nppc™'~ explants (Fig. 5B). Neither the differentiation (es-
timated by #n situ hybridization analyses for type Il and type
X collagens, Fig. SB) nor the proliferation (evaluated by
PCNA analysis, labeling index: 41.0 = 3.3 vs. 44.9 = 3.0%)
of the growth plate chondrocytes was different between that
in Nppc ™'~ /SAP-Nppe-Tg and that in Nppc ™'~ explants.

To investigate whether the stimulatory effect of circu-
lating CNP on the endochondral bone growth of Nppe™"~
mice is dose dependent, we studied the effect of CNP on the
growth of tibial explants from neonatal Nppc™™ mice in
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FIG. 6. Dose-dependent effect of circulating CNP on endochondral
bone growth. A, Dose-dependent effect of addition of CNP on the
growth of tibial explants from Nppc™~ mice in organ culture, The
graph indicates percent of the longitudinal length of tibial explants
incubated with indicated doses of CNP compared with that with
vehicle, at the end of the 4-d culture period. *, P < 0.05. B, Soft x-ray
picture of 3-wk-old wild-type (Wt) and SAP-Nppc-Tg mice with
heterozygous (hetero) and homozygous (homo) SAP-Nppc-Tg
transgene. Note that the nasoanal length is increased in accordance
with the copy number of the transgene. C, The graph indicating
percent of the length of each bone of heterozygous (gray bar) or
homozygous (white bar) SAP-Nppc-Tg mice compared with that of
wild-type mice (black bar) [n = 2 (W), four (hetero), and four (homo),
each).

organ culture experiment. Asshown in Fig. 6A, the growth
of tibial explants from Nppc™/~ mice was stimulated by
addition of CNP in a dose-dependent manner. Further-
more, we generated SAP-Nppc-Tg mice with homozygous
SAP-Nppc transgene to confirm a dose-dependent effect
of circulating CNP on endochondral bone growth in vivo.

Atthe age of 3 wk, soft x-ray analyses revealed that the
longitudinal body length and the growth of every bone
formed through endochondral bone growth were pro-
moted in accordance with the copy number of SAP-Nppc
transgene, indicating the dose-dependent effect of circu-
lating CNP on endochondral bone growth in vivo (Fig.
6B). Collectively, these results suggest that circulating
CNP would cure the impaired skeletal growth of Nppc ™~
mice in a dose-dependent manner in vivo.

Effects of increased circulating CNP on the body
weight gain and the survival rate of Nppc™'~ mice
We also investigated the effects of circulating CNP on
other aspects of the impaired growth of chondrodysplastic
Nppc™'~ mice. The body weight of Nppc™/~/SAP-
Nppc-Tg mice was smaller than that of their wild-type
littermates and was comparable with that of their
Nppc™ littermates at the age of 1 wk (Fig. 7A). However,
Nppc™'~/SAP-Nppc-Tg mice gradually became heavier
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FIG. 7. Effect of circulating CNP on the body weight and the survival rate of Nppc™~
mice. A, Growth curves of body weight of SAP-Nppc-Tg (open square), wild-type (Wt;
closed square), Nppc™'~/SAP-Nppc-Tg (open triangle), and Nppc™'~ (closed triangle)
mice. B, Survival curves of SAP-Nppc-Tg {open square), wild-type (closed square),
Nppc™~ISAP-Nppc-Tg (open triangle), and Nppc™'~ (closed triangle) mice.

than their Nppc™ littermates (Fig. 7A), and the body
weight of Nppc™/~/SAP-Nppc-Tg mice was significantly
larger than their wild-type littermates at the age of 4 wk in
males and 3 wk in females (males: 9.3 £ 0.5 gand 7.3 =
0.9 g, respectively, n = 12 and 7 each, P < 0.05, and
females: 5.4 + 0.1 gand 4.7 £ 0.2 g, respectively, n = 11
and 12 each, P < 0.05). On the other hand, there was no
difference in body weight between the SAP-Nppc-Tg
and wild-type mice, albeit SAP-Nppc-Tg mice became
larger than the wild-type mice in nasoanal length (Figs.
2A and 6).

