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CLINICAL STATUS OF VON HIPPEL-LINDAU DISEASE ASSOCIATED PHEOCHROMOCYTOMA IN JAPAN:
A NATIONAL EPIDEMIOLOGIC SURVEY

Taro Shuin”, Masahiro Yao®, Nobuo Shinohara®, Ichiro Yamasaki” and Kenji Tamura"
"Department of Urology, Kochi University School of Medicine
“Department of Urology, Yokohama City University Graduate School of Medicine
*Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine

Abstract:

(Purpose) To understand the current clinical status of pheochromocytoma (Pheo) in patients with von Hippel-Lindau
disease (VHL) in Japan.

(Patients and methods) We picked up and summarized Pheos from a nationwide epidemiologic survey for VHL dis-
ease based on the epidemiologic study program for incurable disease by the Japanese Ministry of Health, Labour and
Welfare. The details of the survey included age of onset, sex, living area, treatment modalities, functional status of the
adrenal gland after surgical treatment, and patient outcome.

(Results) The incidence rate of Pheo in VHL disease in Japan was 15.1% (62/409). Males and females were equally af-
fected. The mean and median ages of onset were 29.7 and 31.5 years, respectively. The age of onset was distributed
between 10 and 75 years and presented two large peaks between 15-20 and 35—40 years. Twenty-six (41.9%) bilateral
cases, 8 (12.9%) paragangliomas, and 4 (6.4%) malignant cases were found. Forty-one (65%) patients underwent surgi-
cal resection once and 13 (9%) underwent 2 or 3 times surgeries whereas six (10%) nonfunctional cases were surveyed
without surgical treatment. Fourteen of 26 bilateral Pheos (56 %) received steroid replacement therapy following sur-
gery. Four cases died from metastases of malignant Pheos and one from a severe infection during steroid replacement
therapy. None of the patients died of cardiovascular complication due to Pheo crisis.

(Conclusion) It is concluded that Pheos in VHL disease developed from a relatively young age and was associated
with 15% of all patients, including a small ratio of malignant cases. More than 40% of cases suffered bilateral adrenal
tumors. The clinical features in Japan appear to be similar to those in the Western countries according to the current
survey.

(Jpn. J. Urol 103(3): 557-561, 2012)
Keywords: von Hippel-Lindau disease, pheochromocytoma, nationwide epidemiological survey
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Epidemiological Investigation of Retinal Angioma of von Hippel-Lindau Disease in Japan

Eriko Matsushita®, Atsuki Fukushima®, Susumu Ishida®, Kunihiko Shiraki®, Shin Yoneya® and Taro Shuin®

W Department of Ophthalmology, Kochi Medical School, ® Department of Ophthalmology, Hokkaido University Graduate School
of Medicine, ® Department of Ophthalmology and Visual Sciences, Osaka City University, Graduate School of Medicine,
2 Department of Ophthalmology, Saitama Medical University, ¥ Department of Urology, Kochi Medical School

BEICBTAEEOXE T, von Hippel-Lindau (VHL) Bic—E0 WS CHEMNTHARET LI L6 0
Twh, L L, DAETCRERAEEFENSNTES Y, VILFARZOBEATHOSEECHRBRHA»TIRL
v, R 21 RS 23 EXMTT, BESIE VHLBICSHT 2 BEATRIC o, BREMHENE, BE, WRE
B BERAAHOSZYMEZHRCEEREL2ToA TOEE VALHREOERMFHMORBERIT 1404 T,
VHLBEBED 4B ICAEL T, BrhiZ1:1 T REEHIIS~68MT, PHHEBSETHo. BEDTH
ARHREE, ATEERRED S BARRERICHFRICS WHERICH o 2. BRUNCH L TIHEIDEREN L BT S L Tw A
FIAEDE L, DWTHEBREFSET S W Cwi, $ vascular endothelial growth factor (VEGF) Hifemy Fiiesd
T RIS ML ERL S o7

Previous reports demonstrate that retinal angioma-is observed in a certain percentage of patients with von
Hippel-Lindau disease (VHL) patients in Europe and the United States. However, because no epidemiclogical inves-
tigation has yet been conducted in Japan, the frequency and conditions of retinal angioma remain obscure in Japan.
From 2009 to 2011, we conducted an epidemiological investigation using questionnaires for neurosurgeons, ophthal-
mologists, urologists and physicians specialized in pancreatic diseases. Of 409 VHL patients, 140 had retinal angio-
ma, a frequency of 34%. The ratio between males and females was 1 : the mean (range) age at the diagnosis was
28.5 (5~68) years. Geographically, distribution of patients is likely to be in a belt-shaped pattern along the coast of
Holskaido, from the Pacific Ocean to the Inland Sea. Most of the patients received laser photocoagulation. New ther-
apeutic approaches, such as intravitreal injection of anti-vascular endothelial growth factor (VEGF) antibody, were
tried in some institutions.

