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To measure the concentration of dye in the anterior chamber, the
eye of the euthanized rat was first washed with excess saline before a
30 gage needle was inserted into the anterior chamber through the
boundary between the cornea and conjunctiva. The collected anterior
chamber humor was mixed with the NaOH-DMSO solution in the
volume ratio of 5 ul of aqueous humor per 2 ml of the NaOH-DMSO
solution. The solution was then passed through a syringe filter
(0.22 um pore size) and the fluorescence spectra were measured.
Ocular globes and eye fragments that were not treated with eye drop
administration were used as controls.

2.7. Calculation of ocular penetration rates of dyes

The ocular penetration rates and the dye transition rates (Tables 1-4)
of the dyes after administration of eye drops were calculated with the
following formula (Eq. (1)):

Ocular penetration rate of dye (%, w/w)
= (the weight concentration of actual dye penetration
+ the weight concentration of the theoretical dye penetration) x 100
M

Here, the “the weight concentration of actual dye penetration”
means the real weight concentration of dyes detected in the specimen of
the ocular globe and the eye segments, which were calculated using the
calibration curve (see, Section 2 Material and methods; Section 2.6); the
“the weight concentration of the theoretical dye penetration” means the
virtual weight concentration of dyes with an assumption of complete
dye transition to the ocular globe after administration of eye drops; i.e.,
this weight concentration was calculated based on the dye concentra-
tion of eye drops (10 pl) that was administered to the eye, and that were
calculated using the calibration curve (see, Section 2 Material and
methods; Section 2.4).

The calibration curves used for measurement of the ocular
penetration rate of the dyes and the concentration of dyes in the
anterior humor are shown in Supplementary Information Fig. S3a and
S3b, respectively.

For statistical treatment of the data obtained on the ocular
penetration rate and the dye distribution in eye segments, t-tests
were carried out to investigate the probability (p) of significance. All p
values obtained by the t-tests were based on analyzing multiple groups
consisting of 5-6 samples for each p value. These p values are shown in
Tables 1 to 4.

2.8. Fluorescence and confocal laser fluorescence microscopy observation

For the fluorescence microscopy observation of the ocular surfaces
(Fig. 3), eye drops (10ul) were administered to the eyes of
anesthetized rats, and then after a given time, the eyes were observed
by fluorescence microscopy (Zeiss, SteREO Lumar. V12). For confocal

Table 1
Ocular penetration rates (%, w/w) of dyes after the administration of FDA nanoparticle
and FDA microparticle eye drops.

Types of eye drops Time after administration of eye drops

5 min 30 min 60 min 120 min

Mean value of ocular penetration rate (%, w/w)

FDA nanoparticles 9,00'“_»?4 4:,80*:1T 3.45’.*1T 132%;7
o 0.14™* 0.12** 0.09**

FDA microparticles 0.18"
Concentration of administered eye drops was 0.17 mg/ml.
Number of samples used for calculating each mean value: n= 6; except FDA microparticles
at5min: n==5.
* Ttest: p<0.0001 vs. control.
** T test: p<0.005 vs. control.

**% T test: p<0.05 vs. control.
T p<0.0001 vs. FDA microparticles.

Table 2
Ocular penetration rates of dyes after the administration of fluorescein nanoparticles
and sodium fluorescein eye drops.

Type of eye drops Time after administration of eye drops
5 min 30 min 60 min 120 min
Mean value of ocular penetration rate (%, w/w)
Fluorescein nanoparticles 0.18%* 0.09™* 0.10™* 0.05™*
Sodium fluorescein 0.16* 0.07** 0.07** 0.04""

Concentrations of administered fluorescein nanoparticle eye drops and sodium
fluorescein eye drops were 0.29 mg/ml and 0.36 mg/ml, respectively.
Number of samples used for calculating each mean value: n=6,
* Ttest: p<0.0001 vs. control.
** T test: p<0.005 vs, control.

laser fluorescence microscopy (Figs. 5-7), ocular globes excised from
euthanized rats were placed on glass-bottom dishes (35 mm,
Corning) with the corneal side on the glass before the cross-section
of the cornea was observed directly by confocal laser fluorescence
microscopy (Olympus, FV-300). The laser source used in the
experiment was an Ar laser with a 488 nm wavelength. A band pass
filter (Olympus, BA510IF) was used to remove any excitation leakage.
The series of fluorescence images obtained by both fluorescence and
confocal laser fluorescence microscopy were confirmed as not being
auto fluorescence of the cells and tissues; this was confirmed by
comparing the ocular globes without staining dye as a control.

3. Results and discussion

3.1. Evaluation of the size and morphology of FDA nanoparticles and FDA
microparticles

FDA nanoparticles were prepared by the reprecipitation method
{31-33]. Scanning electron microscopy (SEM) showed that the
morphology of FDA nanoparticles prepared by the reprecipitation
method was spheroidal (Fig. 2a). Dynamic light scattering (DLS)
measurements showed that nanoparticle sizes were monodispersely
distributed with an average size of 215 nm and that the ¢-potential of
the system was — 10 mV (Fig. S4, Supplementary Information). These
nanoparticles were stably dispersed in aqueous medium because of a
negatively charged ¢-potential as well as stabilizer PVP. These
nanoparticles were stably dispersed in aqueous medium as shown
in the photograph in Fig. 1 a-i. On the other hand, particles not formed
by the reprecipitation method had a poor morphology. SEM showed
that these particles were angular rather than spheroidal and that their
size distribution spread across several micrometers. These results are
shown in Fig. 2b, and the particles are referred to as microparticles in
the remainder of this work. For the administration of eye drops to the
eyes of rats, nanoparticle and microparticle eye drops were used

Table 3
Localization of dye obtained from each eye segment after administration of FDA
nanoparticle eye drops.