We have previously reported that the survival rate of
Nppc™'™ mice greatly drops before adulthood, albeit the
genotype ratio of Nppc ™™ mice on d 16.5 of pregnancy is
in accord with Mendelian proportion (1). In this study,
analysis of intercrosses between Nppc™/ " /SAP-Nppc-Tg
mice and Nppc*’'™ mice revealed that the genotype ratios
of wild type to Nppc™~ to Nppc ™~ and SAP-Nppc-Tg to
Nppct'~/SAP-Nppc-Tg to Nppc™'/SAP-Nppc-Tg at
weaning (3 wk of age) are 1:2.78:1 and 1:2.71:1.24 (total
n = 104 and 110), respectively, indicating expected Men-
delian proportions. As have we previously reported, the
survival rate of Nppc™™ mice dropped to about 40% be-
fore adulthood (Fig. 7B). However, the survival rate of
Nppc ™" ISAP-Nppc-Tg mice was greatly improved com-
pared with that of Nppc™™ mice (Fig. 7B).

Discussion

In the present study, we investigated the endocrine effects
of CNP on chondrodysplastic CNP knockout mice by us-
ing SAP-Nppc-Tg mice.

In the organ culture experiments, the growth of SAP-
Nppc-Tg tibias was not changed from that of wild-type
tibias, whereas the growth of Col2-Nppc-Tg tibias was
strongly promoted compared with that of wild-type tibias.

culating CNP could recover the impaired
endochondral bone growth caused by de-
pletion of CNP in mice in vivo. Decreased
width of the growth plate observed in
Nppc™™ mice was recovered in Nppc™"/
SAP-Nppc-Tg mice, and accordingly, im-
paired endochondral bone growth observed in Nppc™~
mice was considerably and significantly recovered in
Nppc™'/SAP-Nppc-Tg mice.

The endocrine effect of CNP produced by the SAP-
Nppc transgene in Nppc™'~/SAP-Nppc-Tg mice was fur-
ther confirmed by the organ culture experiments in that
the growth of Nppc™"/SAP-Nppc-Tg tibias was not
changed from that of Nppc ™" tibias. These results clearly
indicate that CNP can humorally affect endochondral
bone growth. Furthermore, the result of the organ culture
experiment using Nppc™™ bones (Fig. 6A) and the gene-
dose effect of SAP-Nppc transgene on bone growth in vivo
(Fig. 6B, C) suggest that the endocrine effect of CNP on
endochondral bone growth is dose dependent.

Chondrodysplasia is composed of many different
forms of genetic disorders characterized by impaired en-
dochondral bone growth (7, 17). Because the CNP/GC-B
system plays a crucial role in endochondral bone growth,
loss of function mutations in the genes coding for mol-
ecules related to the CNP/GC-B system could cause
chondrodysplasia. In fact, recent studies have revealed
that mutations in the gene encoding human GC-B cause
one form of chondrodysplasia, acromesomelic dyspla-
sia type Maroteaux (18, 19).

In mice, loss of function mutations in the GC-B gene
cause impaired skeletal growth in spontaneous mutant
cn/cn and short-limbed dwarfism (slw/slhw) mice (20, 21).
As for spontaneous mutations in other genes related to the
CNP/GC-B system, a mutation in the gene coding for
cGMP-dependent protein kinase type II, an important
downstream mediator of the CNP/GC-B system, causes im-
paired endochondral bone growth in Komeda miniature rat
Ishikawa (22, 23). Furthermore, recent studies have eluci-
dated that a spontaneous loss of function mutation in the
murine CNP gene causes impaired skeletal growth observed
in the long bone abnormality (Ibab/lbab) mice (24-26).
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Just as in the case with rodents, any forms of human
chondrodysplasia might be caused by mutations in the
cGMP-dependent protein kinase type II or CNP gene, al-
beit they are not yet discovered. In case a form of human
chondrodysplasia caused by a mutation in the CNP gene
is discovered in future, CNP knockout mice would be a
novel mice model of human chondrodysplasia. On the
other hand, spontaneous GC-B mutant (cn/cn and slw/
slw) mice and GC-B knockout mice are regarded as mice
models of acromesomelic dysplasia type Maroteaux, and
impaired skeletal growth of these mice would not be recov-
ered by crossing them with SAP-Nppc-Tg mice. This notion
is supported by the result of the organ culture experiment, in
which tibial explants from fetal GC-B knockout mice are not
increased in length by addition of CNP (4).

