newborns.

Furthermore, we need to pay careful attention to administering U46619 into newborns,

because neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due

in part to hypoxia-induced TP hyperresponsiveness® %, Although PPHN is induced by intravenous

infusion of U46619 (~2ug/kg/min)*" %, further investigation is required to examine whether a bolus

injection of U46619 at a low concentration induces PPHN or not.

Taken together, the present study demonstrated that low-dose TP stimulation induced

vasoconstriction of the DA with minimal systemic adverse effects when U46619 is administered at a

concentration of up to 0.05g/g. Although COX inhibitors such as indomethacin and ibuprofen are the

current unique pharmacological treatment for PDA"’, the frequent failure rate of COX inhibitors is

clinically problematic. COX inhibitors also share the similar adverse effects with U46619. Therefore,

we propose that low-dose TP stimulation can be an alternative pharmacological strategy for PDA

treatment when COX inhibitors are difficult to be administered.

The mechanism why U46619 constricted the DA more than other vessels is the next

important question to be clarified, because a considerable number of ex vivo experiments have

7,29

demonstrated that TP agonists constrict a variety of arteries and veins”~. We assume that the higher



sensitivity to U46619 in the DA could be due to its artery type (muscular type), because the structure of
the DA is considered as a muscular type and most of other arteries that we examined belong to an elastic
type. U46619 at a concentration of 0.05ug/g significantly constricted mature fetal DA by ~40% of the
control groups, whereas the same dose of U46619 did not reduce the diameter of MA and blood flow of
the rat neonatal tail. Because resistant muscular arteries supply the blood flow in the colon and tail, the
arterial type may not be the sole reason of the hypersensitivity to U46619 in the DA.

We also examined the abundance of TP expression between the DA and the aorta during
development. Although the expression levels of TP mRNA in the DA were higher than those in the aorta
in the fetal period, the expression levels of TP protein showed no difference between the DA and the
aorta (Supplemental figure 2). Therefore, the abundance of TP expression is not the reason of the
hypersensitivity to U46619 in the DA. It is then highly possible that TP in the DA has higher binding
affinities to TP agonists than that in the other arteries. Several studies have demonstrated that the
affinity state of TP is influenced by interaction with G, 13 and/or G4’ >". Interestingly, recent studies
by Dakshinamurti’s group have demonstrated that a change in oxygen tension from normoxia to
hypoxia provokes hypersensitivity to TXA, in pulmonary arterial myocytes of neonatal piglets®> . The

authors have indicated that hypoxia promotes the membrane localization of TP and increases its ligand




affinity in pulmonary arterial myocytes. The response to oxygen is opposite between pulmonary arteries

and other arteries including the DA. The DA is known to be more sensitive than the adjunct arteries to

changes in oxygen tension®. It should be noted that the response to oxygen is stronger in the mature DA

than in the premature DA>. The present study also demonstrated that the response to U46619 was

stronger in the mature DA than in the premature DA (Figure 1). Therefore, this characteristic may be

responsible for the DA-specific constriction that results from TP stimulation. Further study is

apparently required to understand the mechanism why the DA is hypersensitive to TP stimulation.

In contrast to exogenous TP stimulation by U46619, our data showed that TP inhibition by

the TP antagonist $Q29548 did not have a vasodilatory effect on the neonatal rat DA. Consistent with

this observation, a previous study has demonstrated that a native TXA, was not synthesized in the DA

under physiological conditions®. In addition, no PDA phenotype has been identified in TP knockout

mice to date. Taken together, the evidence suggests that endogenous TXA;and TP are likely to play

minor roles in the physiological closure of the DA.

In conclusion, our results demonstrate that TP agonists are a selective and potent

vasoconstrictor of the fetal and neonatal rat DA with minimal adverse effects when they were

administered at lose dose (up to 0.05ug/g). Although further investigation will be apparently required to



clinically use TP agonists for the patient with PDA, we propose that low-dose TP agonists may serve as

a possible pharmacological therapeutic strategy for DA closure.
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Figure legends

Figure 1 TP stimulation induced vasoconstriction of the fetal rat DA

(A-F) Effects of U46619 on the fetal rat DA at €19 (A-C) and at 21 (D-F). Each panel showed

representative data injected with saline (A, D), U46619 (0.05ug/g: B, E. 5.0ug/g: C, F). Arrows show

the constricted DA. Scale bar: 0.2mm. Ao: aorta, LPA: left PA, RPA: right PA.

(G, H) Effects of various doses of U46619 (from 0.0005 to 5.0p.g/g) (G) (n=3-12) and I-BOP (0.05 and

5.0ug/g) (H) (n=5-10) on the diameter of the fetal rat DA at €19 and e21. p value (vs. saline) Tp<0.05, *

*p<0.01, *p<0.001. (e19 vs. €21) *p<0.05. (n=3-12).