Eye segments Time after administration of eye drops

5 min 30 min 60 min 120 min
Mean value of dye transition rate (%, w/w)
Anterior eye 7.07" 6.06" 318" 145"
Sclera 004" 002" 001" 001"
Retina 0.02° - - -

Concentration of administered FDA nanoparticle eye drops was 0.28 mg/ml.
Number of samples used for calculating each mean value: n=86.
* T test: p<0.0001 vs. control.
** T test: p<0.005 vs. control.
**¥ T test: p<0.05 vs. control.
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Table 4
The localization of dye obtained from frozen eye segments after administration of FDA
nanoparticle eye drops.

Eye segments Time after administration of eye drops

5 min 30 min 60 min 120 min
Mean value of dye transition rate (%, w/w)
Anterior eye 470" 3.56" 299" 0.78"
Conjunctiva-Sclera 031" 0.12** 0.04™* 0.02°%*
Vitreous body - - - -
Retina 0,01 - - -

Concentration of administered FDA nanoparticle eye drops was 0.42 mg/ml.
Number of samples used for calculating each mean value: n=6.
* T test: p<0.0001 vs. control.
** T test: p<0.005 vs. control.
**E T test: p<0.05 vs. control.

before hydrolyzation and, therefore, the non-hydrolyzed FDA shows
no fluorescence before their administration.

3.2. Fluorescein nanoparticles and sodium fluorescein eye drops

To examine the influence of polarity on the ocular penetration of
eye drops, both fluorescein nanoparticles and sodium fluorescein eye
drops were prepared for comparison with the FDA eye drops. The
polarity of the chemical compound was described using octanol/water
partition coefficient, log P. The log P of fluorescein is 0.61 and that of

(a)

Fig. 2. SEM images of FDA nanoparticles (a) and FDA microparticles {b).

sodium fluorescein is —0.67 {39,40]. Since the logP of FDA is 3.51 [40],
fluorescein and sodium fluorescein can be regarded as more
hydrophilic than FDA because they have lower partition coefficients.
Actually, fluorescein and sodium fluorescein are slightly and highly
soluble in water, respectively. The average size of the fluorescein
nanoparticles was 14 nm (Fig. S5, Supplementary Information) and
sodium fluorescein in solution was molecular in size.

3.3. Fluorescence microscopy observation of ocular surfaces

Ocular surface images after administration of the eye drops are
shown in Fig. 3. Fluorescence was not detected in the period from 10 s
to 2 min after the administration of FDA nanoparticle eye drops, but
was observed after 5min (Fig. 3a). This fluorescence remained
observable after the eye was washed using excess saline (Fig. 3a). In
contrast, significant fluorescence was not detected in the ocular globe
even at 5 min after the administration of FDA microparticle eye drops
(Fig. 3b). Although the concentrations of FDA nanoparticle and FDA
microparticle eye drops were the same, these results indicate that the
particle size of FDA had a significant effect upon the rate of ocular
penetration of the dye.

For both cases, fluorescence was detected at 10 s to 5 min after eye
drop administration, but fluorescence was not detected after washing
out the eyes with excess saline (Fig. 3c and d). This result indicated
the dye in eye drops of fluorescein nanoparticles and sodium
fluorescein did not permeate the epithelium. This means that the
hydrophilic moieties present in their structure was not preferable for
their penetration into the lipophilic corneal epithelium.

Additionally, the observation result using fluorescein eye drops
eliminated the chance that the hydrolyzed FDA nanoparticles, which
generate fluorescein outside of the ocular globe, entered into the corneal
epithelium. Namely, it is clear that the dyes of the FDA nanoparticles
were initially taken up by corneal epithelium cells and then the dyes
were hydrolyzed inside the cells.

3.4. Quantitative analysis of the ocular penetration rate after administrating
eye drops

The ocular penetration rates of FDA nanoparticle and microparticle
eye drops were evaluated by quantitative analysis by means of
measuring the fluorescence intensity of prepared specimens at a given
time after administration of the eye drops (see, Section 2 Material and
methods; Section 2.6). The highest fluorescence intensity was
observed at 5min after administering both eye drops (Fig. 4a).
Additionally, the fluorescence intensity of FDA microparticle eye
drops was less than that of FDA nanoparticles in all measurement
times after their administration (Fig. 4b). The fluorescence intensity of
both eye drops decreased as time elapsed (Fig. 4b). The temporal
ocular penetration rates of these dyes are summarized in Table 1. The
ocular penetration rate of dyes in FDA nanoparticles eye drops (9.00%
w/w) was several times higher (ca. 50-fold) than that of the FDA
microparticles (0.18% w/w) at 5 min after administration (Table 1).
This shows that the downsizing of particles from a micrometer to a
nanometer scale resulted in achieving high ocular penetration of dyes.
This may mean that the dissolution rate of dyes from these particles
on the ocular surface was greater for nanoparticles compared with
that of microparticles because of a size effect, and then the dyes
originating from the nanoparticles permeated into the corneal
epithelium. Otherwise, nanoparticles being taken up into the corneal
epithelium cells are considered to have occurred in the case of
nanoparticle eye drops. The dyes and particles that did not migrate to
the ocular globe were washed away from the eye surface by the
actions of lacrimation and tear turnover. Similarly, the reason for the
reduction of the dye amount observed in the ocular globe over time
may be due to the action of aqueous flow in removing the dye and to
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Time after administration of eye drops

10 sec 2 min

(a)
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5 min

After washing

Fig. 3. Fluorescence microscopy images of the ocular surfaces after eye drop administration. The applied eye drops were FDA nanoparticles (a), FDA microparticles (b), Fluorescein
nanoparticles {c), and sodium fluorescein (d). Concentration of administered eye drops was 0.47 mM (number of molecules) in each case.

the diffusion of dye into the blood circulation. These mechanisms have
been recognized in previous research [11].