We previously reported that the impaired skeletal
growth of achondroplastic model mice was almost com-
pletely recovered by crossing them with SAP-Nppc-Tg
mice (16). The impairment of skeletal growth of the
achondroplastic model mice that we used in our previous
study was considerably mild compared with that of
Nppc™/~ mice: the nasoanal length of the achondroplastic
model mice was about 10% shorter than that of wild-type
mice at the age of 10 wk (14), whereas the nasoanal length
of Nppc™™ mice was about 30% shorter than that of
wild-type mice. The reason that the impaired skeletal
growth of Nppc™™ mice was not completely rescued in
Nppc™/~ISAP-Nppc-Tg mice in our present study might
be because the low graded elevation of the plasma CNP
concentrations in SAP-Nppc-Tg mice (about 1.8 times
higher than those in wild-type mice) was not sufficient for
the complete rescue of severe skeletal phenotype of
Nppc™’~ mice, whereas it was enough to cure the mild
skeletal impairment of the achondroplastic model mice.
Although about 2 times of elevation of plasma CNP con-
centrations can stimulate bone growth in SAP-Nppc-Tg
mice (14) or human with a chromosomal translocation
(27), higher plasma concentration of CNP might be
needed for the complete treatment of impaired bone
growth in chondrodysplasia.

As for the mechanism of the skeletal rescue of CNP knock-
out mice by circulating CNP, the differentiation and the pro-
liferation of the growth plate chondrocytes of Nppc ™~ /SAP-
Nppc-Tg mice were not changed from those of Nppc™™ mice.
This result coincides with our previous observation that CNP
doesnotso strongly affect differentiation and proliferation of
the growth plate chondrocytes i vivo (5, 14). On the other
hand, proteoglycan synthesis is greatly increased in the
growth plate of SAP-Nppc-Tg mice (14), so we speculate that
the shortened Nppc ™'~ growth plate is restored by circulat-
ing CNP in Nppc ™~ /SAP-Nppc-Tg mice through the recov-
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ery of matrix synthesis, resulting in the recovery of endo-
chondral bone growth. ’

The impaired growth of Nppc™™ mice was recovered
in not only longitudinal length but also body weight, and
furthermore, the mortality of Nppc™™ mice was greatly
decreased, by circulating CNP. Together with our previ-
ous results that targeted overexpression of CNP in the
cartilage of Nppc™™ mice improved not only their im-
paired longitudinal growth but also their impaired body
weight gain and that prolonged their survival (1), we con-
sider that the recovery from the impaired endochondral
bone growth in Nppc ™™ mice by circulating CNP resulted
in the recovery of overall growth and also in longevity. The
mechanisms through which recovery in skeletal growth
results in the recovery of overall growth and the prolonged
survival are not yet elucidated. One of the possibilities is
that the malformation in the maxillofacial region of
Nppc™'~ mice, which is caused by impaired endochondral
ossification, may disturb their teeth coming together cor-
rectly: this condition may prevent them from eating
enough and lead them to malnutrition. Further investiga-
tion of the craniofacial phenotype of Nppc ™™ mice is now
ongoing in our laboratory (Nakao, K., Y. Okubo, N.
Koyama, K. Osawa, M. Miura, A. Yasoda, K. Nakao, and
K. Bessho, manuscript in preparation).

In conclusion, we have revealed that circulating CNP
rescues the impaired growth and early death of chondro-
dysplastic CNP knockout mice through the recovery of
endochondral bone growth. We have started to apply the
strong stimulatory effect of the CNP/GC-B system on en-
dochondral bone growth to the treatment of chondrodys-
plasias (16) for those no effective drug therapy is available
to date. The results of our present paper suggest that sys-
temic administration of CNP or its analog, which would
stimulate GC-B, might have therapeutic potential against
not only impaired skeletal growth but also other aspects of
impaired growth including impaired body weight gain in
patients suffering from chondrodysplasias and might re-
sultantly protect them from their early death.
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Translational research of C-type natriuretic peptide (CNP)

into skeletal dysplasias
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Abstract. By using transgenic and knockout mice, we have elucidated that C-type natriuretic peptide (CNP) is a potent
stimulator of endochondral bone growth. In humans, loss-of-function mutations in the gene coding for guanylyl cyclase-B
(GC-B), the specific receptor for CNP, have been proved to be the cause of acromesomelic dysplasia, type Maroteaux, one
form of human skeletal dysplasias. Following these results, we have started to translate the stimulatory effect of CNP on
endochondral bone growth into the therapy for patients with skeletal dysplasias. We have shown that targeted overexpression
of CNPin cartilage or systemic administration of CNP reverses the impaired skeletal growth of mice model of achondroplasia,