(Atarashii Ganka (Journal of the Eye) 28(12) : 1773~1775. 2011)

Key words: 74 ¥ - by~ - YU FoR @BROEH £2HE HH#. von Hippel-Lindau disease, retinal
angioma, epidemiological investigation, therapy.
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Copy Number Profiling in Von Hippel-Lindau
Disease Renal Cell Carcinoma
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Germline mutations in the VHL tumor suppressor gene cause von Hippel-Lindau (VHL) disease and somatic VHL mutations
occur in the majority of clear cell renal cell carcinoma (cRCC). To compare copy number abnormalities (CNAs) between
cRCC from VHL patients and sporadic cRCC cases without detectable somatic VHL mutations, we analyzed 34 cRCC with
Affymetrix 250K arrays. To increase the power of the study, we then combined our results with those of a previously pub-
lished study and compared CNAs in VHL and non-VHL related cRCC using the genomic identification of significant targets
in cancer (GISTIC) program. In VHL, cRCC GISTIC analysis identified four statistically significant regions of copy number
gain and four statistically significant regions of deletion that occurred in >10% of tumors analyzed. Sporadic cRCC without
detectable VHL mutations had, on average, more copy number abnormalities than VHL ¢cRCC though the most common
regions of loss/gain (e.g., 3p and 14q loss and 5q gain) were present in both tumor sets. However, CNAs on chromosome
arms 7p (gain) and 8p (loss) were only detected in VHL RCC. Although individual copy number abnormality peaks con-
tained clear candidate cancer genes in some cases (e.g., the 3p loss peak in VHL cRCC contained only six genes including
VHL), most peaks contained many genes. To date, only a minority of the candidate genes included in these peaks have
been analyzed for mutation or epigenetic inactivation in cRCC but TNFRSFI0C and DUSP4 map to the 8p region deleted in
VHL cRCC and TP53 and HIF2A (EPASI) mapped to CNA loss and gain peaks (chromosomes |7 and 2, respectively)
detected in sporadic VHL wild-type ¢cRCC. © 2011 Wiley-Liss, Inc.

INTRODUCTION RCC (Maher et al., 1990a,b). Subsequently, (a)
Von Hippel-Lindau (VHL) discase is a domi- VHL disease was shown to result from inactivating
nantly inherited familial cancer syndrome mutations in the VAL tumor suppressor gene

(T'SG) and RCC from patients with VHL disease
demonstrated somatic inactivation of the wild-type
allele (Latif et al., 1993; Prowse et al., 1997) and
(b) most sporadic clear cell RCC (the most

characterized by the development of retinal and
central nervous system hemangioblastomas, clear
cell renal cell carcinoma (¢cRCGQ), phacochromocy-
toma, and pancreatic tumors. VHL disease is a rare
disorder with a birth incidence of ~1 in 36,000
(Maher et al., 1990a,b; Kaelin, 2007) whereas RCC

Additional Supporting Information may be found in the online

accounts for 2-3% of all cancers. Investigations of
the molecular basis of VHL disease have provided
seminal insights into the pathogenesis of sporadic
RCC. Statistical analysis of the age incidence
curves for RCC in VHL disease and sporadic renal
cell carcinoma were compatible with a single rate-
limiting step mutation model for VHL disease and
a two rate limiting mutation model for sporadic
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common form of RCC) were found to harbor bial-
lelic VHL TSG inactivation (Foster et al., 1994;
Gnarra et al., 1994; Banks et al., 2006). Biallelic
inactivation of the VAL "T'SG is a critical and early
event in the pathogenesis of cRCC in VHL disease
and in many sporadic ¢RCC; however, additional
genetic and epigenetic events are required for the
development of ¢cRCC. Recently high resolution
genome wide copy number analysis and high
throughput sequencing of candidate genes have
been emploved to delineate the “post-VHL. inacti-
vation events” that occur in the development of
sporadic RCC (Beroukhim et al., 2009; Dalgliesh
et al., 2010; Tan et al, 2010). However, RCC is
clinically and histopathologically heterogeneous.
Familial RCC, such as those seen in patients with
VHL disease, provide an opportunity to investi-
gate a more homogeneous group of cancers. Only
one previous study (Beroukhim et al., 2009) has
reported high resolution copy number analvsis of
¢RCC from patients with VHL disease.