The ocular penetration rates of fluorescein nanoparticles and
sodium fluorescein were weak during the 2 h following eye drop
administration (Table 2 and corresponding graphs in Fig. S6,
Supplementary Information). These results are consistent with the
existing literature that describes the cornea permeability of chemical
compounds according to the log P. Since the log P of fluorescein and
sodium fluorescein is 0.61 and —0.67, respectively, it has been found
that compounds with log P values of around 2-3 penetrate the cornea
more readily [41,42]. Even though, the sizes of fluorescein nanopar-
ticles (ca. 14 nm in size) and sodium fluorescein (molecular in size)
were smaller than that of FDA nanoparticles (ca. 215 nm in size), the
ocular penetration rate was less than that of FDA nanoparticles. This
result means that not only the size but also the polarity of the
compound is an important factor for determining the ocular
penetration of dyes.

3.5. Confocal laser fluorescence microscopy of the cornea

Since the cornea is a transparent tissue, it is possible to observe a
cross section of the tissue using confocal laser fluorescence micros-
copy. When administrating FDA nanoparticle eye drops, deep cornea
penetration of dyes was observed (Fig. 5a; the detailed discussion is in
a Section 3.6). For the other types of eye drops studied (i.e., FDA
microparticles, fluorescein nanoparticles, and sodium fluorescein),
only confocal fluorescence images of surfaces of the superficial corneal
epithelium were taken (Fig. 5b-d) and these results showed that the
permeation of these dyes through the epithelium was low. Thus, less
ocular penetration took place.

3.6. Fluorescence imaging of corneal cross-sections after administrating
FDA nanoparticle eye drops

Among the four types of eye drops used in this study (FDA
nanoparticles, FDA microparticles, fluorescein nanoparticles, and
sodium fluorescein), FDA nanoparticle eye drops were found to have

the highest ocular penetration rate. We therefore focused on investi-
gating FDA nanoparticle eye drops. Sixty minutes after the administra-
tion of FDA nanoparticle eye drops, a fluorescence image of the corneal
cross section was taken that depicted the epithelium, stroma, and
endothelium (Fig. 6a). The corresponding fluorescence intensity
distribution curve in the cornea and plane view images of each layer
are shown in Fig. 6b and Fig. 6¢-i, respectively. The depths of plane view
images of Fig. 6¢-i correspond with the lower-case labels c-i in yellow in
Fig. 6a. In the corneal epithelium, the dyes were observed in the cell
cytoplasm in the superficial layer (Fig. 6¢) and intercellular spaces in the
suprabasal and basal layers (Fig. 6d and e). FDA might have been taken
up by the corneal epithelium cells in the form of FDA molecules
originating from the dissolved nanoparticles on the corneal surface and/
or in the form of FDA nanoparticles. It is speculated that the molecular
dyes and/or the nanoparticles were hydrolyzed in the cytoplasm of cells
in the superficial layer, then the hydrolyzed dyes and/or the
nanoparticles having hydrolyzed a surface of fluorescein were exocy-
tosed. These dyes and fluorescent nanoparticles might have passed
through the intercellular spaces of the suprabasal and basal layers
because their hydrophilic moiety, caused by fluorescein, made it difficult
to reenter the cells that were covered by the lipophilic membrane, Fig. 6f
and g shows fluorescent dots that may be the aggregation of fluorescent
nanoparticles that had hydrolyzed and thus had a fluorescent surface of
fluorescein. The sizes of aggregation substances were estimated to be up
to several micrometers. For easier viewing, these fluorescent aggregate
substances between the basal epithelium layer and stromat layers are
enlarged in Fig. 6g and highlighted inside yellow circles. This result
indicates the possibility of direct nanoparticle permeation into the
corneal epithelium. Since these fluorescent aggregates were trapped in
the boundary between the epithelium and stroma (see, lower-case
labels f and g in Fig. 6a, and f and g), the hydrophilic fluorescein dyes
produced by the hydrolyzed FDA of the nanoparticles might have
dominantly permeated through the hydrophilic stroma (Fig. 6h). Then
these dyes reached the endothelium (Fig. 6i).

To investigate the details of dye transition from the epithelium to
the stroma, a three-dimensional image was taken using the alpha
blend method (Fig. 7a). Again, this image shows the passage of
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Fig. 4. Emission spectra of dye solution from excised ocular globes at 5 min after eye
drop administration (a): FDA nanoparticles (i) and FDA microparticles (ii) eye drops
and control (without staining dyes) (iii). Dye transition to the ocular globe at 5, 30, 60,
and 120 min after eye drop administration (b): detecting at the Apax (=525 nm) of the
florescence spectra for the case of administration of FDA nanoparticles (i) and FDA
microparticles (ii) eye drops and control (without staining dyes) (iii); each point value
represents the mean 4s.d.,, and n=6, except (ii) at 5 min (n=5).

fluorescent dye through the intercellular spaces between the
epithelium. Additionally, fluorescent distributions and fluorescent
images of the epithelium (Fig. 7b) revealed that most dyes were
absorbed by the superficial layer (Fig. 7b-i) and passed through
the intercellular spaces of the suprabasal and basal layers (Fig. 7b-ii
and b-iii). The red arrow in Fig. 7b-ii shows a fluorescent cell. This
example cell shows that some dyes were taken up by cells in the
suprabasal layer. It seems that some dyes and/or nanoparticles might
have passed through the tight junctions, and then entered the cell in
the suprabasal layer, followed by being hydrolyzed inside the
cytoplasm. Although tight junctions work as a good barrier for
substances external to the epithelium [43], dye clusters and/or small
sized nanoparticles can pass through the pores existing between these
tight junctions [43] rather than becoming entrapped in the cells of the
superficial layer of the epithelium. However, the exact mechanism for
this penetration is still being investigated. Additionally, the cell that
took up the dyes and/or nanoparticles in the suprabasal layer were
easily observable in the transparent three-dimensional image
obtained using the maximum intensity projection method (Fig. 7c,
the fluorescent cell is shown by the red arrow). The fluorescent cell in
Fig. 7c corresponds with that of Fig. 7b-ii.

