

RESEARCH ARTICLE

Open Access

Epidemiologic study of clinically amyopathic dermatomyositis and anti-melanoma differentiation-associated gene 5 antibodies in central Japan

Yoshinao Muro^{1*}, Kazumitsu Sugiura¹, Kei Hoshino^{1,2}, Masashi Akiyama¹ and Koji Tamakoshi³

Abstract

Introduction: Several reports have found the onset or activity of inflammatory myopathies to show spatial clustering and seasonal association. We recently detected autoantibodies against melanoma differentiation-associated gene 5 (MDA-5) in more than 20% of patients with dermatomyositis. Anti-MDA-5 antibodies were associated with the presence of rapidly progressive interstitial lung disease in clinically amyopathic dermatomyositis (CADM). The present study aims to assess the growing prevalence of CADM and the geographical incidence of anti-MDA-5-positive patients.

Methods: We reviewed medical charts and examined the presence of anti-MDA-5 antibodies in 95 patients, including 36 CADM patients. Sera were obtained from 1994 through 2011. Statistical analyses were performed to assess whether CADM development and the presence of anti-MDA-5 antibodies were associated with various parameters, including age at disease onset, season of onset, annual positivity, and population of resident city.

Results: Tertiles based on the year when the sera were collected showed increasing tendencies of CADM and anti-MDA-5-positive patients among all of the dermatomyositis patients. From 1994 to 2010, the relative prevalence of CADM and anti-MDA-5 antibody-positive patients significantly increased. Interestingly, the presence of anti-MDA-5 antibodies in 26 patients was inversely associated with the population of their city of residence.

Conclusions: This is the first study to examine the distribution of anti-MDA-5-positive dermatomyositis phenotypes in Japan. Regional differences in the incidences of these phenotypes would suggest that environmental factors contribute to the production of antibodies against MDA-5, which triggers innate antiviral responses.

Introduction

Idiopathic inflammatory myopathies are a heterogeneous group of autoimmune disorders that target the skeletal muscle and skin. Disease-related death is generally associated with malignancy and interstitial lung disease. The most frequent forms, polymyositis and dermatomyositis (DM), are thought to result from environmental exposure that leads to immune activation in genetically susceptible individuals. Several reports have found the

onset or activity of inflammatory myopathies to show spatial clustering and seasonal association [1-5].

A subgroup of DM patients who have typical skin manifestations of DM but little evidence of myositis has been recognized as clinically amyopathic dermatomyositis (CADM) [6]. Although it is still undetermined whether CADM is a distinct clinical entity or just an early phase of classic DM, rapidly progressive interstitial lung disease (ILD) can occur in CADM patients, especially in East Asia [7]. This patient subset with CADM and rapidly progressive ILD has been shown to have specific autoantibodies, originally called anti-CADM-140 antibodies [8]. The target autoantigen is melanoma differentiation-associated gene 5 (MDA-5) [9-11], which

Full list of author information is available at the end of the article

© 2012 Muro et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: ymuro@med.nagoya-u.ac.jp

¹Division of Connective Tissue Disease and Autoimmunity, Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan

plays important roles in the innate immune system during RNA virus infections [12].

To better understand this subset of patients, it is important to examine the epidemiologic characteristics of CADM patients with anti-MDA-5 antibodies, whose outcome is often fatal. According to our clinical experiences, we have recently noticed that the prevalence of CADM patients with anti-MDA-5 antibodies seems to be growing, particularly in rural areas. We therefore examined the epidemiologic features of CADM and anti-MDA-5 antibodies in a single cohort of DM patients.

Materials and methods

Patients

We reviewed medical charts and examined the presence of anti-MDA-5 antibodies in 95 Japanese patients (one of them a half-Japanese, half-Filipino boy) with DM, including 36 patients with CADM, 15 patients with cancer-associated DM and 44 patients with classical DM, who were seen by or consulted the Department of Dermatology at Nagoya University Graduate School of Medicine from 1994 to 2011. These patients were diagnosed with DM or CADM based on the criteria of Bohan et al. [13] or Sontheimer [6], respectively. In general, CADM presents as typical skin lesions and amyopathy or hypomyopathy that lasts for more than 6 months. The CADM group included patients who developed fatal ILD within the first 6 months after disease onset. Since juvenile DM with rapidly progressive ILD and/or anti-MDA-5 antibodies has been reported in Japan [7,11,14], patients who manifested the disease at < 18 years of age were also included. Patients who were originally seen at other hospitals far outside our area and who then transferred to our hospital were excluded from the present study. Serum samples were obtained from all of the patients between 1 October 1994, the date when we began to build a serum bank of autoimmune rheumatic disease patients, and 30 June 2011. The population data on city of residence in 2010 were obtained from web data published by public offices in 25 cities, eight counties and one village.

The present study was approved by the Ethics Committee of Nagoya University Graduate School of Medicine. This study meets and is in compliance with all ethical standards in medicine. Informed consent including that for publication of the study was obtained from all patients according to the Declaration of Helsinki.

Immunoprecipitation

Anti-MDA-5 antibodies were screened by an immunoprecipitation assay using biotinylated recombinant MDA-5 produced from full-length MDA-5 cDNA using the TnT® T7 Quick Coupled Transcription/Translation System (Promega, Madison, WI, USA) and the Transcend[™] Colorimetric Non-Radioactive Translation Detection System (Promega), according to our published protocol [11]. This method was confirmed to produce consistent results based on a standard immunoprecipitation assay using ³⁵S-methionine-labeled cell extracts [11]. Serum samples from 82 patients were already characterized in our previous report [11]. All serum samples were stored at -70°C until the experiments.

Statistical analysis

The subjects were divided into tertiles based on year the sera were collected, age at collection, age at onset, or population of the city of residence, separately, to examine the associations between each of these factors and the development of CADM and the presence of anti-MDA-5 antibodies. The differences and linear trends across the tertiles were assessed using the chi-square test and the Cochran-Armitage trend test, respectively. SPSS version 17.0 for Windows (SPSS Japan Inc., Tokyo, Japan) was used to perform the statistical analysis. P < 0.05 was considered significant.

Results

Patient population

Between 1 October 1994 and 30 June 2011, sera from 95 patients with DM were collected. During 1994 sera were drawn from 24 patients, two-thirds of whom had been diagnosed with DM and treated by our department. The mean age at onset was 46.9 years (range: 1 to 80 years) and that at the time of sera collection was 50.2 years (range: 3 to 84 years). There were 67 (70.5%) female patients. Ten patients developed the disease under 18 years of age.

A review of the medical records indicated that 36 patients (28/36, 77.8% female; 5/36, 13.9% juvenile) had CADM. For these 36 patients, the mean age at onset was 44.9 years (range: 1 to 73 years) and that at the time of sera collection was 48.2 years (range: 3 to 84 years). Based on the immunoprecipitation assays, 26 patients (21/26, 80.8% female; 1/26, 3.8% juvenile) had anti-MDA-5 antibodies. For these 26 patients, the mean age at onset was 46.8 years (range: 11 to 66 years) and that at the time of sera collection was 48.2 years (range: 11 to 71 years). Twenty-five patients with anti-MDA-5 antibodies were diagnosed as CADM, and the remaining patient met the criteria for classical DM. All but one of our patients with anti-MDA-5 antibodies had ILD.

To grasp the overall trend, tertile analysis was conducted based on the number of cases for all patients with DM as well as for patients with CADM and those with anti-MDA-5 antibodies (Table 1). The mean ages at onset and at the time of sera collection did not significantly differ among the tertiles (data not shown), but

Table 1 Patient characteristics based on the presence of CADM or anti-MDA-5 antibodies

	Total number of DM patients (M:F)	Mean age at onset (range)	CADM			α-MDA-5-positive		
Years of sera collection			Number (%) of patients (M:F)	P value*	Mean age at onset (range)	Number (%) of patients (M:F)	P value**	Mean age at onset (range)
T1 (1994 to 1995)	32 (12:20)	47.5 (4 to 80)	6 (18.8%) (2:4)	P for difference = 0.012	45.5 (4 to 73)	2 (6.3%) (1:1%)	P for difference = 0.003	53 (43 to 63)
T2 (1996 to 2003)	30 (6:24)	50.1 (15 to 79)	12 (40.0%) (1:11)	P for trend = 0.003	50.7 (20 to 73)	10 (33.3%) (0:10)	<i>P</i> for trend = 0.001	48.9 (20 to 66)
T3 (2004 to 2011)	33 (10:23)	43.6 (1 to 73)	18 (54.5%) (5:13)		40.8 (1 to 69)	14 (42.4%) (4:10)		44.4 (11 to 58)

CADM, clinically amyopathic dermatomyositis; DM, dermatomyositis; M:F, male:female; MDA-5, melanoma differentiation-associated gene 5. *Prevalence of CADM in total DM. **Prevalence of anti-MDA-5 in total DM.

the proportions of CADM and anti-MDA-5-positive patients significantly increased from the first to the third periods of the study.

Annual prevalence of CADM and anti-MDA-5 antibodies

Since many of the patients whose sera were drawn in 1994 had been treated at our hospital, the above tertile analysis was partially biased. Before the sampling in 1994 there may have been some fatal cases of rapidly progressive ILD. Moreover, some CADM patients stopped seeing their doctors due to minor illness. In light of these possibilities, we analyzed only the 72 patients who manifested the disease after 1994, in order to investigate the growing trend of CADM and anti-MDA-5-positive patients (Figure 1). The relative

prevalence of both CADM and anti-MDA-5-positive patients among all DM patients was found to have significantly increased (P = 0.029 and P = 0.044, respectively).