To further define the role of large-scale copy
number abnormalities in ¢cRCC tumorigenesis in
VHL disease and in VHL-wild-type sporadic
c¢RCG, we analyzed tumor DNA for copy number
abnormalities from 21 ¢RCC from VHL disease
patients and 13 sporadic ¢cRCC without evidence
of somatic VHL inactivation and undertook an in
silico analysis using the genomic identification of
significant targets in cancer (GISTIC) program of
our own results and those previously published by
Beroukhim et al. (2009).

MATERIALS AND METHODS

Tumor Samples

Genomic DNA was extracted from primary renal
cancers and cell lines by standard methods, and
stored at -80°C. Three groups of renal cancers were
investigated: (a) 21 clear cell RCC from 18 patients
with von Hippel-Lindau disease, (b) 13 sporadic
clear cell RCC without evidence of somatic VHL
mutations or promoter methylation [details of muta-
tion and methylation analyses have been reported
previously (McRonald et al., 2009)]. In addition, nor-
mal constitutional DNA from two VHL disease
patients was analyzed by SNP arrays. Ethical ap-
proval for collection of clinical material was obtained
from the South Birmingham Ethics Committee and
relevant local ethics committees. DNA concentra-
tions were measured with Nanodrop model ND-
1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE).

Genes, Chromosomes & Cancer DOI 10.1002/gec

Copy Number Analysis

Experiments were performed according to
standard protocols for Affymetrix GeneChip Map-
ping 250K Sty arrays (Gene Chip Mapping 500K
Assay Manual, P/N 701930 Rev2., Affymetrix
Santa Clara, CA). Genotype analysis was per-
formed using Affymetrix Genotyping Console
version 4.0 with the default settings. QC call
rates of the 34 ¢cRCC samples ranged from 87.9%
to 98.7%. The array signal intensity CEL files
of the 34 cRCC and 268 hapmap samples (www.
hapmap.org/downloads/raw_data/affy500k/) were
analyzed together using dchip (Li and Wong,
2001) with invariant set normalization and the PM/
MM difference model. SNP-level raw logZ
ratios relative to the average of the hapmap sam-
ples were exported from dchip. Data within copy
number vartation regions (Affymetrix  Map-
pingZ50K_Sty Annotations release 29, July 2009)
were removed. Raw log2 ratios were centered t a
median of zero and segmented using GLAD
(Hupe et al., 2004) with the HaarSeg algorithm
(Ben-Yaacov and Eldar, 2008). GISTIC analysis
(Beroukhim et al., 2007) was performed using
GenePattern public server (Reich et al., 2006) with
the default settings of amplifications threshold of
0.1, deletions threshold of 0.1, join segment size of
4, and qv threshold of 0.25. SNP, gene, and cytoge-
netic band locations are based on the hgl8 (March,
2006) genome build (http://genome.ucsc.edu).
Raw log?2 ratio data of previously published ¢cRCC
samples (Beroukhim et al., 2009) were kindly
provided by Dr. Rameen Beroukhim.

RESULTS

GISTIC Analysis of Copy Number Analysis Data

The GISTIC software program was developed
to distinguish “driver” (functionally important)
copy number alterations (CNAs) from associated
“passenger alterations.” Thus, the GISTIC
method aims to identify genomic regions that are
aberrant more often than would be expected by
chance and to give greater weight to high ampli-
tude events (e.g., amplifications or homozygous
deletions) that are less likely to represent random
events (Beroukhim et al., 2007). GISTIC calcu-
lates (a) a G score that takes into account the
frequency and the amplitude of the CNAs and (b)
a ¢ value to that reflects the probability that the
specific  CNA results from chance fluctuation
(based on the overall pattern of CNAs across the
genome and taking into account multiple-
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hypothesis testing and possible false-discovery).
We considered all events with ¢ values <0.25 to be
statistically significant.