Fluorescein dyes produced by hydrolysis of FDA permeated
through the hydrophilic stroma, which was confirmed by both the
alpha blend method (Fig. 7a) and the maximum intensity projection
method (Fig. 7c). These results mean that the formulation of
nanoparticles of a hydrolyzable compound can overcome the corneal
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barrier functions, which consist of the tight junctions of the corneal
epithelium as well as the different physicochemical properties of the
lipophilic epithelium and the hydrophilic stroma.

At present, there are numerous reports discussing the ocular
penetration of dyes, nanoparticles, and drugs [9,14,30,44-51].
However, to the best of our knowledge, this is the first time confocal
laser fluorescence microscopy was used to clearly visualize the unique
penetration pathway of the compounds consisting of nanoparticles
with hydrolyzable dyes through the cornea.

3.7. Dye localization in the ocular globe

After administering FDA nanoparticle eye drops and waiting for a
given time, the eyes were washed with saline before and after excising
the ocular globe. The excised ocular globe was carefully dissected
under a microscope to obtain the anterior segment, conjunctiva,
sclera, retina, and vitreous body (see, Section 2 Material and methods;
Section 2.6). The ocular penetration rate of the dyes in these
fragments was determined by quantitative analysis using fluores-
cence spectra measurements and calibration curves.

Table 3 shows that almost all the dye was found in the anterior
segment (e.g., the ocular penetration rate was 7.07% w/w at 5 min),
although some dyes reached the sclera and the retina of the posterior
eye segment (corresponding graphs are shown in Fig. S7a-S7c,
Supplementary Information). Dye was detected in the retina 5 min
after administration of FDA nanoparticle eye drops; however, no
significant signal was detected after 30 min.

An additional experiment using a frozen ocular globe was
performed to reduce the chance of false results due to contamination
(see, Section 2 Material and methods; Section 2.6). A similar trend in
the ocular penetration of dyes was observed using this technique.
Again, most of the dye was detected in the anterior eye segment (e.g.,
ocular penetration rate was 4.70% w/w at 5 min), while the remainder
was detected in the conjunctiva, sclera and retina (Table 4 and the
corresponding graphs in Fig. S8, Supplementary Information). Fig. S8d
shows that significant fluorescence in the vitreous body of the
posterior eye segment was not detected.

The ocular penetration rate of dyes in the anterior chamber after the
administration of eye drops was investigated by measuring the dye
concentration in the aqueous humor using the calibration curve
(Supplementary Information S3b). As a result, 30 min after the
administration of FDA nanoparticle eye drops, the aqueous humor
was found to have the highest concentration of the dye (0.56 - 0.24 pg/
ml). The changes in fluorescence intensity and the concentration of dye
in the aqueous humor over time are summarized in Table 5 and
corresponding graphs are shown in Supplementary Information Fig.
S7d.

3.8. Transport of dye to the retina

Drug delivery to the retina using eye drops is an ideal delivery
method since administration of drugs to the retina are often limited to
oral administration, intravenous injection, and local administration
(intravitreal injections/implants and periocular injections). These
methods have associated risks of systemic toxicity and infections
[52,53]. The anterior chamber of the eye is considered to be the main site
at which the pharmacodynamic effects of eye drops take effect in
intraocular tissue [12]. However, in this study, the dye might have
migrated to the retina through the conjunctiva and sclera, and not
through the anterior chamber since the greatest fluorescence intensity
in our measurements of the retina was observed at 5 min after eye drop
administration (0.02%, w/w; Table 3) and the maximum intensity
measured from the anterior chamber was observed after 30 min (0.56 +
0.24 pg/ml; Table 5 and Supplementary Information Fig. S7d). If the dye
passed through the anterior chamber, the maximum fluorescence
intensity in the retina should appear 30 min after the administration of
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Fig. 5. Confocal laser fluorescence microscopy observation of corneal cross-sections at 5, 30, 60, and 120 min after administration of different types of eye drops. The administered
eye drops were FDA nanoparticles (a), FDA microparticles (b), fluorescein nanoparticles (c), and sodium fluorescein (d). The concentration of each eye drops was 0.7 mM (number of

molecules). The scale bar (yellow line) indicates 50 um.

the eye drops. Furthermore, the fact that no significant fluorescent
intensity was observed in the vitreous body eliminates the dye passing
through the anterior chamber to the vitreous body, resulting in the dye
reaching retina (Table 4 and Supplementary Information Fig. S8d). Since
the conjunctiva and sclera are more permeable than the cornea, the
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main route of drug delivery to the retina has recently been considered to
occur through the conjunctiva-sclera route [44,54-57). These findings
correspond to the results obtained for the FDA nanoparticle eye drops in
this study. Furthermore, it has been reported that the drug transition
rate to the retina is usually 0.001%-0.01% of the amount, even using
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Fig. 6. Confocal laser fluorescence microscopy observation of a cornea. Cross-section image of the cornea at 60 min after administration of FDA nanoparticle eye drops (a) and
corresponding fluorescence intensity curve, (b): fluorescence intensity curve vs. depth in cornea (i) and base line (ii). Corresponding superficial layer (c), suprabasal layer (d), and
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inside yellow circles); stroma (h), and endothelium (i). The concentration of FDA nanoparticles in the administered eye drops was 2.2 mg/ml.
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subconjunctival injection [ 38]. Therefore, eye drops using nanoparticles
of hydrolyzable compounds targeting the retina can be assessed as a
promising method for retinal drug delivery (transition rate was 0.01%-
0.02% w/w as shown in Tables 3 and 4).