Figure 2 TP stimulation caused DA constriction in the premature and hypoxia-induced PDA

models

(A) The ratios of DA constriction in premature rats injected with U46619 (0.0005, 0.05, or 5.0ug/g).

The diameter of the DA was measured 10, 20, and, 30min after injection. p value (vs. each saline group)

1p<0.05,*p<0.001 (n=4-9).

(B) The ratios of DA constriction in hypoxia-induced PDA model rats injected with U46619 and

indomethacin (indo). p value (vs. saline on hypoxia) Tp<0.05, * p<0.001, (vs. indomethacin on

hypoxia) **p<0.01. (n=3-4)

Figure 3 TP stimulation caused no vasoconstriction of adjunct arteries and veins



(A, B) Constrictive effect of U46619 on the aorta (Ao) (A) (n=3-9) and the pulmonary artery (PA) (B)

(n=4-10) in €19 and d0.

(C-F) Constrictive effect of U46619 on the vertebral artery (VA) (C) (n=4-5), the renal artery (RA) (D)

(n=4-8), the portal vein (PV) (E) (n=4-8), and the marginal artery of the colon (MA) (F) (n=3-6) in d0.

p value (vs. saline) *p<0.001

Figure 4 U46619 did not decrease peripheral blood flow in neonatal rats

(A-F) Representative images of blood flow at lower part of the neonates. Left (A, C, E) and right panels

(B, D, F) indicate relative blood flow “pre-treated” and “post-treated” U46619 injection, respectively.

Upper (B), middle (D), and lower (F) panels indicate U46619-injected group at dose of 0.0005, 0.05,

and 5.0ug/g, respectively.

(G) Effect of U46619 on peripheral blood flow in the tails. “pre” indicates “pre-treated” p value (vs.

pre) Tp<0.05, (vs. 5.0ug/g) *p<0.01 (n=5).

Figure 5 U46619-induced isometric tension of the DA and aorta vascular rings

(A, B) Isometric tension of the DA and aorta rings at €19 (A) or €21 (B), stimulated by various doses of

U46619 (10®, 107, and 10 M). Squares and circles indicate the DA and aorta rings, respectively. p

value (DA vs. aorta) *p<0.001, **p<0.01 (n=4-5).




Figure 6 Thrombosis formation in the microvasculature of the rat lung

(A-C) Rat lung sections from PM20, injected with saline (A), U46619 (B), and arachidonic acid (AA)

(C). Arrows indicate thrombosis formation. Scale bar: 0.1mm.

(D): The ratio of thrombosis formation in all pulmonary capillary arteries. p value (vs. saline) *p<0.001

(n=4).

Figure 7 The effect of TP inhibition on the neonatal rat DA

(A) The effect of TP antagonist $Q29548 on the U46619-induced DA constriction. SQ+U indicates the

group pretreated with SQ29548 and then injected with U46619. p value (vs. saline) **p<0.05, (vs.

SQ+U) *p<0.05 (n=3-4)

(B) The effect of the TP antagonist SQ29548 on the DA in rat neonates. PGE, was injected as a positive

control. Circle, square, and triangle indicate group of SQ29548, PGE,, and saline, respectively. p value

(vs. saline) *p<0.001 (n=3-4).

(C) Effect of a different dosage of $Q29548 (10pg/g) on the DA diameter. p value (vs. saline) *p<0.001

(n=7-8).
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Table

Incidence of complete DA closure

Percent incident (no. complete closed DA/no. DA analyzed)

time after injection U46619 (ug/g)

(min) saline 0.0005 0.05 5
10 0% (0/8) 0% (0/7) 0% (0/8) 11% (1/9)
20 0% (0/8) 0% (0/7) 0% (0/8) 86% (6/7)
30 0% (0/4) 0% (0/4) 75% (6/8) 100% (7/7)
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Introduction diameter was more than 1 cm per year in 23% of patients, and

AAA diameter had expanded to 6 cm in 9% of patients, at which

Aortic aneurysm is the 13" leading cause of death in the United
States, with roughly 15,000 deaths per year [1]. After rupture
occurs, the probability of mortality is greater than 60% [1].
Ultrasonography screening studies of men over 60 years old have
shown that a small abdominal aortic aneurysm (AAA), ie., 3 to
5 cm in diameter, is present in 4% to 5% of patients [2,3]. When
patients with a small AAA were followed for up to 6 years, AAA
diameter had increased in 55% of patients. The rate of increase in

@ PLoS ONE | www.plosone.org

point the risk of rupture significantly increases [3]. Although AAAs
typically continue to expand, increasing the likelihood of rupture
and consequent mortality, no effective pharmacological therapy to
prevent the progression of AAA is currently available.

The hallmarks of AAA are the presence of an inflammatory
infiltrate within the vascular wall, which is followed by proteolytic
degradation of extracellular matrixes (ECM) [4]. Proinflammatory
cytokines play an important role, particularly in the initiation of
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