Comparison of GISTIC Copy Number Analysis in
YHL and Sporadic Non-VHL ¢RCC

T'o most effectively compare the GISTIC copy
number profiles of VHL ¢cRCC tumors with sporadic
VHI. wild-type (VHL-wt) cRCC, we combined our
data on 34 ¢cRCC with that previously reported by
Beroukhim et al. (2009), who analyzed 36 primary
tumors from 12 patients with VHL disease and nine
sporadic VHL-wt cRCC using the same the Sty [
(250K) single nucleotide polymorphism (SNP)
arrays used in our study. Thus, in total, copy num-
ber analysis data was available for 57 VHL, discase
¢RCC and 22 sporadic VHL-wt cRCC.

GISTIC copy number analysis in YHL ¢cRCC

GISTIC analysis of the combined data set of VHL,
¢RCC revealed four statistically significant peaks for
copy number gains: on chromosome 2 (21% of
tumors; peak at 2q31.1), 5 (56%; 5q34), 7 (18%;
7pl4.1), and 12 (11%; 12q12) (Table 1 and Fig. 1).
The peaks on chromosomes 7 and 12 were wide
(~15.9 Mb and ~9.1 Mb, respectively) and contained
large numbers of genes (862 and 693, respectively).
However, the peaks on chromosomes 2 and 5 con-
tained smaller numbers of genes (~ 2.8 Mb and 131
genes and ~1.85 Mb and 133 genes, respectively).

GISTIC analysis identified five statistically sig-
nificant peaks for deletions: on chromosomes 3
(86%; 3p25.3), 4 (14%; 4q28.3), 8 (21%; 8p21.2), 12
(5%; 12q12), and 14 (25%; 14q23.3). The chromo-
some 3 peak (at 3p25.3) contained only six genes
including the VHL 'TSG. The next most significant
peak on chromosome 14 contained 67 genes
whereas those on chromosomes 4 and 8 contained
>200 genes (297 and 220 genes, respectively). The
chromosome 12 peak was narrow and did not con-
tain any known genes (the closest was KIF214).

The median number of significant events (gain
or loss) per VHL disease tumor was 2 (range: 0-7)
(Fig. 3). The most common early event was 3p loss
(present in 9/10 tumors with a single gain/loss
event), followed by 5q gain (of 18 tumors with
only two events all had 3p loss and 16 had 5q
gain). The other changes were all most commonly
seen in tumors with three or more changes though
2q gain was present in two tumors with only two
changes and a 12q deletion, though rare, was pres-
ent as the only change in one tumor.

To identify potential candidate tumor suppressor
or oncogenic genes in areas of copy loss and gain we
interrogated the results of high throughput
sequencing of 3,544 genes in RCC Dalgliesh et al.
(2010) and our previously reported Illumina Gold-
engate methylation array profiling resules for VHL
c¢RCC analyzed in this study McRonald et al
(2009). Lists of the genes in the nine candidate stat-
istically significant regions (Table 1) are recorded in
Supplementary Tables 1 and 2. Strikingly, the iden-
tified region for the most frequent copy number
abnormality, chromosome arm 3p loss, contained
only six genes including the VHL TSG. However,
none of the genes that had been sequenced by Dal-
gliesh et al. (2010) and that mapped within other
significant regions of copy loss or gain were mutated
in >2% of samples (Table 1). Epigenetic inactiva-
tion of 'T'SG by promoter region hypermethylation is
a frequent finding in human cancer including
RCC. We reviewed our previously reported data on
the methylation status of 807 genes (assessed
by IHumina Goldengate methylation assay) by
McRonald et al. (2009) to determine if any genes
that showed evidence of frequent tumor specific
hypermethylation mapped within significant regions
of copy number loss. Three genes had previously
been demonstrated to acquire frequent (>10%)
tumor-specific promoter region CpG methylation in
our previous study of VHL RCC mapped within sig-
nificant regions of number loss region: PI7TX (within
the 4q region) was methylated in 24% of VHL RCC
and TNFRSFI10C (8p22-p21) and DUSP4 (8p22)
were methylated in 24% and 17%, respectively.

GISTIC copy number analysis in YHL wild-type cRCC

GISTIC analysis of the 22 ¢RCC without de-
tectable  VHL  mutations revealed  seven
statistically significant peaks for copy number
gains: on chromosomes 2 (2q14.3; 18% of tumors),
5 [5p15.31 (32%), 5q13.3 (23%), and 5q35.2
(50%)], 6 (6p21.1; 9%), 8 (8q24.3; 23%), and 12
(12q24.32; 32%) (Table 2 and Fig. 2). GISTIC
analysis 1dentified six statistically significant peaks
for deletions: on chromosomes 1 (1p22.2; 32%), 3
(3p25.3; 50%), 11 (11q23.3; 18%), 14 (14q11.2;
41%), 16 (16q23.2; 14%), and 17 (17p11.2; 27%).