Geographical incidence of dermatomyositis patients with anti-MDA-5 antibodies

Our university hospital is in Nagoya (population 2.2 million), the biggest city in central Japan. To clarify the regional differences in a subgroup of patients, we compared the prevalence of CADM and anti-MDA-5-positive patients by tertiles based on the population of the patient's city of residence (Table 2), and we plotted the anti-MDA-5-positive patients on a map (Figure 2). Interestingly, CADM patients were less prevalent in

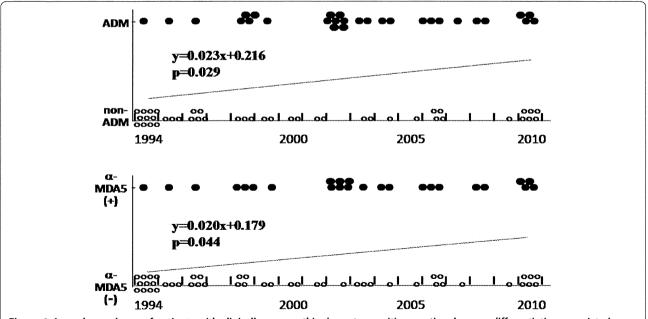
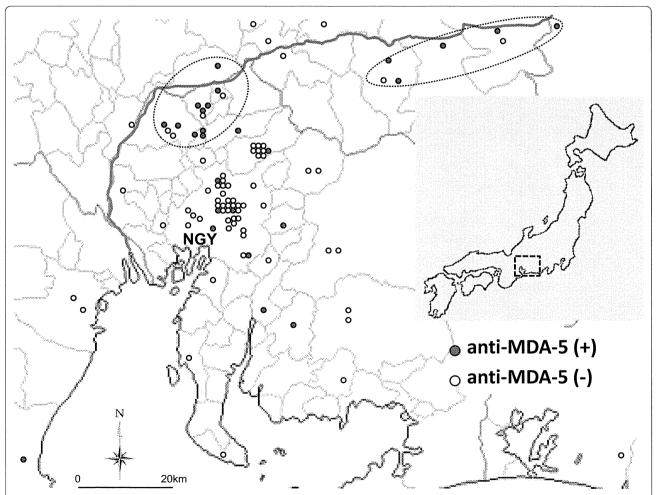


Figure 1 Annual prevalence of patients with clinically amyopathic dermatomyositis or anti-melanoma differentiation-associated gene 5 antibodies. The regression equation is shown, in which the year of disease onset is defined as 1994 = 1, 1995 = 2,..., 2010 = 17 on the x axis and the presence or absence of clinically amyopathic dermatomyositis (CADM) or anti-melanoma differentiation-associated gene 5 (anti-MDA-5) antibodies is defined as 1 and 0, respectively, on the y axis (P for linear trend).


Table 2 Population of the area of residence and the presence of CADM or anti-MDA-5 antibodies

	Total number of DM patients (M:F)	Mean age at onset (range)	CADM			α-MDA-5-positive		
Population of area of residence (×1,000)			Number (%) of patients (M:F)	P value*	Mean age at onset (range)	Number (%) of patients (M:F)	P value**	Mean age at onset (range)
T1 (0.5 to 108)	31 (4:27)	49.0 (4 to 70)	16 (51.6%) (1:15)	P for difference = 0.096	47.3 (4 to 69)	14 (45.2%) (1:13)	P for difference = 0.012	48.8 (20 to 66)
T2 (130 to 826)	26 (7:19)	44.0 (9 to 80)	10 (38.5%) (3:7)	P for trend = 0.031	40.0 (9 to 59)	7 (26.9%) (3:4)	P for trend = 0.003	39.9 (11 to 59)
T3 (2,200)	38 (17:21)	47.3 (1 to 79)	10 (26.3%) (4:6)		45.9 (1 to 73)	5 (13.2%) (1:4)		51.0 (39 to 63)

CADM, clinically amyopathic dermatomyositis; DM, dermatomyositis; M:F, male:female; MDA-5, melanoma differentiation-associated gene 5. *Prevalence of CADM in total DM. **Prevalence of anti-MDA-5 in total DM.

urban areas, but this association was only marginally significant, whereas there were significantly more anti-MDA-5-positive patients in rural areas than in urban ones. Areas northeast and far northwest of Nagoya contained particularly high numbers of patients with anti-

MDA-5 antibodies: 10 patients in the northeast, and five patients in the northwest (Figure 2, circular dotted area). These areas had nine and six CADM patients in the northwest and northeast, respectively. All 15 patients with anti-MDA-5 antibodies were natives of the

Figure 2 Geographic distribution of patients with dermatomyositis. A residential area of 95 patients was plotted. NGY, Nagoya city. Red and white circles show patients with and without anti-melanoma differentiation-associated gene 5 (anti-MDA-5) antibodies, respectively. Blue line shows the Kiso River, which is the biggest in the area.

area; five and four of these 15 patients had manifested the disease in 2002 and 2010, respectively. Notably, five of the six patients with anti-MDA-5 antibodies whose disease began in 2002 and all four of the patients with anti-MDA-5 antibodies whose disease began in 2010 were from these two areas (Figure 1).

Seasonal onset

The information on seasonality of disease onset was available for 78 patients, including 33 CADM and 25 anti-MDA-5-positive patients. There were no significant seasonal patterns of disease onset in the overall patient group or in the subgroups of male, female, CADM or anti-MDA-5-positive patients (data not shown). However, the incidence of anti-MDA-5 antibodies in areas with populations under 108×10^3 , but not in areas with populations over 130×10^3 , was the highest in autumn (onset in autumn in areas with populations under 108×10^3 vs. onset in autumn in areas with populations over $130 \times 10^3 = 8/14$ vs. 1/11, P = 0.033).

Discussion

A Japanese multicenter study confirmed recently that patients with anti-MDA-5 antibodies frequently have CADM with rapidly progressive ILD and a poor prognosis [15]. With increasing awareness of the CADM disease subtype, which was proposed by Sontheimer in the 1990s, we felt not only that the prevalence of CADM is increasing but also that more CADM patients with anti-MDA-5 antibodies have recently been coming from rural areas than from urban ones. To examine these matters statistically, we investigated the prevalence of CADM and anti-MDA-5 antibodies among all of the DM patients.

Because the present study was neither population based nor community based, it is difficult to say that the incidence of CADM is increasing. However, the frequency of anti-MDA-5 antibodies among all DM patients is increasing. Although this autoantibody was only recently characterized [8,9], our initial study found that the serum collected from one patient in 1994 was anti-MDA-5 antibody-positive. Contrary to the increasing prevalence of anti-MDA-5 antibodies, other types of autoantibodies appear to be decreasing. We also characterized the prevalence of anti-transcriptional intermediary factor-1y antibodies among all patients examined in this study. These antibodies, however, which were detected in 12 patients, showed no significant epidemiological characteristics under the same analysis (data not shown). In our previous study using traditional immunoprecipitation experiments, we did not detect significant decreases in the prevalence of any specific autoantibodies [11]. There is little possibility that the long storage of the sera caused the autoantibodies to become less active, however, because various kinds of DM/polymyositis-specific autoantibodies were found in many of the sera that were drawn in 1994 and 1995 (two patients with anti-transcriptional intermediary factor 1γ , two patients with anti-MJ, two patients with anti-PL-7, one patient with anti-Jo-1, one patient with anti-EJ and one patient with anti-KS; our unpublished observations), along with the anti-MDA-5 antibodies found in the two other patients during this period.

MDA-5 detects some viruses, including picornaviruses, and is involved in the host defense response to infection. Antibodies to coxsackievirus B, a picornavirus, were previously reported to be prevalent in patients with juvenile DM [16]. Although we could not find an epidemiologic study on the environmental levels of picornavirus in our district, the seasonal distribution of viruses in the river water in Nara Prefecture, which is also in central Japan, has been examined [17]. The coxsackievirus B levels peaked there in the summer, and the virus continued to be detected in the autumn and winter. Interestingly, there was a marked increase in the prevalence of anti-MDA-5 antibodies in our study in areas northeast and northwest of Nagoya (Figure 2). These regions are on the Kiso River, which is the biggest river in our area (blue line in Figure 2). In these areas, there was also an accumulation of CADM. It is unlikely that sun exposure strongly contributed to the pathogenesis, because the 15 patients with CADM included only one outdoor worker.

The present study has several limitations because of the small number of study subjects. The time lag between the initial presentation of disease and the clinical assessment should be considered. The interval between disease onset and the time of sera collection in this study was not significantly different, however, between patients with and without CADM, between patients with and without anti-MDA-5 antibodies, or among the tertiles depicted in Table 1 (data not shown), suggesting that the patient follow-up periods did not differ by disease subtype. Since people in rural areas generally have reduced access to specialists, patients with severe illness, such as anti-MDA-5-positive patients, might be more prevalent in rural areas than in urban areas. Moreover, medical practices at a university hospital have an inherent referral bias.

Many reports have suggested that environmental factors play a role in the development of DM and the production of myositis-related autoantibodies (reviewed in [18]). No single factor, however, can explain that development and that production, and the possible growing prevalence of CADM and anti-MDA-5-positive patients. It seems difficult to identify environmental factors that possibly increase the annual prevalence of CADM and anti-MDA-5-positive patients, because patients could have several environmental exposures that have possible interrelationships with genetic risk factors. Various environmental

exposures require confirmation in case-controlled studies to determine which are associated with disease onset and whether these play any role in etiology.

To our knowledge, this is the first epidemiologic study on anti-MDA-5 antibodies. Although it is difficult to draw strong conclusion from a single cohort study, epidemiologic studies play an important role in disease assessment. These studies determine the extent of disease and the natural history within a community, identify potential etiologic factors and enhance our understanding of disease pathogenesis.

Conclusions

Clinically amyopathic dermatomyositis might be growing in prevalence with the increase of anti-MDA-5 antibodypositive patients in central Japan. Regional differences in the incidences of the anti-MDA-5 antibody would suggest that environmental factors contribute to the production of autoantibodies against MDA-5. It will be important to conduct larger population-based studies through multicenter collaboration using DM-specific autoantibodies to define patient groups and clarify the disease etiology associated with environmental factors.

Abbreviations

CADM: clinically amyopathic dermatomyositis; DM: dermatomyositis; ILD: interstitial lung disease; MDA-5: melanoma differentiation-associated gene 5.

Acknowledgements

The present work was supported by a grant from the Ministry of Health, Labour and Welfare of Japan and from the 24th General Assembly of the Japanese Association of Medical Sciences.

Author details

¹Division of Connective Tissue Disease and Autoimmunity, Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan. ²Department of Dermatology, Nagoya Ekisaikai Hospital, 4-66 Shonen-cho, Nakagawa-ku, Nagoya 454-8502, Japan. ³Department of Nursing, Nagoya University School of Health Sciences, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan.