the most common form of human skeletal dysplasias.
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THE NATRIURETIC peptide family consists of
three structurally related peptides, atrial natriuretic
peptide (ANP), brain natriuretic peptide (BNP), and
C-type natriuretic peptide (CNP) [1]. The biological
actions of natriuretic peptides are mediated by activa-
tion of two subtypes of membranous guanylyl cyclase
(GC), GC-A and GC-B, followed by intracellular ac-
cumulation of cyclic GMP (¢cGMP) [2]. The rank or-
der of potency to induce cGMP production via GC-A
is ANP > BNP >> CNP, while that via GC-B is CNP
> ANP > BNP [3]. Therefore, ANP and BNP serve as
endogenous ligands for GC-A, whereas CNP is spe-
cific for GC-B. A third natriuretic peptide receptor
with no intracellular guanylyl cyclase domain, dubbed
the clearance receptor (C-receptor), is thought to be
engaged in the receptor-mediated degradation of na-
triuretic peptides [2]. The ANP, BNP/GC-A system
plays a pivotal role in the regulation of cardiovascular
homeostasis, as demonstrated by their augmentation in
various pathophysiological states such as heart failure
[4-8], myocardial infarction [9, 10], cardiac hypertro-
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phy [11, 12], and hypertension [13-15]. In fact, ANP
and BNP are cardiac hormones secreted primarily by
the atrium and ventricle of the heart, respectively [8,
15], with strong diuretic, natriuretic, and vasodilato-
ry activities [4, 5, 8]. ANP and BNP are used in the
treatment of heart failure [16, 17] and serve as sensi-
tive biochemical markers for heart failure and cardiac
hypertrophy [6-8].

CNP, the third member of natriuretic peptide fam-
ily, was first purified from porcine brain [18]. While
CNP is the primary natriuretic peptide in the human
brain [19], it is also produced by vascular endothelial
cells [20-22] and macrophages [23], and is thought to
act as an autocrine/paracrine regulator and as a neuro-
peptide [19]. Furthermore, analysis of genetically en-
gineered mice of the CNP/GC-B system revealed that
CNP and GC-B play a pivotal role in the regulation of
endochondral bone growth.

I. The growth promoting effect of the
CNP/GC-B system on endochondral bone
growth

I-1. Skeletal phenotypes of genetically engineered
mice of the CNP/GC-B system

We generated mice with a targeted disruption of
the CNP gene (Nppc); the resultant CNP-KO mice ex-
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Impaired skeletal growth observed in CNP-KO mouse. a. Soft x-ray picture of CNP-KO mouse (CNP-/-) compared by that

of wild-type mouse (CNP+/+). b. The dimension of each bone from wild-type (CNP+/+) or CNP-KO (CNP-/-) mouse at the
age of 10 weeks. TL: tibial length, FL: femoral length, VL: fifth lumber vertebral length, CL: naso-occipital length of the
calvarium, CW: maximal interparietal distance of the calvarium. *, P < 0.05 vs. wild-type mouse. c. Histological analysis of
the tibial growth plates from 7-day-old wild-type (CNP+/+) and CNP-KO (CNP-/-) mice. R: resting chondrocyte zone, P:
proliferative chondrocyte zone, H: hypertrophic chondrocyte zone.

hibited markedly short stature due to impaired bone
growth (Fig. 1) [24]. Mammalian bones are formed
through two different mechanisms, endochondral os-
sification and membranous ossification. Most mam-
malian bones are formed through endochondral ossi-
fication, a process during which chondrocytes in the
growth plate undergo proliferation, hypertrophy, cell
death, and osteoblastic replacement [25]. The short
stature phenotype of CNP-KO mice resulted from im-
paired bone growth through endochondral ossifica-
tion [24]. Histological analysis of the growth plate of
CNP-KO mice revealed that every chondrocyte layer
of the growth plate is narrower in CNP-KO mice than
in wild-type mice. Furthermore, mice depleted with
the GC-B gene (Npr2) exhibit the same short stature
phenotype as observed in CNP-KO mice [26], demon-
strating that the CNP/GC-B system is a physiological-
ly important stimulator of endochondral bone growth.
On the contrary, cartilage specific CNP-transgenic
mice under the control of type II collagen promoter
(col2-CNP-Tg mice) exhibited prominent overgrowth

of bones formed through endochondral ossification
(Fig. 2) [27]. In contrast to CNP- or GC-B-KO mice,
every chondrocyte layer of the growth plate of col2-
CNP-Tg mice was wider than that of wild-type mice.
Collectively, the CNP/GC-B system is a potent stimu-
lator of endochondral bone growth.