The median number of significant events (gain
or loss) per VHL wild-type ¢cRCC tumor was 3
(range: 0-10) (Fig. 3). Although 3p loss was the
joint most frequent event in tumors with only one
or two copy number abnormalities, in contrast to
the VHL tumors, it was found in only 2/5 such
cases and in tumors with three or less copy number

Genes, Chromosomes & Cancer DOI 10.1002/gec
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TABLE 1. GISTIC Analysis Results of 57 VHL RCC

[4:14

Residual q
value after
removing Number Number of
segments of genes genes
shared with  Frequency of Wide peak within wide sequenced Genes mutated
Cytoband Q value higher peaks  gain or loss boundaries peak boundaries in RCC* (frequency) in RCC*
Regions of copy 2q31.1 0.0013382  0.0013382 21% chr2: 151155310-179077227 131 19 RAPGEF4 (1%) RIFI (1%)
number gain 5q34 2.60E-26 2.60E-26 56% chr5: 162372772-180857866 133 24 -

7pl4.1 0.02291 0.022911 18% chr7: 1-158821424 862 132 CARDI I (2%); DGKI, LRGUK,
NCAPG2, PTPRZI, TRIM4, ZRFI, »
PRKAG2, BRAF, CHSTI2, GLI3, E
SNX13, TRIM56, GNGI | and PHFI4
(alt 1%) m

12912 0.15793 0.15793 11% chrl2: 1-91047873 695 161 AKAP3, ASB8, CCND2, E2F7, GDFI 1, P
LRP6, NAV3, NCAPD2, PDZRN4, r
PFIKM, PRKAGI, SPSB2, PLEKHAFS
and ZNF384 (all 1%)

Regions of Copy 3p25.3 2.70E-39 2.70E-39 86% chr3: 10062639-10276299 6 3 VHL (55%)
Number Losses 4q28.3 0.19804 0.19804 14% chr4:62126311-132023141 297 51 ADHé6, COPS4, HERC6, PTPN3 and

USP53 (all 1%)

8p21.2 0.0066086  0.0066086 21% chr8: 1-40668448 220 39 ASAM7, ASDAMI8, ADAM32, DLCI,
PPP2R2A, TNKS and XPO7 (all 1%)

12q12 0.0017333  0.0017333 5% chrl2: 37843161-37882927 0 - -

14923.3  0.0008957  0.0008957 25% chri4: 31759308-50375581 67 27 NIN (1%)

*Data derived from Dalgliesh et al. (2010).
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Figure |. Left panel: GISTIC analysis results for copy number
alterations in 57 renal cancers from patients with von Hippel-Lindau
disease (see text for details) determined by segmentation analysis of
normalized signal intensities from 250K SNP arrays. Amplifications
(red) and deletions (blue) are displayed across the genome (chromo-
some positions, indicated along the y axis). Middle panel: the statisti-
cal significance of the copy gain aberrations identified is displayed as
FDR g values to account for multiple-hypothesis testing. Chromo-
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some positions are indicated along the y axis with centromere posi-
tions indicated by dotted lines. Statistically significant copy gain events
exceeded the significance threshold (green line). Right panel: the sta-
tistical significance of the copy gain losses identified is displayed. Four
statistically significant peaks for copy number gains and five for dele-
tions were detected. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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TABLE 2. GISTIC Analysis Results of 22 VHL Wild-Type Clear Cell RCC