Authors' contributions

YM, KS and KH organized the patient registry. YM and KH performed laboratory assays. KT participated in the design of the study and performed the statistical analysis. YM conceived of the study design and wrote the manuscript with input and consensus from all authors. KS and MA participated in the coordination of the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 23 August 2011 Revised: 21 November 2011 Accepted: 22 December 2011 Published: 22 December 2011

References

- Leff RL, Burgess SH, Miller FW, Love LA, Targoff IN, Dalakas MC, Joffe MM, Plotz PH: Distinct seasonal patterns in the onset of adult idiopathic inflammatory myopathy in patients with anti-Jo-1 and anti-signal recognition particle autoantibodies. Arthritis Rheum 1991, 34:1391-1396.
- Sarkar K, Weinberg CR, Oddis CV, Medsger TA Jr, Plotz PH, Reveille JD, Arnett FC, Targoff IN, Genth E, Love LA, Miller FW: Seasonal influence on

- the onset of idiopathic inflammatory myopathies in serologically defined groups. *Arthritis Rheum* 2005, **52**:2433-2438.
- Phillips BA, Zilko PJ, Garlepp MJ, Mastaglia FL: Seasonal occurrence of relapses in inflammatory myopathies: a preliminary study. J Neurol 2002, 249:441-444
- Okada S, Weatherhead E, Targoff IN, Wesley R, Miller FW, International Myositis Collaborative Study Group: Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum 2003, 48:2285-2293.
- Love LA, Weinberg CR, McConnaughey DR, Oddis CV, Medsger TA Jr, Reveille JD, Arnett FC, Targoff IN, Miller FW: Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum 2009, 60:2499-2504.
- Sontheimer RD: Would a new name hasten the acceptance of amyopathic dermatomyositis (dermatomyositis siné myositis) as a distinctive subset within the idiopathic inflammatory dermatomyopathies spectrum of clinical illness? J Am Acad Dermatol 2002, 46:626-636.
- Sato S, Kuwana M: Clinically amyopathic dermatomyositis. Curr Opin Rheumatol 2010, 22:639-643.
- Sato S, Hirakata M, Kuwana M, Suwa A, Inada S, Mimori T, Nishikawa T, Oddis CV, Ikeda Y: Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum 2005, 52:1571-1576.
- Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y, Fujita T, Kuwana M: RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum 2009, 60:2193-2200.
- Nakashima R, Imura Y, Kobayashi S, Yukawa N, Yoshifuji H, Nojima T, Kawabata D, Ohmura K, Usui T, Fujii T, Okawa K, Mimori T: The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 2010, 49:433-440.
- Hoshino K, Muro Y, Sugiura K, Tomita Y, Nakashima R, Mimori T: Anti-MDA5 and anti-TIF1-γ antibodies have clinical significance for patients with dermatomyositis. Rheumatology (Oxford) 2010, 49:1726-1733.
- Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441:101-105
- Bohan A, Peter JB, Bowman RL, Pearson CM: A computer-assisted analysis of 153 patients with polymyositis and dermatomyositis. *Medicine* (*Baltimore*) 1977, 56:255-286.
- Kobayashi I, Okura Y, Yamada M, Kawamura N, Kuwana M, Ariga T: Antimelanoma differentiation-associated gene 5 antibody is a diagnostic and predictive marker for interstitial lung diseases associated with juvenile dermatomyositis. J Pediatr 2011, 158:675-677.
- 15. Hamaguchi Y, Kuwana M, Hoshino K, Hasegawa M, Kaji K, Matsushita T, Komura K, Nakamura M, Kodera M, Suga N, Higashi A, Ogusu K, Tsutsui K, Furusaki A, Tanabe H, Sasaoka S, Muro Y, Yoshikawa M, Ishiguro N, Ayano M, Muroi E, Fujikawa K, Umeda Y, Kawase M, Mabuchi E, Asano Y, Sodemoto K, Seishima M, Yamada H, Sato S, Takehara K, Fujimoto M: Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis: a multicenter cross-sectional study. Arch Dermatol 2011, 147:391-398.
- Christensen ML, Pachman LM, Schneiderman R, Patel DC, Friedman JM: Prevalence of Coxsackie B virus antibodies in patients with juvenile dermatomyositis. Arthritis Rheum 1986, 29:1365-1370.
- Tani N, Dohi Y, Kurumatani N, Yonemasu K: Seasonal distribution of adenoviruses, enteroviruses and reoviruses in urban river water. Microbiol Immunol 1995, 39:577-580.
- Prieto S, Grau JM: The geoepidemiology of autoimmune muscle disease. Autoimmun Rev 2010, 9:A330-A334.

doi:10.1186/ar3547

Cite this article as: Muro *et al.*: Epidemiologic study of clinically amyopathic dermatomyositis and anti-melanoma differentiation-associated gene 5 antibodies in central Japan. *Arthritis Research & Therapy* 2011 13:R214.

Malignant skin tumours in patients with inherited ichthyosis

K. Natsuga, M. Akiyama* and H. Shimizu

Department of Dermatology, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo 060-8638, Japan *Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan

Summary

Correspondence

Ken Natsuga.

E-mail: natsuga@med.hokudai.ac.jp

Accepted for publication

8 April 2011

Funding sources

Grants were received from the Ministry of Health, Labour and Welfare of Japan (Health and Labour Sciences Research Grants, Research on Intractable Disease: H22-Nanchi-Ippan-177 to M.A.; and Research on Allergic Disease and Immunology: H21-Meneki-Ippan-003 to H.S.).

Conflicts of interest

None declared.

DOI 10.1111/j.1365-2133.2011.10381.x

Inherited ichthyoses are rare genodermatoses caused by mutations in the genes involved in epidermal development. Although there have been case reports on patients with ichthyosis who developed skin malignancies, it is still unknown whether or not patients with ichthyosis have an increased risk of skin malignancies. Here, we review case series of skin malignancies in patients with ichthyosis and show biological findings which might lead to cancer susceptibility. A survey of the literature revealed 28 cases of inherited ichthyoses with skin malignancy, including 12 cases of keratitis—ichthyosis—deafness (KID) syndrome, seven of autosomal recessive congenital ichthyosis, three of Netherton syndrome and six of miscellaneous ichthyosis. Twenty-four of the 28 cases developed single or multiple squamous cell carcinomas (SCCs). The age at diagnosis of the first skin malignancy ranged from 15 to 54 years. As patients with these particular subtypes of ichthyosis seem to be prone to skin malignancies, including SCC, at an unusually young age, routine cancer surveillance of these patients is strongly recommended.

Skin cancer poses a serious problem in patients with inherited disorders, such as Gorlin syndrome, Cowden syndrome, xero-derma pigmentosum and epidermolysis bullosa. The prognosis for these patients is greatly influenced by skin malignancies, which develop at an unusually early age.

Ichthyoses are disorders characterized by skin dryness. Congenital ichthyoses are caused by mutations in the genes organizing keratinocyte differentiation and skin barrier function, although some of the causative genes are still undetermined. There have been sporadic case reports of skin malignancies in patients with congenital ichthyosis. However, the epidemiology among these patients remains unknown because of the limited number of cases.

This review article summarizes skin malignancies in congenital ichthyoses described in the English language literature and discusses the biological background underlying skin barrier defects and carcinogenesis.

Skin malitgnancies in each ichthyosis subtype

Twenty-eight cases of skin malignancy in congenital ichthyoses were found in the literature: 12 cases of keratitis—ichthyosis—deafness (KID) syndrome, seven of autosomal recessive congenital ichthyosis (ARCI), three of Netherton syndrome (NS) and six of miscellaneous ichthyosis. The first malignan-

cies were diagnosed at the ages of 15–54 years. Reported skin malignancies include squamous cell carcinoma (SCC), basal cell carcinoma (BCC), malignant proliferating trichilemmal tumour (MPTT), malignant melanoma (MM), malignant fibrous histiocytoma and cutaneous lymphoma, although single or multiple SCC was the malignancy in most of the cases (24 out of 28). Table 1 summarizes the skin malignancies in patients with ichthyosis described in the literature.

Keratitis-ichthyosis-deafness syndrome

Keratitis-ichthyosis-deafness syndrome (KID) syndrome is an autosomal dominant disease characterized by congenital erythrokeratoderma as well as sensorineural deafness and eye involvement. Heterozygous mutations in GJB2, which encodes connexin 26 (Cx26), are responsible for the disease. Mutations in GJB6, the gene encoding connexin 30 (Cx30), are causal in some cases which overlap with Clouston syndrome. ^{6,7}

There are 12 reports of patients with sporadic KID syndrome in the literature who developed skin malignancies, including SCC and MPTT (Table 1).^{5,8–15} The age of onset for SCC in KID syndrome is 15–43 years, which is earlier than that for SCC in the normal population (around the age of 70 years).^{16,17} p.Asp50Asn in Cx26, the most prevalent muta-

© 2011 The Authors

Table 1 Skin malignancies in patients with ichthyosis

Ichthyosis subtype	Age at the diagnosis of first skin malignancy (years)	Skin malignancy	Causative gene	Reference
KID	35	SCC	NE	8
KID	28	Multiple SCC	NE	9
KID	43	SCC	NE	10
KID	38	SCC	GJB2	5
KID	31	Multiple SCC	GJB2	12
KID	31	Multiple MPTT	NE	11
KID	15	SCC	NE	13
KID	28	Multiple SCC/MPTT	GJB2	15
KID	24	Multiple MPTT	ND	15
KID	30	Multiple SCC	GJB2	14
KID	38	SCC	GJB2	14
KID	40	SCC	GJB2	14
CIE	44	SCC, MM	ABCA12	23, 32
CIE	37	MM, cutaneous lymphoma	ABCA12	23
CIE	43	Multiple SCC/BCC	NE	31
CIE	51	Multiple SCC/BCC	NE	31
CIE	25	SCC, MFH	NE	29
LI	27	Multiple SCC/BCC	NE	33
LI	33	Multiple BCC	NE	30
NS	2.3	Multiple SCC/BCC	NE	52
NS	29	Multiple SCC	NE	53
NS	29	Multiple SCC/BCC	NE	54
ICM	54	Multiple SCC	NE	63
ICM	40	Multiple SCC	NE	62
MAUIE	21?	SCC	NE	33
MAUIE	26	Multiple SCC	NE	64
EI	49?	Multiple SCC/BCC	NE	68
CHILD	29	SCC	NE	71

KID, keratitis-ichthyosis-deafness syndrome; CIE, congenital ichthyosiform erythroderma; II, lamellar ichthyosis; NS, Netherton syndrome; ICM, ichthyosis Curth-Macklin; MAUIE, micropinnae, alopecia universalis, congenital ichthyosis and ectropion; EI, epidermolytic ichthyosis; CHILD, congenital hemidysplasia with ichthyosiform erythroderma and limb defects; SCC, squamous cell carcinoma; MPTT, malignant proliferating trichilemmal tumour; MM, malignant melanoma; MFH, malignant fibrous histiocytoma; BCC, basal cell carcinoma; NE, not examined; ND, not detected.