4. Conclusions

A method for enhancing the ocular penetration rate of eye drops
through administration of nanoparticles of hydrolyzable dye; i.e., FDA,
was described in this study. The FDA nanoparticles were shown to have
high penetration rates. The formulation of the FDA nanoparticles
overcame the problems of the corneal barrier function. Namely, the
formulation of FDA nanoparticles overcame the problem of tight
junctions as well as the physicochemical property of a lipophilic
epithelium and a hydrophilic stroma. Important determinants of their
penetrating ability through these corneal barrier functions were
identified. The particle size and the change in the polarity of the dye
from lipophilic to hydrophilic through corneal hydrolysis were
identified as important, The unique penetration pathway of dyes and/
or nanoparticles through the cornea was identified by confocal laser
fluorescence microscopy. In the future, using nanoparticles of a

Table 5
Dye concentrations in the anterior humor at given times after the administration of FDA
nanoparticle eye drops.

Time after administration of eye drops

5 min 30 min 60 min 120 min

Concentration of dyes in the 0.2140.16 0564024 050+0.23 0.16+0.01
anterior humor (pg/ml)

Concentrations of administered FDA nanoparticle eye drops was 0.38 mg/ml.
Each value represents the mean +s.d. (n=6).

hydrolyzable compound and employing an in vivo hydrolysis reaction
not only can be used to improve drug penetration into ocular tissue, but
may also be applied to other tissues that have specific barrier functions
(e.g., the blood-brain barrier and epidermal barrier). Detailed in-
vestigations of ocular penetration and the effects of particle size and the
polarity of nanoparticles; i.e., a nanoparticle-based unique penetration
pathway and drug distribution, are currently underway in our
laboratory with several kinds of ocular drugs being studied.
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Abstract: In this review article are introduced some current topics concerning drug nanocrystals related to their
physicechemical properties and production technologies with reference to patents. The physicochemical properties of
nanonized drugs (i.e. drug nanocrystals) are individual, unique, and different from those of micronized drugs. As a result,
drug nanocrystals have some superior pharmaceutical properties compared with their micronized equivalents (e.g.
improved solubility and bioavailability). Already some drug nanocrystal products are commercially available. Drug
nanocrystallization is an innovative formulation principle mainly for poorly soluble drugs. The special features of drug

nanocrystals and their production technologies are described.

Keywords: Bottom-up technology, cancer therapy, combination technology, drug nanocrystals, homogenization technique,
laser ablation technique, milling technique, nanomedicine, nanoparticles, nano spray dryer, ophthalmology, photodynamic
therapy, precipitation technique, spray dryer technique, top-down technology.

L. INTRODUCTION

Recently,  the application of nanotechnologies to
nanomedicine has attracted considerable attention [1].
Especially, the expected contribution of nanoparticle
technologies to nanomedicine has been greatly increasing.
Numerous patents and research articles related to
nanoparticles are already available such as tissue-imaging
agents using metal nanoparticles [2-6}, quantum dots for
bioimaging [7-11], and mnanoparticles used for tissue
engineering [12-15] and drug delivery systems [16-25].
Among them, recently drug - nanocrystals have been
extensively researched since such formulations can improve
pharmacentical performance as well as resolve many
intrinsic problems involving pharmaceutical agents [26].
One particularly serious matter with pharmaceuticals is that
many drugs are hydrophobic with little water solubility. For
example, approximately 40% of drugs in development phase
and 70% of those undergoing production or screening are
poorly soluble in aqueous media and even in organic
solvents [27]. Poor drug solubility causes several drug
delivery problems such as low oral bioavailability, erratic
absorption, and impractical intravenous injection since large
solvent volumes are required for hydrophobic drug
administration, which may heighten the risk of side effects
[28,29].

To overcome these disadvantages, enthusiastic efforts
have been taken to increase aqueous solubility of
hydrophobic drugs by means of increasing the surface area
of bulky drug powders; to this end micronized drug particles
with sizes ranging at 1-10 pm have been fabricated.
However, although micronized drug particles have increased
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dissolution velocity in aqueous media, this technique may
not always overcome the bioavailability problems associated
with very poorly soluble drugs [30]. In consequence,
nanonization to even smaller size scales than micronization
has been developed as an alternative approach, ie.
production of drug nanocrystals {31, 32].

It is notable that the speed of introduction of nanocrystals
into the pharmaceutical market has been rapid. In the case of
liposomes, in contrast, a period of about 25 years was
necessary for their appearance in marketable pharmaceutical
products [33]. Less than 10 years divided the filing of the
first patent applications (1990s) [34] to the appearance on
the market of the first nanocrystal drug product, Emend®, in
2000. This short time confirms that nanocrystal drugs are
industrially feasible. Furthermore, accumulated knowledge
and technological achievements in the drug nanoparticles
during last decades may accrete the rapid transition of drug
nanocrystals to the market. Nanocrystal serves as an ideal
delivery system conferring high absorption for oral drugs
and good suitability for intravenous imjection as aqueous
nanosuspensions {35]. Almost all the marketed products of
nanocrystals currently are for oral administration as tablets
and capsules {i.e. dry dosage forms) [28]. The therapeutic
uses of these drugs are immunosuppressive, antiemetic,
hypercholesterolemic, - antianorexic, psychostimulant, and
muscle relaxant. These drug nanocrystals demonstrate the
importance = of  increased  bioavailability - through
nanonization. More drugs having several administration
routes such as oral, intrathecal, pulmonary, intravenous, and
topical are currently under development [28]. The excellent
reviews relating to commercially available products of drug
nanocrystals are introduced by Miiller ef al. {28, 30].