1414

IV 43 giNHS

Residual
q value after
removing Number Number
segments Frequency of genes of genes  Genes contained in copy number abnor-
shared with of gain Wide peak within wide sequenced mality regions that are mutated (fre-
Cytoband Q value higher peaks  or loss boundaries peak boundaries  in RCC* quency) in RCC*
Regions of 2q14.3  0.041496 0.041496 18% chr2: 1-216445899 967 170 TPO, RNF144 (each 1%)
copy number gain  5pl5.31  0.011634 0.13857 32% chr5: [-6698146 34 9 -
5q13.3  0.0045289  0.15441 23% chr5: 73655673-73706663 0 0 -
5g35.2  0.0045289  0.0045289 50% chr5: 172211671-180857866 104 18 NSD1 (1%)
6p21.1 0.034212 0.034212 9% chré: 40850964-47366681 92 14 CDC5L, CUL7, XPO5 (each 1%)
8q24.3  0.16884 0.16884 23% chr8: 138939588-146274826 99 I EEFID, SCRIB (each 1%)
12924.32  0.12806 0.12806 32% | chri2: 124163345-132349534 32 6 -
Regions of copy 1p22.2  0.000834 0.000834 32% chri: 50860054-92105006 197 30 CDKN2C, and PGM! (each 1%)
number losses 3p253  0.00011935 0.00011935 50% chr3: 1-13494937 67 13 VHL (55%), ITPR1 and PPARG (each 1%)
119233 0.18897 0.18897 18% chril: 101247817-129938942 255 61 ATM (3%), MLL (3%), ARHGAP20 (2%),
MMPI10, MMP3, PAFAH IB2,
POU2AFI, TRIM29 and UBE4A (each
1%)
l4q11.2  0.019341 0.019341 41% chri4: 1-20715172 49 5 -
169232 0.0081492  0.0081491 14% chrlé: 77757916-80539342 14 2 -
17pl1.2  0.10166 0.10166 27% chri7: 1-22479311 321 6l TP53, NCORI, NUP88, PERI and

TNFRSFI3B (each 1%),
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Figure 2. Left panel: GISTIC analysis results for copy number
alterations in 22 clear cell renal cell carcinomas with wild-type VHL
determined by segmentation analysis of normalized signal intensities
from 250K SNP arrays. Amplifications (red) and deletions (blue) are
displayed across the genome (chromosome positions, indicated along
the y axis). Middle panel: the statistical significance of the copy gain
aberrations identified is displayed as FDR ¢ values to account for
multiple-hypothesis  testing. Chromosome positions are indicated

abnormalities gains at 5q35.2 or 12q24.3 and loss at
14q11.2 were equally frequent.

Comparison of the gain/loss patterns in VHL
c¢RCC and VHL wild-type ¢cRCC revealed that the
most common CNAs (gains on 5q and losses on 3p
and 14q) were common to both tumor sets (though
the precise GISTIC peaks might vary). Overall,
VHL-wt ¢cRCC had more significant regions of
CNA than VHL RCC. Frequent (>20% of tumors)
statistically significant peaks that were detected in
only one set of tumors included gains on 8q and
losses on 1p and 17p in VAHL-wt cRCC and gain on
7p and loss on 8p in VHL, RCC.

As for VHL RCC, we interrogated the results of
high throughput sequencing of 3,544 genes in
RCC (Dalgliesh et al., 2010) and our previously
reported Illumina Goldengate methylation array
profiling results for VHL-wt cRCC analyzed in this
study by McRonald et al. (2009). Lists of the genes
in the 13 candidate regions are recorded in Supple-
mentary Tables 3 and 4. We note that, despite the
tumors being selected for the absence of a detecta-
ble VHL gene mutation, the GISTIC delincated
region of chromosome arm 3p loss contained the
VHL 'T'SG. Sequencing data for sporadic RCC
were available for 12 of 66 other genes in the GIS-
TIC defined 3p region but none of these genes
were found to be frequently mutated in the study

S o WS
1T e ek s o =2

TR 108 10 e

along the y axis with centromere positions indicated by dotted lines.
Statistically significant copy gain events exceeded the significance
threshold (green line). Right panel: the statistical significance of the
copy gain losses identified is displayed. Four statistically significant
peaks exceed the significance threshold for copy number gains and
six for deletions were identified. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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Figure 3. Distribution of copy number abnormalities (in GISTIC
defined significant regions) in renal cancers from von Hippel-Lindau
disease patients and sporadic renal cancers with wild-type VHL.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.}

by Dalgliesh et al. (2010) (Table 3). In addition,
none of the 159 genes from other significant
regions of copy loss were mutated in >3% of spo-
radic RCC (Dalgliesh et al., 2010; Table 3).
Interrogation of our previous published [llumina
Goldengate methylation array analysis (McRonald
et al, 2009) revealed that EFNB3, which maps
within the 17p copy number loss region, was meth-
ylated in 20% of sporadic VHL-wt ¢cRCC (TP53
was also included in this region).

Genes, Chromosomes & Gancer DOI 10.1002/gcc
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VHL-wt cRCC with 3p loss had more copy num-
ber changes (median: 5, mean: 5.3) than VHL-wt
c¢RCC without 3p loss (median: 1, mean: 2). 8q
gain was detected in 5/11 VHL-wt ¢cRCC with 3p
loss but was not present in VHL-wt ¢cRCC without
3p loss (P = 0.035).