tion in KID syndrome, was found in six patients who developed SCC or MPTT. 5.12,14,15 SCC was reported in roughly 10% of patients with KID syndrome and has been proposed as a distinguishing manifestation of the disease. In a recent case series, three out of 14 (21%) patients with KID syndrome developed SCC. Recurrent and chronic infection of the skin in KID syndrome has been suggested to be partly responsible for the increased risk of SCC. are to be one of the many factors involved in multiple-step carcinogenesis. Also, alteration of E-cadherin expression due to dysfunctional Cx26 is hypothesized to lead to cancer susceptibility. Mutated Cx26 might lead to tumorigenesis through a decrease in gap junction communication, a possibility that is supported by a mouse

carcinogenesis model.¹⁸ Overexpression of Cx26 has been shown to suppress tumour growth and induce apoptosis in prostate cancer cells through Bcl-2 downregulation.¹⁹

In a mouse model for KID syndrome in which Cx26 harbouring the p.Ser17Phe mutation was introduced as a heterozygous mutation under control of the endogenous Cx26 promoter, the basal layer showed increased cell proliferation. ²⁰ However, progressive skin growth and increased susceptibility to SCC were not observed. ²⁰

Autosomal recessive congenital ichthyosis

Congenital ichthyosiform erythroderma (CIE) and lamellar ichthyosis (LI) are two major types of ARCI. CIE is characterized by fine, white scaling with erythroderma. In contrast, the typical manifestation of LI is coarse brown/dark scaling. Their causative genes are ALOXE3, ALOX12B, ABCA12, ABCA12, CYP4F22, ABCA12, CYP4F22, CIE and LI have been proposed as representing variations of a single group of disorders, although the typical cases of each type have distinct clinical features.

In the literature, five patients have been reported with CIE and two with LI who developed skin malignancies (Table 1). ^{23,29–33} They began to suffer from SCC between the ages of 25 and 51 years. ^{29,31–33} There is the possibility that chronic inflammation due to skin barrier defects is associated with skin carcinogenesis in CIE/LI patients, ²³ as discussed in the section on KID syndrome. Scarring from chronic inflammation was suggested to underlie SCC in one CIE case, ³² although scar formation was not histologically evident in SCC specimens from two other patients with CIE. ³¹ The increased proliferation observed in CIE keratinocytes in vitro ³⁴ might account for the early onset of SCC. It is notable that the long-term administration of systemic retinoids did not prevent SCC development in some patients with CIE, ^{31,32} although the retinoids might have reduced the number or severity of the SCCs.

Genetic analysis was performed on only two of the patients with CIE, both of whom had missense mutations in ABCA12.23 The patients developed MM at the ages of 47 and 37, respectively. It is unclear why the ABCA12-deficient patients with CIE developed skin malignancies at those early ages. ABCA12 is an ATP-binding cassette (ABC) transporter that is thought to play a pivotal role in keratinocyte lipid transport. 35,36 ABCA12 is expressed mainly in keratinocytes, and not in melanocytes or lymphocytes. 35,37,38 A recent study also confirmed that ABCA12 is only weakly expressed in normal melanocytes and is largely absent in melanoma cells.³⁹ ABCA transporters are involved in regulating lipid transport and metabolism, and cholesterol levels may be a limiting factor in membrane maintenance in rapidly dividing cancer cells. 40 From these facts, it is unlikely that ABCA12 deficiency directly promotes skin tumorigenesis including that of MM. Other ABCA members that compensate for ABCA12 dysfunction might be related to tumorigenesis in patients with CIE.

Abca12-deficient mouse models have been developed, all of which showed neonatal lethality, 41-44 and these models

© 2011 The Authors

reproduce the severest subtype of ARCI: harlequin ichthyosis.^{35,45} In one mouse model (Abal2-null mice), epidermal proliferation was not altered at E18.5 compared with wild-type mice.⁴³ From this finding, it is unlikely that loss of ABCA12 function directly causes proliferation of keratinocytes and leads to SCC development.

No patients with CIE or LI who developed skin malignancies have been reported to have mutations in TGM1, although TGM1 is thought to be the most prevalent causative gene for CIE/LI. 46,47 TGM1 encodes tranglutaminase-1, which forms the cornified envelope (CE) in the cornified layer through crosslinking of CE precursor proteins. 47 Increased proliferation in the epidermis of the Tgm1-null neonate skin grafted onto athymic nude mice was observed, 48 which might imply that patients with CIE/LI with TGM1 mutations might be susceptible to skin SCC.

Netherton syndrome

Netherton syndrome (NS) is an autosomal recessive disorder characterized by trichorrhexis invaginata (bamboo hair), congenital ichthyosis and atopic diathesis. ^{49,50} NS is caused by mutations in SPINK5, which encodes the serine protease inhibitor LEKTI. ⁵¹

Three NS cases have been reported who developed skin malignancies (Table 1).52-54 Surprisingly, multiple SCCs (or multiple BCCs) were observed for these patients in their twenties. In one patient, epidermodysplasia verruciformis-associated human papillomavirus (HPV) DNA (HPV-19, -23, -38 and HPV-RTRX9) was preferentially detected in malignant lesions. 52 The authors speculated that impaired epidermal defence mechanisms could have promoted latent HPV DNA persistence in the patient's skin. 52 However, polymerase chain reaction amplification using HPV universal primers failed to detect HPV DNA in tumour specimens of another patient.⁵⁴ This shows that HPV infection is not always responsible for skin carcinogenesis in patients with NS at an early age. Patients with NS show recurrent infections other than HPV.55 From the findings that several immunological abnormalities including those of memory B cells and natural killer cells are common in NS and that the patients respond well to intravenous immunoglobulin therapy,55 it is possible to conclude that cognate and innate immunodeficiency might be associated with skin carcinogenesis in NS.

Although other serine protease inhibitors are implicated in skin carcinogenesis, ^{56,57} the role of LEKTI in skin cancers is unclear. NS mouse models in which LEKTI is deficient have been reported. ^{58–60} In one model, increased proliferation of the epidermis was observed, ⁵⁹ which might underlie a susceptibility to SCC.

Miscellaneous

In each other form of ichthyosis, only a few cases have been described as having skin cancers. Ichthyosis Curth-Macklin (ICM) is a very rare form of keratinopathic ichthyosis that is

characterized by massive spiky hyperkeratosis.^{1,61} Mutations in the V2 domain of keratin 1 have been reported in patients with ICM. Two patients developed multiple SCC at the ages of 54 and 40 years, respectively (Table 1).^{62,63} However, one patient had a history of whole-skin X-ray therapy, which might have led to the multiple skin cancers.⁶³

Micropinnae, alopecia universalis, congenital ichthyosis and ectropion (MAUIE) syndrome is a syndromic form of ichthyosis that was not included in the revised nomenclature and classification of inherited ichthyoses. Causative genes of MAUIE syndrome have not been reported. Two patients with MAUIE syndrome were found to have developed SCC in their twenties (Table 1). 33,64

Epidermolytic ichthyosis (EI), formerly called bullous CIE, is a major subtype of keratinopathic ichthyosis that is caused by mutations in the genes encoding keratin 1 or keratin 10 (KRT1 or KRT10, respectively). One patient with EI was reported to have multiple SCC/BCC (Table 1), although the patient had a history of whole-skin X-ray therapy.

Congenital hemidysplasia with ichthyosiform erythroderma and limb defects (CHILD) syndrome is a rare X-linked dominant disorder⁶⁹ that is caused by mutations in NSDHL.⁷⁰ One patient with CHILD syndrome developed SCC in the affected skin.⁷¹

Ichthyosis vulgaris, the most prevalent type of inherited ichthyosis, is caused by mutations in FLG, the gene encoding filaggrin. To our knowledge, there have been no reports on the incidence of skin malignancies in ichthyosis vulgaris. Several cohort studies have reported cancer incidence in patients with atopic dermatitis (AD), in which loss-of-function mutations in FLG are a major predisposing factor. Although many studies have confirmed that AD is associated with an increased risk of lymphoma, the estimated risk of nonmelanoma skin cancer (NMSC) in patients with AD differs among studies. Some studies reported an increased risk of NMSC in patients with AD, the patients with a patients with ichthyosis vulgaris.

Future directions

Because of the limited number of patients with inherited ichthyoses, it is still almost impossible to calculate accurately the incidence of skin malignancies in these patients. However, our review of the literature shows that patients with ichthyosis can develop skin malignancies, mostly SCC, at an early age, although the literature may be biased in favour of describing only 'interesting' cases.

Generally, impaired barrier function in patients with ichthyosis might permit breech of the stratum corneum by contact chemical carcinogens. However, epithelial desquamation has been suggested as protecting against natural chemicals. ^{78,79} If this is true, one might guess that more rapid epidermal turnover in ichthyosis skin would be protective against, rather than contributory to, skin carcinogenesis. There are common

types of ichthyosis, such as ichthyosis vulgaris and recessive X-linked ichthyosis, which do not seem to be associated with skin cancer at a young age. On the other hand, patients with KID syndrome, ARCI and NS have been reported to develop SCC at an early age. These differences might be explained by causative genetic defects in each ichthyosis subtype.

Recent developments in bioengineering techniques have resulted in many animal models of inherited ichthyosis.⁸⁰ Experiments on ichthyosis skin carcinogenesis, including two-stage carcinogenesis assay, might provide clues to understanding the pathomechanisms underlying skin cancer in inherited ichthyosis, although neonatal lethality will prevent these experiments in several mouse models.

In the future, a worldwide registry on ichthyoses with follow-up information would be desirable towards enabling a full evaluation of skin malignancies in patients with ichthyosis. At present, routine surveillance for skin malignant changes is strongly recommended for patients with KID syndrome and inflammatory types of congenital ichthyosis such as CIE/LI and NS, even if the patients are taking systemic retinoids.

What's already known about this topic?

- There have been sporadic case reports of malignant skin turnours in patients with congenital ichthyosis.
- The frequency of skin malignancies in patients with ichthyosis is unknown.

What does this study add?