This article will focus on some recent patents and the
latest research related to drug nanocrystals including their
unique physicochemical properties and production
technologies; some future developments of drug nanocrystals
are also described.

© 2011 Bentham Science Publishers
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2. PHYSICOCHEMICAL PROPERTIES OF DRUG
NANOCRYSTALS INCLUDING THEIR NANOTOXI-
CITY ASPECTS

Nanocrystals are basically made for drugs that are poorly
soluble in water or water-soluble drugs as nanocrystals in
oily medium. Especially for the purpose of intravenous
targeting drug delivery, surface modification of drug
nanocrystals are important, thus drug nanocrystals may be
composed of other chemicals to act as drug carrier that have
targeting ability [28]. Drug nanocrystals have particle sizes
in the nanometer range and are a class of nanoparticles with
crystalline characteristics. By definition, pharmaceutical
nanoparticles have sizes ranging from a few nanometers to
Ipm, whereas larger particles with sizes 1-1000um are
microparticles [30]; In general, stabilizers such as surfactants
are necessary to disperse nanocrystals in aqueous media; the
dispersion of drug nanocrystals in liquid media forms so-
called nanosuspensions. Nanocrystals possess 100% drug
loading, in contrast to carrier-based nanoparticles such as
polymers [36], nancemulsions {37, 38], liposomes [39, 40],
and lipid nanoparticles [41] (ie. high drug loading in
nanocrystal  formulation). Regarding physicochemical
properties, nanocrystals have special features of increased
saturation  velocity, dissolution velocity, and drug
adhesiveness to cell membranes, leading to sufficiently high
therapeutic  drug  concentrations for the requisite
pharmacological effect [42]. The physical background of
these effects (e.g. equations by Kelvin, Ostwald-Freundlich)
has been described in detail elsewhere in the literature [43-
45]. Thus nanocrystals have potential to solve many
biopharmaceutical delivery problems of poorly soluble drugs
such as low bioavailability afier oral administration, low
dermal penetration, and large injection volume required for
intravenous administration as well as undesirable side effects
following intravenous injection using solubilizing agents.
Drug nanocrystal formulation can achieve reproducible oral
and dermal absorption, improve bioavailability and dose-
proportionality, and increase patient compliance due to
lowering numbers of oral units to be taken [46].

On the other hand, nanoparticles also imply nanotoxicity.
Research (largely using smali animals) to date on the
potential ili effects of nanoparticles have concentrated on
exposure by inhalation, with damage conferred not only on
the lung but possibly by transfer via the blood stream to
other organs. There is some evidence that single-walled
carbon nanotubes may behave like asbestos fibers and confer
risk of inflammation and formation of lesions known as
granulomas [47, 48]. Overall, considering the effects of
particle size, degradability versus biopersistency and
intracellular uptake, drug nanocrystals are basically
classified low- or non-risk agents, especially in the case of
those administered topically or orally [49]. However, in
contrast, intracellular uptake plays a key role after
intravenous injection of drug nanocrystals [49]. Uptake of
drug nanocrystals by phagocytic mononuclear cells (e.g. in
the liver) can cause cytotoxicity in case of too high
nanocrystal concentrations in the macrophages. The balance
between uptake of drug nanocrystals by mononuclear
phagocytic system cells and target cells is critical for
successful therapy. Very little research has been done on
nanotoxicology of drug nanocrystals, and so far empirical
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approaches have been predominantly undertaken. Further
systemic investigations of nanotoxicity of drug nanocrystals
are necessary.

3. PRODUCTION TECHNOLOGIES OF DRUG
NANOCRYSTALS

To date, two basic approaches for producing drug
nanocrystals have been mainly developed: top-down
technologies (reducing large-sized drug powders to smaller
sizes by e.g. mechanical stress) and bottom-up technologies
{e.g. controlled precipitation to form crystals or amorphous
particles), The types of production techniques are
summarized in Table 1.

Table 1. Production Technologies of Drug Nanecrystals

Ref, No.
Milling [50-55]
Top-down Homogenization [56-60]
Laser ablation [61-67}
Precipitation {68-84]
Bottom-up
Spray dryer [85-91]
Combination Precipitation & Homogenization [92-97]

3.1. Top-Down Technologies
3.1.1. Milling Techniques

Using top-down technologies large crystals in the
micrometer-to-millimeter size range are reduced to nanosize
by grinding (e.g. using a milling process) [50, 53]. Since dry
milling is not efficient to obtain particle sizes in the
nanometer range, wet milling is predominantly applied. In
wet milling process drug particles are dispersed in a
surfactant and/or stabilizer solution as macrosuspensions
then subjected to milling energy to produce a
nanosuspension. A low-energy milling process technology
using the pear] mill (bead mill) was developed as
NanoCrystal™ technology [54, 55]. Using this technology a
suspension is added to a milling container containing milling
pearls, typically sized 0.2 or 0.4-0.6mm. The pearls, moved
by an agitator, grind the orysials to produce a
nanosuspension. Several types of drug nanoccrystals
produced using pearl mill technology are currently on the
market, mostly provided as formulations for oral
administration.