DISCUSSION

We investigated the cRCC from patients with
VHL disease and sporadic cRCC without detecta-
ble evidence of VAL inactivation for copy number
abnormalities using high-resolution SNP microar-
rays. To our knowledge, this study is only the
second array-based genome wide analysis of copy
number abnormalities in VHL disease associated
cRCC. Thus, Beroukhim et al. (2009) reported
previously a study of VHL and sporadic RCC
using the same microarray platform (Affymetrix
250K SNP array) and this provided us with the op-
portunity to undertake a GISTIC-based analysis of
the combined data for VHL, RCC. The combined
analysis revealed five significant regions of copy
number loss and four significant regions of
copy number gain. As expected, the most frequent
copy number change (86% of VHL RCC) was 3p
loss and it was striking that the GISTIC analysis
identified a very small critical region that con-
tained only six genes including the VHL TSG.
The next most frequent change in VHL cRCC
was 5q gain and GISTIC analysis highlighted a ~
18 Mb interval containing 133 genes. The other
significant copy number loss/gain alterations
occurred in no more than 25% of tumors and in
most cases the critical regions identified were large
and contained many candidate genes (though the
infrequent 12q12 loss region was very small and
did not contain any genes). To identify potential
candidate genes that might map within the identi-
fied regions the results from the Cancer Genome
Project sequencing of 3,544 genes in 101 sporadic
RCC (Dalgliesh et al., 2010) were interrogated to
identify frequently mutated genes. However,
excepting VHL, no such genes were identified.
Apart from VHL, the most commonly mutated
genes in ¢cRCC demonstrate mutations in only a
minority of tumors (e.g., 7% for CDKNZ2A, 6% for
PTEN and SETDZ; Dalgliesh et al.,, 2010). In con-
trast, in excess of 50 candidate TSG have been
reported to be inactivated by acquired promoter
region hypermethylation (see Morris and Mabher,
2010 references within) and we have previously
reported a methylation profile of 807 genes in
VHIL, RCC using CpG methylation array method-

Genes, Chromosomes & Cancer DOI 10.1002/gec

ology (McRonald et al.,, 2009). Although only a
fraction of the genes within the five significant
regions of copy number loss were represented on
the Illumina Goldengate methylation array we
note that three genes PITX, TNFRSFI0C, and
DUSP4 were frequently methylated in the VHL
RCC samples. TNFRSF10C and DUSP4 map to
the 8p region that was deleted in VHL RCC (no
significant correlation between the presence of de-
letion and gene methylation was detected).
ITNFRSFI0C encodes a member of the TNF-re-
ceptor superfamily (DcR1) that contains an
extracellular TRAIL-binding domain and a trans-
membrane domain, but no cytoplasmic death
domain (and so is not capable of inducing
apoptosis). The protein is not expressed in many
cancer cell lines and has been reported to show
promoter hypermethylation and silencing in a vari-
ety of cancers including VHL. disease associated
phaeochromocytomas (Shivapurkar et al., 2004;
Margetts et al., 2005). DUSP4 encodes a dual spec-
ificity protein phosphatase (also known as MKP-2)
that was recently reported to be frequently epige-
netically silenced gene in gliomas (Waha et al,,
2010). Hence both TNFRSF10C and DUSP4 would
seem to merit further investigation as candidate
T'SGs in VHL disease associated RCC.