I-2. The role of other molecules related to the CNP/
GC-B system on endochondral bone growth (Fig. 3)
cGMP-dependent protein kinase (cGK) has been
identified as a molecule activated downstream of the
natriuretic peptide family and guanylyl cyclase sys-
tem [28]. Mice depleted of one subtype of the cGK
gene, cGKII (cGKII-KO mice), exhibit a short stature
phenotype secondary to impaired endochondral bone
growth [29], similar to that observed in CNP-KO mice
[24]. We demonstrated that cGKII affected endochon-
dral bone growth by functioning downstream of the
CNP/GC-B system by showing that the impaired en-
dochondral bone growth observed in cGKII-KO mice
could not be rescued by targeted overexpression of
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Fig.2  Skeletal phenotype of col2-CNP-Tg mouse. a. Soft x-ray picture of wild-type (Wt} and col2-CNP-Tg mice. b. The length
of each bone from wild-type (Wt) or col2-CNP-Tg mouse. CL: naso-occipital length of the calvarium, CW: maximal
interparietal distance of the calvarium. FL: femoral length, HL: Humeral length. *, P < 0.05 vs. wild-type mouse. c.
Histological analysis of the tibial growth plates from 7-day-old wild-type and CNP-KO (CNP-/-) mice.
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Fig.3  Schematic representation of the pathway of the CNP/GC-B system.

CNP in the growth plate cartilage [30]. cGKII is re-
ported to phosphorylate and inactivate GSK3p as the
downstream molecule, resulting in the increased ac-
cumulation and transactivation function of B-catenin
followed by hypertrophic differentiation of the growth

36

plate chondrocyte [31].

As previously mentioned, C-receptor is thought to
be engaged in the clearance of natriuretic peptide li-
gands, and mice depleted with C-receptor exhibit skel-
etal overgrowth phenotype like col2-CNP-Tg mice
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[32]. Transgenic mice with overexpression of osteo-
crin, which is thought to be an endogenous ligand for
C-receptor, also show skeletal overgrowth phenotype
[33]. These results exhibit that the decreased clear-
ance of CNP increases the concentration of CNP in
the growth plate, followed by the stimulation of endo-
chondral bone growth by the increased CNP there.

I-3. Skeletal phenotypes of spontaneous mutant ani-
mals of the CNP/GC-B system and its related molecules

Many lines of spontaneous mutant mice of the
CNP/GC-B system have been identified so far [34-
36]. Two strains of dwarf mice, one with an autosomal
recessive mutant gene, named cn/cn [34], and short-
limbed dwarfism (SLW) mice [35], possess sponta-
neous loss of function mutations in the GC-B gene.
Another strain of dwarf mice, named long bone abnor-
mality (Lbab) mice, displays a loss of function muta-
tion in the CNP gene [37]; the resulting short stature
phenotype and impaired endochondral bone growth
could be abrogated by targeted overexpression of CNP
in the growth plate cartilage [36].

As for spontaneous mutations in the genes cod-
ing for related molecules of the CNP/GC-B system,
a spontaneous mutation in the cGKII gene (Prkg2)
causes impaired endochondral bone growth phenotype
in Komeda miniature rats Ishikawa (KMI), which co-
incides with that of cGKII-KO mice [38]. There exist
several lines of mice with mutations in the C-receptor
gene (Npr3), and all of these mutant mice exhibit skel-
etal over growth phenotype just like C-receptor-KO
mice or osteocrin-transgenic mice [39].