 Patients with congenital ichthyosis, especially those with KID syndrome, congenital ichthyosiform erythroderma, lamellar ichthyosis and Netherton syndrome, can develop cutaneous squamous cell carcinoma at unusually young ages.

Acknowledgment

We thank Dr Sara Cipolat for critical reading of the manuscript.

References

- 1 Oji V, Tadini G, Akiyama M et al. Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in Soreze 2009. J Am Acad Dermatol 2010; 63:607–41.
- 2 Skinner BA, Greist MC, Norins AL. The keratitis, ichthyosis, and deafness (KID) syndrome. Arch Dermatol 1981; 117:285–9.
- 3 Wilson GN, Squires RH Jr, Weinberg AG. Keratitis, hepatitis, ichthyosis, and deafness: report and review of KID syndrome. Am J Med Genet 1991; 40:255–9.
- 4 Richard G, Rouan F, Willoughby CE et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia kerati-

- tis-ichthyosis-deafness syndrome. Am J Hum Genet 2002; 70: 1341-8.
- 5 van Steensel MA, van Geel M, Nahuys M et al. A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome. J Invest Dermatol 2002; 118:724-7.
- 6 Jan AY, Amin S, Ratajczak P et al. Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J Invest Dermatol 2004; 122:1108–13.
- 7 van Steensel MA, Steijlen PM, Bladergroen RS et al. A phenotype resembling the Clouston syndrome with deafness is associated with a novel missense GJB2 mutation. J Invest Dermatol 2004; 123: 291–3.
- 8 Madariaga J, Fromowitz F, Phillips M et al. Squamous cell carcinoma in congenital ichthyosis with deafness and keratitis. A case report and review of the literature. Cancer 1986; 57:2026–9.
- 9 Grob JJ, Breton A, Bonafe JL et al. Keratitis, ichthyosis, and deafness (KID) syndrome. Vertical transmission and death from multiple squamous cell carcinomas. Arch Dermatol 1987; 123:777–82.
- 10 Hazen PG, Carney P, Lynch WS. Keratitis, ichthyosis, and deafness syndrome with development of multiple cutaneous neoplasms. Int J Dermatol 1989; 28:190–1.
- 11 Kim KH, Kim JS, Piao YJ et al. Keratitis, ichthyosis and deafness syndrome with development of multiple hair follicle tumours. Br J Dermatol 2002; 147:139–43.
- 12 van Geel M, van Steensel MA, Kuster W et al. HID and KID syndromes are associated with the same connexin 26 mutation. Br J Dermotol 2002; 146:938–42.
- 13 Conrado LA, Marques SA, Lastoria JC et al. Keratitis-ichthyosis-deafness (KID) syndrome with squamous cell carcinoma. Int J Dermatol 2007; 46:403-6.
- 14 Mazereeuw-Hautier J, Bitoun E, Chevrant-Breton J et al. Keratitis-ichthyosis-deafness syndrome: disease expression and spectrum of connexin 26 (GJB2) mutations in 14 patients. Br J Dermatol 2007; 156:1015-19.
- 15 Nyquist GG, Mumm C, Grau R et al. Malignant proliferating pilar tumors arising in KID syndrome: a report of two patients. Am J Med Genet A 2007: 143:734—41.
- 16 Buettner PG, Raasch BA. Incidence rates of skin cancer in Townsville, Australia. Int J Cancer 1998; **78**:587–93.
- 17 Chuang TY, Popescu NA, Su WP et al. Squamous cell carcinoma. A population-based incidence study in Rochester, Minn. Arch Dermatol 1990; 126:185–8.
- 18 Budunova IV, Carbajal S, Viaje A et al. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors. Mol Carcinog 1996; 15:190–201.
- 19 Tanaka M, Grossman HB. Connexin 26 induces growth suppression, apoptosis and increased efficacy of doxorubicin in prostate cancer cells. Oncol Rep 2004; 11:537—41.
- 20 Schutz M, Auth T, Gehrt A et al. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis ichthyosis—deafness syndrome. Hum Mol Genet 2011; 20:28–39.
- 21 Jobard F, Lefevre C, Karaduman A et al. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet 2002; 11:107–13.
- 22 Lefevre C, Audebert S, Jobard F et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum Mol Genet 2003; 12:2369–78.
- 23 Natsuga K, Akiyama M, Kato N et al. Novel ABCA12 mutations identified in two cases of non-bullous congenital ichthyosiform erythroderma associated with multiple skin malignant neoplasia. J Invest Dermatol 2007; 127:2669–73.

© 2011 The Authors

- 24 Lefevre C, Bouadjar B, Ferrand V et al. Mutations in a new cyto-chrome P450 gene in lamellar ichthyosis type 3. Hum Mol Genet 2006; 15:767–76.
- 25 Lefevre C, Bouadjar B, Karaduman A et al. Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum Mol Genet 2004; 13:2473–82.
- 26 Huber M, Rettler I, Bernasconi K et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 1995; 267:525–8.
- 27 Russell LJ, DiGiovanna JJ, Rogers GR et al. Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nat Genet 1995; 9:279–83.
- 28 Akiyama M, Sawamura D, Shimizu H. The clinical spectrum of nonbullous congenital ichthyosiform erythroderma and lamellar ichthyosis. Clin Exp Dermatol 2003; 28:235–40.
- 29 Fujimoto T, Tsuda T, Yamamoto M et al. Cutaneous malignant fibrous histiocytoma (undifferentiated pleomorphic sarcoma) arising in a chronic scalp ulcer of a patient with non-bullous congenital ichthyosiform erythroderma. J Eur Acad Dermatol Venereol 2009; 23:202–3.
- 30 Kampp JT, Kouba DJ, Fincher EF et al. Basal cell carcinoma masquerading as the chronic ectropion of lamellar ichthyosis. Dermatol Surg 2008; 34:963–7.
- 31 Brown VL, Farrant PB, Turner RJ et al. Multiple aggressive squamous skin cancers in association with nonbullous congenital ichthyosiform erythroderma. Br J Dermatol 2008; 158:1125–8.
- 32 Arita K, Akiyama M, Tsuji Y et al. Squamous cell carcinoma in a patient with non-bullous congenital ichthyosiform erythroderma. Br J Dermatol 2003; 148:367–9.
- 33 Elbaum DJ, Kurz G, MacDuff M. Increased incidence of cutaneous carcinomas in patients with congenital ichthyosis. J Am Acad Dermatol 1995; 33:884–6.
- 34 Amsellem C, Haftek M, Hoyo E et al. Evidence of increased keratinocyte proliferation in air-liquid interface cultures of non-bullous congenital ichthyosiform erythroderma. Acta Derm Venereol 1993; 73:262-9
- 35 Akiyama M, Sugiyama-Nakagiri Y, Sakai K et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 2005; 115:1777–84.
- 36 Sakai K, Akiyama M, Sugiyama-Nakagiri Y et al. Localization of ABCA12 from Golgi apparatus to lamellar granules in human upper epidermal keratinocytes. Exp Dermatol 2007; 16:920–6.
- 37 Annilo T, Shulenin S, Chen ZQ et al. Identification and characterization of a novel ABCA subfamily member, ABCA12, located in the lamellar ichthyosis region on 2q34. Cytogenet Genome Res 2002; 98:169–76.
- 38 Peelman F, Labeur C, Vanloo B et al. Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. J Mol Biol 2003; 325:259–74.
- 39 Heimerl S, Bosserhoff AK, Langmann T et al. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Res 2007; 17:265–73.
- 40 Fletcher JI, Haber M, Henderson MJ et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10:147–56.
- 41 Smyth I, Hacking DF, Hilton AA et al. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet 2008; 4:e1000192.
- 42 Yanagi T, Akiyama M, Nishihara H et al. Harlequin ichthyosis model mouse reveals alveolar collapse and severe fetal skin barrier defects. Hum Mol Genet 2008; 17:3075–83.
- 43 Zuo Y, Zhuang DZ, Han R et al. ABCA12 maintains the epidermal lipid permeability barrier by facilitating formation of ceramide linoleic esters. J Biol Chem 2008; 283:36624–35.

- 44 Yanagi T, Akiyama M, Nishihara H et al. Self-improvement of keratinocyte differentiation defects during skin maturation in ABCA12-deficient harlequin ichthyosis model mice. Am J Pathol 2010; 177:106–18.
- 45 Kelsell DP, Norgett EE, Unsworth H et al. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am J Hum Genet 2005; **76**:794–803.
- 46 Fischer J. Autosomal recessive congenital ichthyosis. J Invest Dermatol 2009; 129:1319–21.
- 47 Herman ML, Farasat S, Steinbach PJ et al. Transglutaminase-1 gene mutations in autosomal recessive congenital ichthyosis: summary of mutations (including 23 novel) and modeling of TGase-1. Hum Mutat 2009; 30:537–47.
- 48 Kuramoto N, Takizawa T, Matsuki M et al. Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J Clin Invest 2002; 109:243–50.
- 49 Netherton EW. A unique case of trichorrhexis nodosa; bamboo hairs. AMA Arch Derm 1958; 78:483–7.
- 50 Wilkinson RD, Curtis GH, Hawk WA. Netherton's disease; trichorrhexis invaginata (bamboo hair), congenital ichthyosiform erythroderma and the atopic diathesis. A histopathologic study. Arch Dermatol 1964; 89:46–54.
- 51 Chavanas S, Bodemer C, Rochat A et al. Mutations in SPINKS, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000; 25:141–2.
- 52 Weber F, Fuchs PG, Pfister HJ et al. Human papillomavirus infection in Netherton's syndrome. Br J Dermatol 2001; 144:1044–9.
- 53 Saghari S, Woolery-Lloyd H, Nouri K. Squamous cell carcinoma in a patient with Netherton's syndrome. Int J Dermatol 2002; 41: 415–16.
- 54 Krasagakis K, Ioannidou DJ, Stephanidou M et al. Early development of multiple epithelial neoplasms in Netherton syndrome. Dermatology 2003; 207:182–4.
- 55 Renner ED, Hartl D, Rylaarsdam S et al. Comel–Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol 2009; 124:536–43.
- 56 Silverman GA, Bartuski AJ, Cataltepe S et al. SCCA1 and SCCA2 are proteinase inhibitors that map to the serpin cluster at 18q21.3. Tumour Biol 1998; **19**:480–7.
- 57 Walz M, Kellermann S, Bylaite M et al. Expression of the human Cathepsin L inhibitor hurpin in mice: skin alterations and increased carcinogenesis. Exp Dermatol 2007; 16:715–23.
- 58 Yang T, Liang D, Koch PJ et al. Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/mice. Genes Dev 2004; 18:2354-8.
- 59 Descargues P, Deraison C, Bonnart C et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 2005; 37:56-65.
- 60 Hewett DR, Simons AL, Mangan NE et al. Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet 2005; 14: 335–46.
- 61 Curth HO, Macklin MT. The genetic basis of various types of ichthyosis in a family group. Am J Hum Genet 1954; 6:371–82.
- 62 Capetanakis J, Stratigos J, Tsambaos D et al. Ichthyosis hystrix of 'porcupine man' type. Report of a case. Dermatologica 1975; 151:177-83.
- 63 Judge MR, McGibbon DH. Ichthyosis hystrix and skin cancer. Clin Exp Dermatol 1994; 19:240–2.
- 64 Hendrix JD Jr, Patterson JW, Greer KE. Skin cancer associated with ichthyosis: the MAUIE syndrome. J Am Acad Dermatol 1997; 37:1000-2.