Most RCC in VHL disease patients are detected
presymptomatically and surgically removed when
the tumor reaches ~3 cm. In contrast, only a
minority of sporadic RCC is detected presympto-
matically and so, on average, cRCC removed from
sporadic patients are larger than those removed
from VHL patients. Hence genetic and epigenetic
differences between VHL. RCC and sporadic
VHL-wt ¢cRCC might reflect (a) differences in
stage of tumorigenesis (i.e., later in sporadic cases),
(b) differences in mechanisms of tumorigenesis
according to the presence or absence of VAL muta-
tions, and/or (c) in view of the smaller number of
RCC analyzed, lack of power to detect changes in
the sporadic VHL-wt ¢RCC. Copy number gains
on chromosomes 2, 5, and 12 were found in both
VHL and wild-type VHL c¢RCC (also on chromo-
some 7 but this did not reach statistical
significance in wild-type VHL ¢RCC) but a chro-
mosome 8 peak was only detected in wild-type
VHL ¢RCC. Copy number losses on chromosomes
3 and 14 were found in both tumor types but chro-
mosomes 1, 11, 16, and 17 losses were only
significant in wild-type VHL cRCC. Given that (on
average) non-VHL tumors were more advanced
this might be expected, but it was interesting that
loss on chromosome 8 was only apparent in VHL
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¢RCC, suggesting that it is likely to be preferen-
tially associated with VHL-dependent mechanisms
of tumorigenesis. The presence of 3p25 loss in the
“VHL-wt cRCC” might reflect the presence of
undetected non-coding region or mosaic mutations
in a “contaminating” subset of tumors or that 3p
loss was targeting other 3p TSG or that partial
(hemizygous) VHL inactivation might promote tu-
morigenesis in these cases. However, we note that
whereas 3p25 loss was present in VHL tumors
with very few copy number changes it did not
appear to be such an carly event in the VHL-wt
cRCC suggesting that many such tumors are initi-
ated by VHL independent mechanisms (even if 3p
loss occurs subsequently). 14q loss has previously
been associated with tumor aggressiveness and
poor survival in RCC (Alimov et al.,, 2004). We
note that the chromosomes 2 and 17 regions of
gain and loss, respectively, in VHL-wt ¢cRCC con-
tained the candidate genes HIFZA (EPASI) and
TP53. Inacuvation of VHL leads to increased
expression of HIF-1 and HIF-2 hypoxia inducible
transcription factors but several lines of evidence
suggest that HIF-2 rather than HIF-1 is critical for
driving renal tumorigenesis (Mandriota et al,
2002; Kondo et al., 2003; Raval et al., 2005; Morris
et al., 2009), including the recent finding that a
genome-wide association study of RCC identifies
HIFZA as one of two significant susceptibility loci
(Purdue et al.,, 2011); hence, it may be that gains of

the HIFF2A region in VHL-wt cRCC might partially-

mimic the effects of VHL inactivation.

Consistent with the hypothesis that the sporadic
non-VHL ¢RCC were (on average) removed at a
more advanced stage, VHL-wt cRCC did, on aver-
age, harbor more copy number changes than VHL
cRCC (Fig. 3). A previous analysis of a very large
number of unselected RCC reported that the most
frequent cytogenetic changes were loss of 3p
(60%), 14q (28%), 8p (20%), 6q (17%), Ip (16%),
and 4p (13%), gain of 5q (33%) and trisomy 7
(26%) (Klatte et al., 2009). Copy number analysis
studies of sporadic RCC using high resolution
SNP arrays have demonstrated recurrent losses on
3p, 4, 6q, 8p, 9p, and 14q and recurrent gains on
1q, 2, 5q, 7, and 12 (Dalgliesh et al., 2010), as did
previous smaller studies using lower resolution
microarrays (Cifola et al., 2008; Toma et al., 2008).
Though the design of these studies differed from
ours (sporadic RCC rather than VHL cRCC), as
most unselected RCC will be ¢cRCC with VHL
inactivation, it is apparent that most of the copy
number changes observed in VHL c¢RCC also
occur in sporadic cRCC suggesting that VHL RCC

could be used as a model to elucidate the timing of
genetic changes in the evolution of cRCC (kidneys
removed from VHL patients typically contain, in
addition to the clinical RCC, a multitude of
smaller lesions of varying sizes).

The ultimate aim of cancer geneticists is to
understand the precise pathogenetic mechanisms
that drive tumorigenesis in individual cancers and
so provide a basis for personalized cancer thera-
pies. A comprehensive genomic analysis of RCC
requires knowledge of the mutational, transcrip-
tional, epigenetic, and copy number status of
individual genes. Further advances in the evalua-
tion of gene copy number analysis (e.g., higher
resolution arrays and massive parallel sequencing
techniques) will facilitate the investigation on
copy number status of individual genes. At pres-
ent, the most widely detected copy number
changes are large (often encompassing a whole
chromosome or chromosome arm) but bioinfor-
matic tools such as GISTIC can highlight smaller
regions that are apparently most likely point to
contain key genes (as exemplified with 3p25 and
VHL). Our findings suggest that VHL ¢RCC can
provide a paradigm for delineating the evolution of
the most common form of sporadic RCC. In addi-
tion, although there is overlap between the copy
number changes detected in VHL ¢RCC and spo-
radic VHL-wt cRCC some changes (16q and 17p)
are preferentially associated with specific subtypes
and further studies are required to determine the
potential role of individual genes within these
regions.
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