IL. Clinical application of CNP for skeletal
dysplasias

II-1. The importance of the CNP/GC-B system on
human endochondral bone growth

In 2004, Bartels et al. reported that one form of hu-
man skeletal dysplasias, acromesomelic dysplasia
type Maroteaux, is caused by loss of function muta-
tions in the GC-B gene (NPR2) [40]. Furthermore,
they showed that heterozygous mutations in the hu-
man GC-B gene are associated with short stature.
Assuming that one in 700 people unknowingly car-
ries an NPR2 mutation, approximately one in 30 indi-
viduals with idiopathic short stature would be a carrier
of an NPR2 mutation [41]. These implicate the CNP/
GC-B system as a physiologically important enhancer

of endochondral bone growth in humans. On the con-
trary, three patients carrying balanced translocations
involving 2q37.1 chromosome band, in which the hu-
man CNP gene (NPPC) is located, were reported to
have CNP overexpression and exhibit skeletal over-
growth phenotype [42, 43]. These reports further in-
dicate that CNP is a potent stimulator of endochondral
bone growth in humans, suggesting a clinical applica-
tion of CNP or CNP analogues to diseases character-
ized by impaired skeletal growth.

II-2. The therapeutic effect of CNP on the impaired
skeletal growth of mice model of achondroplasia

Following the discovery that the CNP/GC-B sys-
tem is a potent stimulator of endochondral bone
growth in rodents and in humans, we attempted to ap-
ply this effect of the CNP/GC-B system to the treat-
ment of skeletal dysplasias, a group of genetic disor-
ders characterized by severely impaired bone growth
[44]. Achondroplasia, the most common form of skel-
etal dysplasias characterized by short-limbed dwarf-
ism, is caused by a constitutive active mutation in the
FGF receptor 3 (FGFR3) gene (FGFR3) [45]. The
current therapy for achondroplasia is limited to dis-
traction osteogenesis [46], an orthopedic procedure;
no efficient medical therapies have been developed
as yet. We demonstrated that targeted overexpression
of a CNP transgene in the growth plate cartilage of
a mouse model of achondroplasia [47] (Ach mouse)
rescues its impaired bone growth and short stature
phenotype [27] (Fig. 4). To elucidate the molecular
mechanism by which CNP ameliorates achondropla-
sia, we examined the effect of CNP on ERK signaling
that mediates biological actions of FGFR3. CNP in-
hibited FGF2-stimulated phosphorylation of ERK in a
dose-dependent manner through cGMP activation via
GC-B ligation, ultimately increasing matrix synthesis
by chondrocytes [27]. Further in vitro study using rat
chondrosarcoma chondrocytes from another laborato-
ry revealed that CNP inhibited ERK pathway of FGF
signaling at the level of Raf-1 through the activation
of ¢cGKII (Fig. 5) [48].

Distinct from ANP and BNP, CNP had been thought
to be an autocrine/paracrine regulator. In order to elu-
cidate whether CNP could work in an endocrine man-
ner and be used as a drug via systemic administration
or not, we generated transgenic mice with an elevated
plasma concentration of CNP under the control of se-
rum amyloid P component (SAP) promoter, which en-
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Fig. 4  Skeletal rescue of Ach mouse by targeted overexpression of CNP in cartilage. a. Soft x-ray picture of wild-type mouse (Wt),
Ach mouse, and Ach mouse with targeted overexpression of CNP in cartilage (Ach/col2-CNP-Tg). b. The length of each
bone from wild-type, Ach, and Ach/col2-CNP-Tg mouse at the age of 10 weeks. CL: naso-occipital length of the calvarium,
CW: maximal interparietal distance of the calvarium, FL: femoral length, HL: humeral length. *, P < 0.05 vs. Ach mouse.
¢. Histological analysis of the tibial growth plates from 7-day-old wild-type, Ach, and Ach/col2-CNP-Tg mice.

activated
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Fig.5  Schema of the intracellular interaction between the FGF signaling and the CNP/GC-B system.

ables targeted overexpression of the transgene in the almost completely recovered by crossing them with
liver followed by the increased circulation of the gene ~ SAP-CNP-Tg mice [50]. These results indicate that
product. The resultant transgenic mice (SAP-CNP-  CNP can work in an endocrine manner and be used as
Tg mice) exhibited skeletal overgrowth phenotype just  a drug for achondroplasia via systemic administration.
like that of col2-CNP-Tg mice [49]. Moreover, the Further we demonstrated that systemic and continuous
impaired endochondral bone growth of Ach mice was  administration of synthetic CNP-22 is effective to re-
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