3.1.2. Homegenization Techniques

Crystals can be ground by a high-energy process using
high-pressure homogenization [56]. In. this process crystals
in suspension are rendered into smaller sizes by means of
high-energy fluid streams causing the collision and
cavitation [57, 581. Ezetimibe nanocrystals are an example of
a product obtained by this homogenization technique [59].
The preparation method uses ulirasonic or mechanical high-
speed homogenization. An alternative high-energy method
uses piston-gap homogenizers [60]. In this process the
suspension is passed at high velocity through a small gap.
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Inside the gap, the crystals are milled by force of cavitation,
collision, and shear forces of the lquid. These
homogenization processes are normally carried out with
water suspensions, although homogenization in water-free
media such as oils and liquid polyethylene glycols or water-
reduced media is also possible. Oil dispersions can directly
be filled into gelatin capsules for oral administration, or
injected parenterally as controlled drug delivery depot.

3.1.3. Laser Ablation Technigques

Recently, novel femtosecond (fs) laser techniques for
fabricating drug nanocrystals in aqueous medium have been
developed. The process is implemented after adding a poorly
water-soluble or water-insoluble medicinal ingredient of a
drug into a poor solvent (e.g. water) 1o form a suspension,
followed by laser irradiation (Fig. 1). The controlled power
of ablation and the fragmentation caused by laser irradiation
are key points for fabricating fine size-controlled
nanocrystals. For example, optimal laser fragmentation
conditions ~ generated uniformly size-controlled paclitaxel
nanoparticles (<500nm) with quantifiable degradation [61].
The particle size and the drug concentration are optimally
tuned. Generally, laser treatment at higher powers produces
smaller particles with larger amounts of degradation. Using
the laser ablation technique drug nanocrystals can be
produced in quite small quantities, which may be a useful
advantage for preclinical evaluation of new drug candidates.
The drug nanoparticles have high purity and may exhibit
high bioavailability when used as medicines, agricultural
chemicals, or chemical fertilizers [62].

Ryo et al. [63] disclosed the production of dispersion
solution of organic nanoparticles using laser ablation, where
the suspension was prepared by dispersing hydrophobic
organic compounds in a poor solvent (e.g. water). By this
method, a preparation of the anti-ulcerative colitis drug
salazosulfapyridine nanocrystals has been demonstrated [63].
The type of medicinal ingredient may also include anticancer
drugs (ellipticine, camptothecin), vitamins, analgesics, and
anti-inflammatory drugs. Suitable laser irradiation devices
include solid state laser such as YAG laser, titanium-
sapphire laser; and ruby laser; gas laser such as excimer
laser, argon (Ar) ion laser, and CO; laser; liquid laser such as
a dye laser; and semiconductor laser such as a gallium
arsenide (GaAs) laser. The appropriate amount of medicinal
ingredient obtained in one batch may be 10-1000ug per Iml
of water. Scanning eleciron microscopy confirmed that
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Fig. (1). Scheme of laser ablation technique,
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ellipticine nanoparticles with a mean vparticle size
approximately 100nm were obtained [64]. The anticancer
drug campiothecin was also formulated by a similar process
{65]. The flow device related to laser ablation equipment has
been disclosed for the purpose of mass production [66]. In an
informative review, Barcikowski er al. [67] evaluated the
impact and structare of the field of laser ablation techniques
and mapped global spots of their activities during 1998-2008
[67].

3.2. Bottom-Up Technologies
3.2.1. Precipitation Technigues

In bottom-up technologies, a precipitation process is the
major approach used [68-73]. The basic principle is that first
the drug is dissolved in a solvent then the solution is added
to an insoluble medium (e.g. water) resulting in drug
precipitation. The important points. in: this process are to
control the structure of the particles (amorphous or
crystalline} and to avoid orystal growth reaching the
micrometer size range. The industrially relevant technologies
of various precipitation processes are patented by BASF
Corporation. For example, the patents describe the
production of carotenoid preparations in the form of cold-
water dispersible powders [74, 75] and precipitated water-
insoluble colorants in' colloid-dispersed form [76] and are
exploited in products for food and soft drink industry. The
precipitation process can be carried out so that amorphous
nanoparticles result. Another process leading to crystalline
nanoparticles was developed by Novartis to produce so-
called hydrosols [77]. A novel advanced precipitation
technique for preparing nanoparticles as medicines,
cosmetics, and foods wuses supercritical fluid [78].
Alternately, there are various other bottom-up technologies
such” as the sonocrystallization, high-gravity controfled-
precipitation techuology, multi-inlet vortex mixing, and
confined impinging Hquid jet precipitation; a detailed review
of these techniques is provided by Miiller ef al. [49].

Recently, Prasad’s group [79, 80] demonstrated a novel
type of photodynamic cancer therapy using a pure
nanocrystal form of drugs produced by the precipitation
technique [79,80]. Water-insoluble sensitizing drugs were
successfully nanocrystallized by the precipitation procedure.
The obtained drug nanocrystals had fine and stable water
dispersion even with surfactant— and organic solvent-free
conditions. Although this was a candidate carrier-free novel
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drug delivery method using pure nanocrystalline form of
hydrophobic drugs for photodynamic cancer therapy, the
nanocrystals thus obtained showed fluorescence quenching
caused by drug crystallization in aqueous dispersion
medium. Therefore, this nonphotoactive property of drug
nanocrystals seemed unsuitable for photodynamic cancer
therapy. However, there was an interesting finding in that
these water-insoluble drug nanocrystals showed good
solubility in a serum contained aqueous medium. As a result,
a dye molecule, which was generated from drug nanocrystals
dissolved in vitro and in vivo, successfuily recovered its
photosensitizing activity. Laser-irradiated dyes owe their
activity to the generation of singlet oxygen species that cause
irreversible damage to tumors. This drug nanocrystal
dissolution was not observable in pure water; thus
lipoprotein or some hydrophobic components in serum may
allow the dissolution mechanism possibly by hydrophobic-
hydrophobic interactions between serum components and
nanocrystals. This unique feature of organic nanocrystals
was also adapted to cultured living cell bioimaging in vifro
using fluorescent organic nanocrystals [81, 821
Additionally, as our current research interest, nanoparticle
eye drops having high ocular penetration that enable
fluorescence imaging of the ocular globe by confocal laser
fluorescence microscopy were  successfully prepared by
precipitation techniques [83, 84].

