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Striking In Vivo Phenotype of a Disease-Associated Human
SCN5A Mutation Producing Minimal Changes in Vitro

Hiroshi Watanabe, MD, PhD, FESC; Tao Yang, PhD; Dina Myers Stroud, PhD; John S. Lowe, PhD;
Louise Harris, MD; Thomas C. Atack, BS; Dao W. Wang, MD, PhD; Susan B. Hipkens, PhD;
Brenda Leake, BS; Lynn Hall, MS; Sabina Kupershmidt, PhD; Nagesh Chopra, MD;

Mark A. Magnuson, MD; Naohito Tanabe, MD, PhD; Bjérn C. Knollmann, MD, PhD;
Alfred L. George, Jr, MD; Dan M. Roden, MD

Background—The D1275N SCN5A mutation has been associated with a range of unusual phenotypes, including
conduction disease and dilated cardiomyopathy, as well as atrial and ventricular tachyarrhythmias. However, when
D1275N is studied in heterologous expression systems, most studies show near-normal sodium channel function.
Thus, the relationship of the variant to the clinical phenotypes remains uncertain.

Methods and Results—We identified D1275N in a patient with atrial flutter, atrial standstill, conduction disease, and sinus node
dysfunction. There was no major difference in biophysical properties between wild-type and D1275N channels expressed in
Chinese hamster ovary cells or tsA201 cells in the absence or presence of 81 subunits. To determine D1275N function in vivo,
the Scnba locus was modified to knock out the mouse gene, and the full-length wild-type (H) or D1275N (DN) human SCN5A
cDNAs were then inserted at the modified locus by recombinase mediated cassette exchange. Mice carrying the DN allele
displayed slow conduction, heart block, atrial fibrillation, ventricular tachycardia, and a dilated cardiomyopathy phenotype,
with no significant fibrosis or myocyte disarray on histological examination. The DN allele conferred gene-dose-dependent
increases in SCN5A mRNA abundance but reduced sodium channel protein abundance and peak sodium current amplitudes (H/H,
41.0£2.9 pA/pF at —30 mV; DN/H, 19.2+3.1 pA/pF, P<0.001 vs H/H; DN/DN, 9.3+1.1 pA/pF, P<0.001 versus H/H).

Conclusions—Although D1275N produces near-normal currents in multiple heterologous expression experiments, our data
establish this variant as a pathological mutation that generates conduction slowing, arrhythmias, and a dilated
cardiomyopathy phenotype by reducing cardiac sodium current. (Circulation. 2011;124:1001-1011.)

Key Words: cardiomyopathy m electrophysiology m genetics m ion channels

Voltage—gated sodium channels play a critical role in the
generation and propagation of the cardiac action potential,
and mutations in SCN5A, the gene encoding the major pore-
forming sodium channel « subunit in the heart (Nav1.5), cause
multiple inherited cardiac arrhythmia syndromes, including
long-QT syndrome, the Brugada syndrome, isolated cardiac
conduction disease, sinus node dysfunction, and atrial fibrilla-
tion."” More recently, SCN5A mutations have been associated
with dilated cardiomyopathy (DCM), and such DCM mutations
have been associated with a similar range of arrhythmias.8-15

Editorial see p 993
Clinical Perspective on p 1011

The D1275N SCN5A mutation was initially reported in a
Dutch family affected by atrial standstill, mild conduction

disease, and atrial enlargement but no ventricular structural
abnormality; only subjects who carried a variant in the
connexin 40 promoter displayed the clinical phenotype.!6
Subsequently, D1275N was implicated in a large family
affected by DCM and various arrhythmias such as sinus node
dysfunction, atrial and ventricular tachyarrhythmias, and
conduction disease.8%17 Most recently, the mutation was
reported in a family with atrial tachyarrhythmias, conduction
disease, and ventricular enlargement without impaired
contractility.18

Heterologous expression systems are conventionally used
to assess function of ion channel mutations.2!9 Most studies
(including our own data described below) that have compared
wild-type and D1275N channels in heterologous expression
systems have not shown major differences in the biophysical
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properties of the variant channel.’®2° Thus, although the
mutation has been reported as a cause of unusual phenotypes
in a number of kindreds, its relationship to the clinical
phenotypes remains uncertain.

To address this discrepancy, we have used recombinase-
mediated cassette exchange?! to engineer mice expressing the
mutant human channel (here called DN); we compared the
functional properties of these animals with those expressing
wild-type human alleles (H) that we previously generated in
an identical fashion.2! The data demonstrate that D1275N
causes a severe defect in sodium channel function in vivo,
consistent with the reported clinical phenotypes.

Methods
Study Subjects

The proband and family members were screened for mutations in
SCN5A by polymerase chain reaction amplification of coding regions
and flanking intronic sequences, followed by direct sequencing of
amplicons on an ABI PRISM 3730 DNA Sequence Detection
System (Applied Biosystems, Foster City, CA). Informed consent
was obtained for presentation of the kindred.