- 65 Cheng J, Syder AJ, Yu QC et al. The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell 1992; 70:811–19.
- 66 Chipev CC, Korge BP, Markova N et al. A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell 1992; 70:821–8.
- 67 Rothnagel JA, Dominey AM, Dempsey LD et al. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 1992; 257:1128–30.
- 68 Edwards JM, Cooper MA, Bannerjee S. Congenital epidermolytic hyperkeratosis associated with multiple malignancies. Br J Dermatol 1989; 120:141-4.
- 69 Happle R, Koch H, Lenz W. The CHILD syndrome. Congenital hemidysplasia with ichthyosiform erythroderma and limb defects. Eur J Pediatr 1980; 134:27–33.
- 70 Konig A, Happle R, Bornholdt D et al. Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet 2000; 90:339–46.
- 71 Jacyk WK, La Cock A. Squamous cell carcinoma arising in CHILD syndrome. J Eur Acad Dermatol Venereol 2006; 20:311-13.
- 72 Smith FJ, Irvine AD, Terron-Kwiatkowski A et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 2006; 38:337–42.

- 73 Palmer CN, Irvine AD, Terron-Kwiatkowski A et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006; 38:441-6.
- 74 Hagstromer L, Ye W, Nyren O et al. Incidence of cancer among patients with atopic dermatitis. Arch Dermatol 2005; 141:1123-7.
- 75 Arana A, Wentworth CE, Fernandez-Vidaurre C et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the U.K. Br J Dermatol 2010; 163:1036–43.
- 76 Ming ME, Levy R, Hoffstad O et al. The lack of a relationship between atopic dermatitis and nonmelanoma skin cancers. J Am Acad Dermatol 2004; 50:357–62.
- 77 Naylor M, Elmets C, Jaracz E et al. Non-melanoma skin cancer in patients with atopic dermatitis treated with topical tacrolimus. J Dermatolog Treat 2005; 16:149–53.
- 78 Ames BN, Profet M, Gold LS. Nature's chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci USA 1990; 87:7782–6.
- 79 Milstone LM. Epidermal desquamation. J Dermatol Sci 2004; **36**: 131–40
- 80 Chen J, Roop DR. Genetically engineered mouse models for skin research: taking the next step. J Dermatol Sci 2008; 52:1-12.

INVITED REVIEW ARTICLE

Nagoya J. Med. Sci. 73. 79 ~ 90, 2011

UPDATED MOLECULAR GENETICS AND PATHOGENESIS OF ICHTHYOSES

MASASHI AKIYAMA

Department of Dermatology, Nagoya University Graduate School of Medicine

ABSTRACT

Research into the molecular genetics and pathomechanisms of ichthyoses have advanced considerably, resulting in the identification of several causative genes and molecules underlying the disease. In 2009, the First Ichthyosis Consensus Conference was held to establish a consensus for the nomenclature and classification of inherited ichthyoses, by which an international consensus for the classification of inherited ichthyosis was achieved. In this review, the pathogeneses of various ichthyoses are summarized based on their revised classification and terminology. Skin barrier defects are involved in the pathogenesis of various types of ichthyosis. The known causative molecules underlying ichthyosis include ABCA12, lipoxygenase-3, 12R-lipoxygenase, CYP4F22, ichthyin and steroid sulfatase, all of which are thought to be related to the intercellular lipid layers. ABCA12 is a known keratinocyte lipid transporter associated with lipid transport in lamellar granules and a loss of ABCA12 function leads to defective lipid transport in the keratinocytes, resulting in the most severe, harlequin ichthyosis phenotype. Other causative molecules for ichthyoses are transglutaminase 1, keratins and filaggrin. Transglutaminase 1 plays a role in cornified cell envelope formation. Keratins 1, 10 and 2 are involved in the keratin network of suprabasal keratinocytes and filaggrin is essential for the formation of keratohyalin granules. It is important to obtain information concerning genetic defects and to elucidate ichthyotic disease pathomechanisms for the establishment of an effective therapy and beneficial genetic counseling, including a prenatal diagnosis for families affected by ichthyotic disease.

Key Words: ABCA12; Congenital ichthyosiform erythroderma; Epidermolytic ichthyosis; Harlequin ichthyosis; Lamellar ichthyosis; Prenatal diagnosis

INTRODUCTION

The ichthyoses form a large, clinically and etiologically heterogeneous group of cornification disorders that typically affect all or most of the skin surface. Six major distinct clinical subtypes are known in hereditary non-syndromic ichthyoses. Starting with the most severe form, they are: harlequin ichthyosis (HI, MIM#242500); lamellar ichthyosis (LI, MIM#242300); congenital ichthyosiform erythroderma (CIE, MIM#242100); epidermolytic ichthyosis (EI, MIM #113800); recessive X-linked ichthyosis (RXLI, MIM#308100); to the mildest form of ichthyosis vulgaris (IV, MIM#146700). Superficial epidermolytic ichthyosis (SEI, MIM #146800) is an additional subtype similar to EI. For a long time, the pathomechanisms and underlying genetic defects of ichthyoses were unknown, although significant progress has recently been made in our understand-

Corresponding Author: Masashi Akiyama

Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku,

Nagoya 466-8550, Japan

Phone: +81-52-744-2314, Fax: +81-52-744-2318, E-mail: makiyama@med.nagoya-u.ac.jp

ing of the molecular basis of human epidermal keratinization processes.

In 1978, the causative abnormality underlying RXLI was identified as a steroid sulfatase deficiency caused by genetic defects in the steroid sulfatase gene (*STS*).^{3,4)} In 1992, mutations in the keratin 1 gene (*KRTI*) and keratin 10 gene (*KRTI0*) were detected as a cause of EI.⁵⁻⁷⁾ Since transglutaminase (TGase) 1 gene (*TGMI*) mutations were identified as the cause of LI in 1995,^{8,9)} mutations in several other genes have also been identified in severe autosomal recessive congenital ichthyoses (ARCI).¹⁰⁾

In 2005, a loss-of-function mutations in the ABCA12 gene were reported to underlie HI, the most severe type of ichthyosis.^{11,12)} In 2006, null mutations in the gene coding filaggrin (*FLG*) were detected as the causative defects leading to IV.¹³⁾

To date, the number of genes identified and demonstrated to cause ichthyosis in human patients has reached eleven; they are shown in Table 1, i.e., FLG, 13 KRT1, KRT10, $^{5-7)}$ KRT2, $^{14-16)}$ TGM1, $^{8,9)}$ ABCA12, $^{11,17,18)}$ two lipoxygenase genes, ALOXE3 and ALOX12B, $^{19)}$ $NIPAL4^{20)}$ and FLJ39501. $^{21)}$ Most ichthyosis phenotypes mentioned above exhibit a primary abnormality associated with a barrier function in the stratum corneum as their underlying pathogenetic mechanisms. $^{1)}$ The skin barrier of the stratum corneum has three major components, i.e., intercellular lipid layers, a cornified cell envelope and keratin/filaggrin degradation products (Fig. 1)

In 2009, the First Ichthyosis Consensus Conference was held to establish a consensus for the nomenclature and classification of inherited ichthyoses and an international consensus for the classification of inherited ichthyosis was successfully achieved.²⁾ The new classification and nomenclature should prove useful to all clinicians and can serve as a reference point for future research. In this updated review, based on the revised classification and terminology of ichthyoses, the pathogeneses of various ichthyoses are described in association with descriptions of specific defects in the essential components comprising the epidermal skin barrier, highlighting a few crucial diseases and mechanisms. In addition, I briefly mentioned the prenatal diagnosis of severe congenital ichthyosis at the end of the present review.

Table 1 Essential components of stratum cornuem barrier and causative molecules/genes for ichthyoses (modified from Ref. No. 1)

Stratum corneum barrier components	Molecule	Gene (locus)	Mode of inheritance	Type of Mutations	Phenotype
Intercellular lipid layers	ABCA12	ABCA12 (2q34)	AR	truncation/deletion (rarely missense)	HI
	ABCA12	ABCA12 (2q34)	AR	missense/missense or missense/truncation	LI or CIE
	lipoxygenase-3	ALOXE3 (17p13.1)	AR	missense/truncation	LI or CIE
	12R-lipoxygenase	ALOX12B (17p13.1)	AR	missense/truncation	LI or CIE
	CYP4F22	FLJ39501 (19P12)	AR	missense/truncation	LI
	NIPAL4	NIPAL4 (5q33)	AR	missense/truncation	CIE or LI
	Steroid sulfatase	STS (Xp22.32)	X-LR	mostly large deletion	RXLI
Cornified cell envelope	TGase 1	TGM1 (14q11.2)	AR	missense/truncation/ deletion/insertion	LI or CIE
Keratin network and keratohyalin granules	keratin 1	KRT1 (12q12-q13)	AD	missense	EI
	keratin 10	KRT10 (17q21)	AD (rarely AR)	missense (rarely nonsense)	EI
	keratin 2	KRT2 (12q11-q13)	AD	missense	SEI
	Filaggrin (profilaggrin)	FLG (1q21.3)	ASD	truncation	IV

AD, autosomal dominant; AR, autosomal recessive; ASD, autosomal semidominant; X-LR, X-linked recessive; CIE, congenital ichthyosiform erythroderma; EI, epidermolytic ichthyosis; HI, harlequin ichthyosis; IV, ichthyosis vulgaris; LI, lamellar ichthyosis; RXLI, recessive X-linked ichthyosis; SEI, superficial epidermolytic ichthyosis

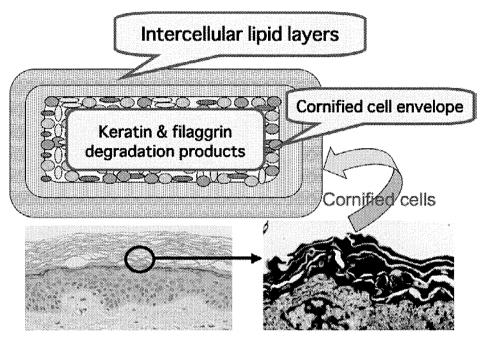


Fig. 1 Major components of skin barrier in stratum corneum consist of intercellular lipid layers, cornified cell envelope and keratin/filaggrin degradation products. Figure modified from Ref. No. 1.

