In vivo role of the natriuretic peptide system
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Reduction of cardiac pre-and after-load

Fig. 1. ANP and BNP, the cardiac natriuretic peptides, protect the
heart in not only an endocrine but also a paracrine fashion. Because
ANP and BNP have potent diuretic, natriuretic and vasodilatory
actions, augmentation of the ANP and BNP/GC-A signaling leads to
a decrease in cardiac pre- and after-load, and their mobilization dur-
ing cardiac failure is considered one of the compensatory mecha-
nisms activated in response to heart damage. In addition to the
hemodynamic effects of their actions as circulating hormones,
recent evidence suggests that ANP and BNP also exert local cardio-
protective effects by acting as autocrine/paracrine hormones.

Since the diuretic, natriuretic and vasorelaxant activ-
ities of ANP and BNP lead to reduction of the cardiac
pre- and after-load, these results suggest that the car-
diac natriuretic peptides/GC-A signaling exerts its car-
dioprotective actions in both an endocrine and an
autocrine/paracrine fashion. These mechanisms are
schematically depicted in Fig. 1.

The molecular mechanism of GC-A-mediated
inhibition of cardiac hypertrophy

To identify the molecular mechanism underlying car-
diac hypertrophy seen in GC-A-deficient mice, DNA
microarrays were used to identify genes upregulated in
the hypertrophied heart [45]. Among several genes
known to be upregulated in cardiac hypertrophy (e.g.
a-skeletal actin, ANP and BNP), it has been found
that the expression of the gene encoding myocyte-
enriched calcineurin-interacting protein (MCIP1) is
also increased. The MCIP] gene is reportedly regu-
lated by calcineurin, a critical regulator of cardiac
hypertrophy. Thus, it was hypothesized that the calci-
neurin activity is enhanced in the heart of GC-A-defi-
cient mice. To test this hypothesis, cultured neonatal
cardiomyocytes were used to determine whether phar-
macological inhibition of GC-A would increase calci-
neurin activity, which it did not [45]. On the other
hand, stimulation of GC-A with ANP inhibited calci-
neurin activity, suggesting that it is by inhibiting the
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calcineurin pathway that cardiac GC-A signaling (acti-
vated by locally secreted natriuretic peptides) exerts its
anti-hypertrophic effects. In fact, chronic treatment
with FK506, which in combination with FK506-bind-
ing protein inhibits the phosphatase activity of calci-
neurin, significantly reduces the heart weight to body
weight ratio, cardiomyocyte size and collagen volume
fraction in GC-A-deficient mice compared with the
wild-type mice [45]. A further study using microarray
analysis and real-time PCR analysis revealed that, in
addition to the calcineurin—nuclear factor of activated
T-cells (NFAT) pathway, the calmodulin-CaMK-
Hdac-Mef2 and PKC-MAPK—~GATA4 pathways may
also be involved in the cardiac hypertrophy seen in the
GC-A-null mice [46].

Role of regulator of G-protein signaling in CG-A
cardioprotective actions

Recently, it has been elegantly demonstrated that
cGMP-dependent protein kinase (PKG) Io attenuates
signaling by the thrombin receptor protease-activated
receptor (PAR) | through direct activation of regulator
of G-protein signaling (RGS) 2 [47]. PKG-Io binds
directly to and phosphorylates RGS-2, which signifi-
cantly increases the GTPase activity of Go,, thereby
terminating PAR-1 signaling. Given that ¢cGMP is an
intracellular second messenger for natriuretic peptides,
RGS might mediate the cardioprotective effect of the
GC-A signaling. To test this hypothesis, the role of
RGS-4, which is the predominant RGS in cardiomyo-
cytes under physiological conditions, was examined. In
cultured cardiomyocytes, ANP stimulated the binding
of PKG-Io to RGS-4 as well as the phosphorylation
of RGS-4 and its subsequent association with Gayg
[48]. In addition, cardiomyocyte-specific overexpression
of RGS-4 in GC-A-null mice significantly rescued the
cardiac phenotype of these mice. On the contrary,
overexpression of a dominant-negative form of RGS-4
blocked the inhibitory effects of ANP on cardiac
hypertrophy [48]. Therefore, GC-A may activate car-
diac RGS-4, which then inhibits the activity of Gu,
and its downstream hypertrophic effectors. The endog-
enous cardioprotective mechanism meditated by
ANP/BNP, GC-A and RGS-4 is depicted schemati-
cally in Fig. 2.

Very recently, PKG activation reflecting chronic
inhibition of cGMP-selective phosphodiesterase 5 has
been shown to suppress maladaptive cardiac hypertro-
phy by inhibiting Gog-coupled stimulation, and the
effect was not observed in mice lacking RGS-2 [49].
This suggests that RGS2 mediates the cardioprotective
actions of PKG in pathological conditions such as
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Fig. 2. Inhibitory mechanism of cardiac hypertrophy by the local
natriuretic peptide system. Cardiac hypertrophy agonists such as
angiotensin I, catecholamines and endothelins stimulate G-protein
coupled receptor. Subsequent production of inositol triphosphate
(IP3) promotes elevation of intracellular Ca®* levels, which results
in activation of the calcineurin/nuclear factor of activated T cells
(NFAT) pathway. Cooperatively with the family of GATA transcrip-
tion factors, NFAT activates the hypertrophic gene program, which
includes the ANP- and BNP-coding genes. In an autocrine or para-
crine fashion, ANP and BNP stimulate their receptor GC-A and
exert their anti-hypertrophic actions via the activation of the RGS,
which consequently results in an increase in the GTPase activity of
the o subunit of the guanine nucleotide binding protein (Gag) and in
a decrease in the activity of the downstream signaling mediators
(adapted from [48])).

pressure overload or excessive Go, activation due to
hypertrophic stimuli. In fact, RGS-2 is also implicated
in the anti-hypertrophic action of cardiac GC-A [50].