3.2.2. Spray-Drying Techniques

Spray-drying techniques can be classified as a bottom-up
technology [85]. In this process drugs dissolved in
water/organic solvents are electrosprayed as a very fine mist
and thereby form mnanoparticles by evaporation of the
water/organic solvent. The average size of particles obtained
by conventional spray dryer is from a few micrometers to
hundreds of micrometers. There are several variations, e.g.
protein-coated bioactive nanoparticle suspension using
electro-spraying apparatus [86]. Generally, however,
production of nanoparticles <Ipm in size is difficult using a
conventional spray dryer.

Recently, Biichi Corporation (Flawil, Switzerland)
invented a novel spray dryer, the Nano Spray Dryer B-90
(Fig. 2), launched in 2010 [87]. The key point of this
equipment is the use of piezoelectric effect in vibrating mesh
spray technology for fabricating small-sized droplets. The
size of nanocrystals thus obtained is usually in the rage 300-
1000 nm. Using the Nano Spray Dryer B-90 a model
microparticle vehicle suitable for respiratory delivery of
biological pharmaceutical actives was designed. To enhance
its aerosol dispersibility, L-leucine was chosen as one of the
excipients; trehalose was the second excipient [88]. The
preparation of protein nanoparticles was demonstrated [89].
B-Galactosidase was chosen as model protein and trehalose
added as stabilizer. The selected condition of running
process significantly influenced activity of the obtained
enzyme and also increased its stability in storage.
Alternatively, a simpler approach for the production of
protein nanoparticles for a variety of drug delivery
applications was introduced [90]. Five representative
polymeric wall materials (gum arabic, whey protein,
polyvinyl alcohol, modified starch, and maltodextrin) for the
encapsulated nano-emulsions as well as formulating
nanocrystals {(e.g. from furosemide) were investigated [91].
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Recently, our interest has focused on preparation of drug
nanoparticle eye drops using nanospray dryer equipment. A
steroid compound, dexamethasone, was selected as model
compound, and fine nanoparticles were successfully
prepared (Fig. 3). Based on this encouraging result, several
kinds of ophthalmic drugs are now under investigation as
candidates for drug nanoparticle eye drops. Such eye drops
prepared by nanospray dryer are expected to increase the
drug’s ocular penefration and efficacy. As such, nanoparticle
eye drops maybe useful against several kinds of eye diseases
including refractory lesions such as Fuchs cormeal
endothelial dystrophy.
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Fig. {2). Scheme of nanospray dryer system.,

Fig. (3). Dexamethasone nanoparticles prepared by Nano Spray
Dryer B-90 (Btichi Corporation, Flawil, Switzerland). Dexamethasone
dissolved in ethanol (50 mg/30 ml) was spray-dried at 50°C for 2 h
running time. The spray nozzle size was 4.0pm.
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3.3. Combination Technologies

Drug nanocrystal-producing combination = technologies
employ a blend of bottom-up and top-down methodologies.
For example, crystals precipitated in suspension may be
subjected to a high-energy process, typically high-pressure
homogenization  [92,93], followed by counter-flow
precipitation process whereby the solvent and non-solvent
are mixed in two counter flows resulting in crystal
precipitation [94]. One of the advantages of this combination
technique is that can produce very small nanocrystals <100
nm in size. Such small nanocrystals are difficult to obtain by
means of conventional top-down technologies using pearl
milling or simple high-pressure homogenization, especially
in large-scale industrial production.

Preparations  for topical application confaining
nanocrystals of cosmetically active ingredients have been
disclosed [95]. The purpose of this invention is to attain
increased bioactivity of molecules in the skin and thereby
enhance cosmetic preparations. The nanocrystals can be
added to any cosmetic topical formulation such as lotions,
creams, and  liposomal dispersions. These cosmetic drug
nanocrystals are produced by a combination process of low-
energy pearl milling followed by high-energy, high-pressure
homogenization leading fo nanocrystal suspensions with
excellent physical stability. Another combination process
employs cavitation, instead of precipitation, followed by
high-pressure homogenization [96]. Combination techniques
of supercritical fluid ‘and spraying are disclosed for the
production of fine particles without using carrier particles
and binder as foreign substance [97].

4. CURRENT AND FUTURE DEVELOPMENTS

We introduced current topics of patents and recent
research related to drug nanocrystals with their
physicochemical properties and production technologies.
Since drug nanocrystals have some superior characteristics
based on their peculiar physiochemical properties compared
with conventional micronized drugs, several pharmaceutical
benefits are expected {e.g. less solubility problems, improved
bioavailability, increased patient compliance due to
lower/less frequent dosing). Already, several kinds of drug
nanocrystals are commercially available, and a number of
new drug nanocrystals are under development. The
nanocrystal formulation of drugs is a kind of universal
approach for drug molecules. Additionally, surface
modification of drug nanocrystals will extend the drug
bicavailability by means of achieving prolonged release and
targeted drug delivery. The production technologies will be
increasingly more sophisticated along with the development
of current technology (i.e. achievement of mass production
with low cost, which will be accelerated by new patents),
and the market for drug nanocrystals will be thus extended to
include not only drugs but also cosmetics and nutritional
products. There is much room for further research in these
areas. For instance, nanotoxicological studies of drug
nanocrystals should be extensively carried out. Such
investigations are essential for the better understanding of
drug nanocrystals ou the cellular level and can also open new
avenues for nanocrystal applications. Increased knowledge
the intracellular fate of nanocrystals could lead to many new
treatment approaches.
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