MAJOR ICHTHYOSIS SUBTYPES AND THEIR CAUSATIVE MOLECULES

Harlequin ichthyosis (HI)

Formation of the intercellular lipid layers is essential for epidermal barrier function, and the defective formation of those layers is thought to result in a serious loss of barrier function, and to lead to extensive hyperkeratosis.²²⁾ Formation of the intercellular lipid layers involves a highly complex series of processes that include the transport of lipids into the lamellar granules, and a multi-step metabolism of this lipid content within lamellar granules. ABCA12 has been highlighted, because it was recognized as a key molecule in keratinocytes lipid transport.^{11,23)}

Among the severe ARCI diseases, HI is the most devastating congenital ichthyosis, with affected newborns showing large, thick, plate-like scales over the whole body with severe ectropion, eclabium and flattened ears (Fig. 2A).¹⁰⁾ In 2005, we revealed that ABCA12 is a keratinocyte lipid transporter, and demonstrated that *ABCA12* mutations lead to the HI phenotype.¹¹⁾ Another group independently reported that *ABCA12* mutations underlie HI by linkage analysis.¹²⁾ *ABCA12* mutations were also found to underlie LI and CIE cases.^{17,18)} ABCA12 is a member of a large superfamily of the ATP-binding cassette (ABC) transporters that bind and hydrolyze ATP to transport various molecules across a limiting membrane or into a vesicle.²⁴⁾ All ABCA subfamily members are thought to be lipid transporters.²⁵⁾ ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with lipid transport in lamellar granules to the apical surface of granular layer keratinocytes.¹¹⁾

Ultrastructurally, lamellar granule abnormalities are apparent in HI patient epidermis.²⁶⁾ Several morphologic abnormalities have been reported, e. g., abnormal lamellar granules in the granular layer keratinocytes and a lack of extracellular lipid lamellae in the stratum corneum. They reflect defective lipid transport by lamellar granules and the malformation of intercellular

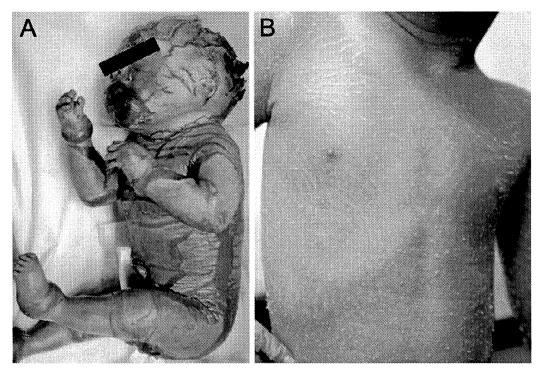


Fig. 2 Clinical features of ichthyosis. (A) An HI patient harboring a homozygous ABCA12 splice site mutation. Thick, plate-like scales are seen on the whole body. Figure modified from Ref. No. 11. (B) A CIE patient carrying compound heterozygous ABCA12 nonsense and missense mutations. Fine, whitish scales are observed on erythrodermic skin. Figure modified from Ref. No. 42.

lipid layers in the stratum corneum in HI.²⁶⁾ In addition, cultured epidermal keratinocytes from an HI patient carrying *ABCA12* mutations demonstrated defective glucosylceramide transport, and this phenotype was recoverable by an *in vitro ABCA12* corrective gene transfer.¹¹⁾ Based on these findings, we were able to shed light on the pathomechanisms of HI with the underlying *ABCA12* mutations leading to a loss of ABCA12 function. Lamellar granules are lipid transporting and secreting granules in the epidermal kerationcytes. Mutations in the lipid transporter protein ABCA12 cause defective lipid accumulations into lamellar granules,^{11,27)} resulting in malformation of the intercellular lipid layers of the stratum corneum.¹¹⁾ The fact that ABCA3 (a member of the same protein superfamily as ABCA12) functions in pulmonary surfactant lipid secretion via the production of similar lamellar-type granules within lung alveolar type II cells^{28,29)} further supports this concept.

We subsequently transplanted cultured keratinocytes from patients with HI and succeeded in reconstituting HI skin lesions in immunodeficient mice.²⁷⁾ These reconstructed HI lesions showed similar changes to those observed in HI patients' skin. In addition, we generated *Abca12* disrupted (*Abca12*^{-/-}) mice that reproduced the human HI phenotype, showing marked hyperkeratosis with eclabium and skin fissures.³⁰⁾ Lamellar granule abnormalities and defective ceramide distribution were noteworthy in the epidermis. Skin permeability assays of *Abca12*^{-/-} mouse fetuses revealed a severe skin barrier dysfunction after the initiation of keratinization. Another group independently developed *Abca12*^{-/-} mice, which also confirmed the clinical features of HI.³¹⁾ A mouse strain carrying a homozygous spontaneous missense mutation was also reported to exhibit skin

manifestations similar to HI.32)

HI patients often die in the first one or two weeks of life. However, once they survive beyond the neonatal period, HI survivors' phenotypes improve within several weeks after birth. In order to clarify the mechanisms of phenotype recovery, we studied grafted skin and keratinocytes from *Abca12*-disrupted (*Abca12*-disrupted (*Abca12*-disrupted

Congenital ichthyosiform erythroderma (CIE) and lamellar ichthyosis (LI)

The formation of a 15-nm-thick layer of protein called the cornified cell envelope (CCE) on the inner surface of the cell membrane is essential for the skin barrier function.¹⁾ CCE is assembled by the accumulation of several precursor proteins including involucrin, small prolinerich proteins and loricrin.³⁴⁾ TGases in the epidermis are thought to be responsible at least in part, for the assembly of cornified cell envelope precursor proteins that form the cornified cell envelope.³⁵⁾ TGase 1, the major subtype of the three TGases expressed in the epidermis,^{36,37)} is a membrane-associated TGase of about 92 kD. Since the identification of TGase 1 gene (*TGM1*) mutations in a number of families with LI in 1995,^{8,9)} further *TGM1* mutations have been reported in LI families. In addition, *TGM1* mutations were reported to underlie the CIE phenotype.^{38,39)}

There is little doubt that the defective formation of the stratum corneum intercellular lipid layers is caused by abnormal keratinocyte lipid metabolism, transport, and/or secretion, constituting one of the major pathogenetic mechanisms underlying congenital ichthyosis. Several critical molecules causing ichthyosis are thought to be involved in the formation of the stratum corneum intercellular lipid layers.¹⁾

In 2003, a keratinocyte lipid transporter ABCA12 was reported to be the causative molecule in type 2 LI (OMIM #601277) (see "harlequin ichthyosis" section above).¹⁷⁾ Type 2 LI is a subtype of LI which links to 2q33-35. Several genotype/phenotype correlations with *ABCA12* mutations have been elucidated as follows.⁴⁰⁾ Combinations of missense mutations resulting in only one amino acid alteration underlie the LI phenotype.¹⁷⁾ In contrast, most mutations in HI are truncation or deletion mutations which lead to more severe changes, such as a loss of the ABCA12 peptide function affecting important nucleotide-binding fold domains and/or transmembrane domains. In HI, so far at least one mutation on each allele must be a truncation or deletion mutation within a conserved region that seriously impacts the ABCA12 function.^{11,40,41)} In the Japanese population, CIE patients harboring *ABCA12* mutations as the causative genetic defect are not rare (Fig. 2B).^{18,42,43)} Further accumulations of data on *ABCA12* mutations and their effects on the protein function/structure together with specific mutation sites are needed to better elucidate genotype/phenotype correlations that help to predict HI patient prognosis.

In 2002, mutations in two lipoxygenase genes, *ALOXE3* and *ALOX12B*, coding lipoxygenase-3 and 12(R)-lipoxygenase, respectively, were reported to underlie ARCI.¹⁹⁾ Although their exact functions are unknown, lipoxygenase-3 and 12(R)-lipoxygenase are non-heme iron-containing dioxygenases expressed in the epidermis.^{44,45)} They may be associated with the lipid metabolism of lamellar granule contents and/or intercellular lipid layers in the epidermis. 12(R)-lipoxygenase knockout mice have exhibited a severe impairment of the skin barrier function.⁴⁶⁾ That loss of barrier function was associated with a perturbance of the assembly/extrusion of lamellar granules. Cornified cell envelopes from the skin of 12(R)-lipoxygenase deficient mice showed increased fragility.⁴⁶⁾ Lipid analysis revealed a disordered composition of ceramides, especially a decrease in the ester-bound ceramide species.⁴⁶⁾ Based on these findings, the 12(R)-lipoxygenase-lipoxygenase-3 pathway was thought to play a key role in the process of epidermal barrier formation by affecting lipid metabolism.⁴⁶⁾ In fact, partially disturbed lamellar granule secretion has been reported in

the epidermis of a CIE patient with ALOX12B mutations.⁴⁷⁾

NIPAL4 (ichthyin) defects have also been reported to underlie certain cases of LI or CIE phenotypes.²⁰⁾ NIPAL4 is a protein with several transmembrane domains, which belongs to a new family of proteins with an unknown function. NIPAL4-like proteins are localized in the plasma membrane, and share homologies to both transporters and G-protein coupled receptors.²⁰⁾ NIPAL4 was suggested to be a membrane receptor for certain ligands (trioxilins A3 and B3) from the hepoxilin pathway,²⁰⁾ although the underlying mechanisms of exactly how *NIPAL4* mutations lead to an ichthyotic phenotype remain to be clarified.