The role of GC-A in myocardial infarction

It is well known that plasma levels of ANP and BNP
are dramatically elevated early after myocardial infarc-
tion [S1]. To examine the significance of this upregula-
tion, experimental myocardial infarction by ligation of
the left coronary artery was induced in mice lacking

GC-A [52]. GC-A-deficient mice exhibited significantly

higher mortality rate than wild-type mice, reflecting a

higher incidence of acute heart failure. Four weeks
after infarction, left ventricular remodeling, including
myocardial hypertrophy and fibrosis, and impairment
of the left ventricular systolic function were signifi-
cantly more severe in mice lacking GC-A than in wild-
type mice [52]. GC-A activation by endogenous cardiac
natriuretic peptides may protect against acute heart
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failure and attenuate chronic cardiac remodeling after
acute myocardial infarction.

Role of GC-A in peripheral arterial disease

A role of the natriuretic peptide system in peripheral
arterial diseases has also been suggested. Activation of
the natriuretic peptides-<cGMP-PKG pathway was
found to accelerate vascular regeneration and blood
flow recovery in a murine model of peripheral arterial
disease, in which leg ischemia was induced by femoral
arterial ligation [53]. Recently, it has been reported
that intraperitoneal injection of carperitide, a recombi-
nant human ANP, accelerated blood flow recovery
with increasing capillary density in the ischemic legs
[54], indicating the role of exogenously administered
ANP and BNP in angiogenesis. When the hindlimb
ischemia model was performed in GC-A-deficient mice,
autoamputation or ulcers were more severe in GC-A-
deficient mice than in their wild-type counterparts [55].
Laser Doppler perfusion imaging revealed that the
recovery of blood flow in the ischemic limb was signifi-
cantly inhibited in GC-A-null mice compared with
wild-type mice. In addition, vascular regeneration in
response to critical hindlimb ischemia was severely
impaired [55]. Similar attenuation of ischemic angio-
genesis was observed in mice with conditional, endo-
thelial-cell-restricted GC-A deletion. On the other
hand, smooth-muscle-cell-restricted GC-A ablation did
not affect ischemic neovascularization [56], suggesting
that it is the endothelial GC-A that stimulates endo-
thelial regeneration after induction of ischemia. Taken
together, the evidence suggests that the natriuretic pep-
tide pathway significantly contributes to peripheral
vascular remodeling during ischemia.

Role of the CNP/GC-B pathway in bone
formation

In a 1998 study, mice with transgenic overexpression
of the BNP gene, especially those exhibiting high
expression” levels, unexpectedly displayed deformed
bony skeletons characterized by kyphosis, elongated
limbs and paws, and crooked tails, which resulted
from a high turnover of endochondral ossification
accompanied by overgrowth of the growth plate [57].
Even after crossing with GC-A-null mice, transgenic
mice overexpressing BNP continued to exhibit marked
longitudinal growth of the vertebrae and long bones
[58]. Therefore, the effect of excess amount of BNP on
endochondral ossification is independent of GC-A,
and so signaling through another receptor was
suggested.

1837

40



In vivo role of the natriuretic peptide system

In 2001, CNP-deficient mice were reported to show
severe dwarfism as a result of impaired endochondral
ossification [59], thus indicating that CNP acts locally
as a positive regulator of endochondral ossification. In
2004, the phenotype of mice lacking GC-B was
reported [60]. The GC-B-null animals exhibited dra-
matically impaired endochondral ossification and
attenuation of longitudinal vertebral or limb bone
growth. Therefore, it appears that GC-B is the recep-
tor mediating the CNP action in inducing longitudinal
bone growth. Furthermore, homozygous C-receptor-
null mice also have skeletal deformities associated with
a considerable increase in bone turnover [28], an oppo-
site phenotype to that observed in the mice deficient
for CNP. Since CNP is the only natriuretic peptide
expressed in bone, it is suggested that one function of
the C receptor is to.clear locally synthesized CNP from
bone and modulate its effects.

Since pharmacological amounts of BNP can stimu-
late GC-B, these results suggest that activation of the
CNP/GC-B pathway in transgenic mice with elevated
plasma concentrations of BNP or in mice lacking the
C receptor for natriuretic peptides results in skeletal
overgrowth. By contrast, inactivation of the CNP/GC-
B pathway in mice lacking CNP, GC-B or ¢cGMP-
dependent protein kinase II (a downstream mediator
* of the CNP/GC-B pathway) results in dwarfism caused
by defects in endochondral ossification.

Summary

As stated above, studies using genetically engineered
animals revealed physiological and pathophysiological
roles of the natriuretic peptides/receptor signaling
pathways in the regulation of blood pressure/volume,
maintenance of the cardiovascular system, and devel-
opment of the longitudinal bone, acting as not only a
circulating hormonal system but also a local regulatory
system. Recent evidence also suggests roles for the
natriuretic peptide system in renal [61] and neuronal
[62] morphology and function. In addition, genetic
defects of each component of the system in humans
may cause diseases that are also observed in the geneti-
cally engineered animals. Furthermore, an interesting
hypothesis that needs verification is that these observed
phenomena could be the recapitulation of early devel-
opmental mechanisms. More studies at tissue, cellular
and molecular levels are needed to clarify the mecha-
nisms underlying the intriguing phenotypes observed in
transgenic animal models. In addition, more studies at
clinical and population levels are needed to elucidate
the potential importance of the natriuretic peptide sys-
tem in humans.
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