Mutations in *FLJ39501* were identified as causative genetic defects in lamellar ichthyosis type 3 (MIM 604777).²¹⁾ *FLJ39501* encodes a cytochrome P450, family 4, subfamily F, polypeptide 2 homolog of the leukotriene B4-omega-hydroxylase (CYP4F22). The exact function of CYP4F22 has not yet been elucidated yet, but it is thought to catalyze the 20-hydroxylation of trioxilin A3 form the 12(R)-lipoxygenase pathway. Further oxidation of this substrate would lead to 20-carboxy-(R)-trioxilin A3, a compound suspected to be involved in skin hydration, and would be an essential product lacking in various forms of ARCI.

Epidermolytic ichthyosis (EI) and superficial epidermolytic ichthyosis (SEI)

A normal keratin filament network is an important structure for keratohyalin granule formation and for maintaining the integrity and dimensions of the cornified cell cytoplasm. In this context, the keratin-network would be essential to normal skin barrier formation. Mutations in differentiation-specific keratins are known to result in ichthyosis phenotypes.

EI is caused by mutations in either the keratin 1 gene (*KRT1*) or the keratin 10 gene (*KRT10*).⁵⁻⁷⁾ Most of the causative mutations are missense mutations that reside within the beginning or at the end of the rod domain segments of keratin peptides, which are called helix initiation and helix termination motifs. Those motifs are highly conserved regions of approximately 20 amino acids, which have been implicated in molecular overlapping interactions as part of the formation of 10 nm intermediate filaments from dimers comprising both type I acidic and a type II basic-neutral keratins.⁴⁸⁾ Single amino acid alterations in these essential helix boundary motifs frequently lead to a significant disease phenotype in the majority of keratin diseases.

EI is a severe congenital ichthyosis that exhibits from birth widespread blisters and erosions on a background of erythrodermic skin.^{1,2)} After the perinatal period, blister formation ceases and generalized hyperkeratosis becomes apparent. Histologically, a predominant vacuolization of the cells is observed in the middle and upper spinous and granular layers of the epidermis. The vacuolated keratinocytes show large and irregularly shaped cytoplasmic granules. Ultrastructurally, irregularly shaped, abnormal, clumped keratin filaments are seen in the keratinocytes from the upper spinous to the granular layers.⁴⁹⁾ EI generally exhibits an autosomal dominant inheritance, although only a few families showing recessive inheritance traits have been reported.^{50,51)} In such families, the causative mutations are nonsense mutations. As for genotype-phenotype correlations in EI, palmoplantar keratoderma exists in patients with *KRT1* mutations, but not in those with *KRT10* mutations.⁵²⁾

SEI is also an autosomal dominant ichthyosis which shows similar, but slightly milder clinical features than those of EI.⁵³⁾ Keratin 2 gene (*KRT2*) mutations underlie SEI patients.¹⁴⁻¹⁶⁾ Occasionally, cases with SEI can be difficult to clinically differentiate from EI, so that molecular genetic studies would be essential for a more definite diagnosis.⁵⁴⁾ In the human epidermis, keratin 1 and 10 expressions occur in the suprabasal layers, replacing keratins 5 and 14 as the cells differentiate. Keratin 2 is expressed somewhat later than keratins 1 and 10 in keratinocyte differentiation as the keratinocytes approach the granular layer. Thus, consistent with the restricted keratin 2 expression sites, in SEI, clumped keratin filaments were restricted to the cytoplasm of

granular layer cells and the uppermost spinous layer cells, leading to granular degeneration only in the uppermost spinous and granular layers of the patient's epidermis. Such restricted granular degeneration results in milder clinical manifestations and the presence of superficial denuded areas (the *mauserung* phenomenon) that are characteristic of SEI.

Ichthyosis vulgaris (IV)

IV is a common genetic keratinization disorder, clinically characterized by scaling, especially on the flexor limbs, and with palmoplantar hyperlinearity. The epidermis of IV patients shows a decrease in their size and numbers or, complete absence of keratohyalin granules.⁵⁵⁾

The degradation products of keratohyalin granules occupy the cytoplasm of keratinized cells in the stratum corneum and play important roles in the skin barrier function. Keratohyalin granules in the granular layer of the epidermis are predominantly composed of large (>400-kDa) profilaggrin polyproteins. ^{56,57)} Upon the terminal differentiation of keratinocytes, profilaggrin is cleaved into 10-12 essentially identical 37-kDa filaggrin peptides. The liberated filaggrin aggregates the keratin filaments, ⁵⁶⁾ causing a collapse of the granular cells into a flattened squame-shape. In addition, the degradation products of filaggrin contribute to moisture retention in the cornified layers. Thus, filaggrin, a major component of keratohyalin granules, is indispensable to the normal, intact, skin barrier function. In this context, a loss or reduction in filaggrin expression results in excessively dry skin and impaired barrier function, which leads to clinical features of IV.

In 2006, *FLG* mutations were identified in IV patients in European populations¹³⁾ and have been shown to be major predisposing factors for atopic dermatitis.⁵⁸⁾ Subsequently, *FLG* mutations were identified in Japanese, Chinese, Taiwanese and Korean populations.^{59,60)} Based on the information about population-specific *FLG* mutations, numbers of cohort studies of atopic dermatitis for *FLG* mutations have been performed confirming that about 25–50% of patients with atopic dermatitis were demonstrated to harbor *FLG* mutations as a predisposing factor. It was demonstrated that *FLG* mutations are also strongly associated with atopic dermatitis in the Japanese population.^{59,61)} Skin barrier defects due to *FLG* mutations are thought to play important roles in the pathogenesis of atopic diseases including atopic dermatitis, allergic rhinitis and asthma.⁶²⁾

Recessive X-linked ichthyosis (RXLI)

Genetic defects in the steroid sulfatase gene (*STS*) were reported to underlie RXLI.^{3,4)} Most *STS* mutations underlying RXLI are large deletions and, nowadays, fluorescence *in situ* hybridization (FISH) techniques are a useful tool in detecting causative *STS* mutations.⁶³⁾ The hyperkeratosis and scaling observed in RXLI are associated with an abnormal accumulation of cholesterol sulfate in the stratum corneum.⁶⁴⁾ Steroid sulfatase is concentrated in lamellar granules and then secreted into the intercellular spaces of the stratum corneum, along with other lamellar granule-derived lipid hydrolases.⁶⁵⁾ In those spaces, steroid sulfatase degrades cholesterol sulfate, generating some cholesterol for the barrier. Furthermore, the progressive decline in cholesterol sulfate permits corneodesmosome degradation leading to intact desquamation.⁶⁵⁾ Thus, two molecular pathways contribute to disease pathogenesis in RXLI. Steroid sulfatase deficiency leads to both malformation of the intercellular lipid barrier, and a delay in corneodesmosome degradation, resulting in corneocyte retension.⁶⁵⁾ In addition, increased Ca²⁺ in the intercellular space of the stratum corneum in X-linked ichthyosis has been reported to contribute to corneocyte retention by increasing corneodesmosomes and interlamellar cohesion.⁶⁵⁾

PRENATAL DIAGNOSIS OF SEVERE CONGENITAL ICHTHYOSES

The quality of life of patients with severe congenital ichthyoses is seriously affected in some cases, so that parental requests for prenatal diagnosis cannot be easily ignored. Due to the recent advances in our understanding of the genetic defects underlying severe congenital ichthyosis, it has become possible to make DNA-based prenatal diagnoses for congenital ichthyosis families by sampling chorionic villus or amniotic fluid in the earlier stages of pregnancy. That lowers the risk to fetal health and reduces the burden on mothers compared with prenatal diagnoses by fetal skin biopsy.¹⁾

In cases of HI, before identification of *ABCA12* as the causative gene, prenatal diagnoses had been performed by fetal skin biopsy and electron microscopic observation at the later stages of pregnancies, 19–23 weeks estimated gestational age, for more than 20 years. ⁶⁶⁻⁶⁹⁾ When a fetus was diagnosed as affected, any interruption at the late stage of pregnancy posed a serious problem.

After the identification of *ABCA12* as the causative gene for HI, it became feasible to perform DNA-based prenatal diagnoses for HI by chorionic villus or amniotic fluid sampling at a much earlier stage of pregnancy. That significantly lowered risk to fetal health and reduced the burden on mothers, as in the case of other severe genetic disorders. ⁷⁰⁾ Indeed, prenatal diagnoses and the exclusion of HI by DNA testing have been performed in our laboratory. ^{70,71)}

Prenatal diagnosis of LI by the ultrastructural observation of fetal skin samples involves a somewhat high-risk, since LI patients can exhibit regional, individual, and familial variability in their disease phenotypes. In LI families with *TGM1* mutations, successful prenatal DNA-base diagnoses and prenatal exclusions of LI have been reported. Prenatal diagnosis by mutation analysis in lipoxygenase-3, 12(R)-lipoxygenase and ABCA12, etc. is theoretically available in LI and CIE families with previously identified mutations on a case-by-case basis.

Successful prenatal diagnosis of EI by fetal skin biopsy was reported in the 1980s⁷⁵⁾ and, at present, prenatal diagnosis by mutation analysis has become feasible for EI in families whose causative mutations have been elucidated.^{76,77)}

CONCLUSION AND REMARKS

As summarized above in this updated review, our knowledge of the molecular genetics and pathogenesis of ichthyosis has advanced dramatically in the last couple of decades. In addition, we now have several powerful tools for the treatment of genetic disorders, such as siRNA genesilencing technology, read-through compounds to read through nonsense mutations, and improved corrective gene transfer techniques. Fortunately, the skin is the most easily accessible organ for these novel treatment approaches. Thus, based on our knowledge of the pathomechanisms of various ichthyoses described in the present review, I am sanguine about the development of novel, highly effective therapeutic methods in the near future.

REFERENCES

- Akiyama M, Shimizu H. An update on molecular aspects of the non-syndromic ichthyoses. Exp Dermatol, 2008: 17: 373–382.
- 2) Oji V, Tadini G, Akiyama M, Blanchet-Bardon C, Bodemer C, Bourrat E, Coudiere P, DiGiovanna JJ, Elias P, Fischer J, Fleckman P, Gina M, Harper J, Hashimoto T, Hausser I, Hennies HC, Hohl D, Hovnanian A, Ishida-Yamamoto A, Jacyk WK, Leachman S, Leigh I, Mazereeuw-Hautier J, Milstone L, Morice-Picard F, Paller AS, Richard G, Schmuth M, Shimizu H, Sprecher E, Van Steensel M, Taïeb A, Toro JR, Vabres P,