Animal Model

All studies using animals were approved by the institutional animal
care and use committees at Vanderbilt University and performed in
accordance with National Institutes of Health guidelines. We have
previously modified the Scnba locus in mouse embryonic stem cells
to enable the technique of recombinase mediated cassette ex-
change.21-23 In our initial studies, we inserted the full-length human
SCN5A cDNA into the targeted locus.?* Mice homozygous for the
exchanged allele (called H/H) expressed only the human allele and
had normal ECGs and ventricular sodium current, supporting the
hypothesis that expression of the exchanged allele was under control
of endogenous Scnda regulatory mechanisms.

For the present study, we used the same technique to generate DN
mice in which the exchanged construct was identical to that
previously used for the H/H mice with the exception of a
¢.3823G—A mutation resulting in p.D1275N and insertion of an
FLAG epitope between residues 153 and 154 of the extracellular
linker S1-S2 in domain I; the FLAG insertion into S1-S2 linker has
previously been found to have no effect on channel gating or cell
surface expression.?425 We also generated FG mice bearing the
wild-type SCN5A allele with the FLAG tag. Initial matings between
mice heterozygous for engineered alleles resulted in H/H, DN/H, and
FG/H mice, and these mice were then bred into the 129/Sv
background. H/H, DN/H, and DN/DN mice were generated from
DN/HXDN/H matings, and H/H littermates were used as controls for
all experiments. To genotype mice, genomic DNA was isolated from
mouse tails, and the target SCN5A polymerase chain reaction
amplicon (c.3688 to ¢.4082) was incubated with Taql (New England
Biolabs, Ipswich, MA) and then electrophoresed in agarose gels.
Taql digests the fragment containing p.D1275 but does not digest
that with p.N1275.

Surface Electrocardiogram

Electrocardiograms were recorded during administration of isoflu-
rane vapor titrated to maintain light anesthesia.?® Baseline ECG
(leads I and II) was recorded for 15 minutes. Heart rate was
measured as the average during a 30-second interval at baseline
when a steady state was reached during anesthesia. For measurement
of all other ECG parameters, 30 seconds of data in each lead were
signal averaged with a custom-built LabVIEW program (National
Instruments, Austin, TX), and the resultant waveform was analyzed
with an electric caliper by an electrophysiologist blind to the
genotype.2? The larger value from each lead was used. QRS duration
was measured from the first deflection of the Q wave (or R wave
when the Q wave was absent) and the end of the S wave defined as

the point of minimum voltage in the terminal phase of the QRS
complex. The QT interval was measured from the beginning of the
QRS complex to the end of the T wave defined as the point where the
T wave merges with the isoelectric line. Heart rate-corrected QT
interval (QTc) was calculated from a formula developed for mice:
QTc=QT/(RR/100) 228

Echocardiogram

Transthoracic echocardiograms were performed on resting conscious
mice and analyzed by a sonographer blinded to the genotype. Signals
were acquired with a 15-MHz transducer (Sonos 5500 system,
Agilent, Santa Clara, CA) at the Murine Cardiovascular Core at
Vanderbilt University as previously described.2?

Histology
Hearts were fixed overnight in 10% formalin, paraffin embedded,
sectioned at 5 wm, and stained with Masson trichrome.

mRNA Quantification

Real-time polymerase chain reaction was conducted with a 7900HT
Real-Time Instrument (Applied Biosystems). mRNA was isolated
from the left ventricles, and cDNA was synthesized from 2 ug of the
RNA by use of the Transcriptor First Strand cDNA Synthesis Kit
with random hexamer primers (Roche Applied Science, Indianapolis,
IL) and used as a template. To generate a standard curve for absolute
quantification, genes of interest were subcloned into the pGEM-T
vector (Clontech, Mountain View, CA). cDNA and 5 different
dilutions of the vector with target DNA were prepared with prede-
signed 6-carboxyfluorescein-labeled fluorogenic TagMan probe and
primers (Applied Biosystems) for SCN5A (Hs00165693 ml) or
B-actin (Mm00607939  S1) in triplicate in the same 94-well plate
for real-time polymerase chain reaction amplification. Data were
collected with instrument spectral compensation and analyzed by use
of absolute quantification and a standard curve with SDS 2.2
software (Applied Biosystems). Each value was normalized to that
for B-actin.

Western Blotting

Protein was extracted from flash-frozen hearts that were pulver-
ized into powder and homogenized in a Dounce apparatus with
1X radioimmunoprecipitation assay buffer. Lysates were centri-
fuged at 10 000g for 5 minutes, and protein content was analyzed
with a bicinchoninic acid assay (Pierce Biochemicals, Rockford,
IL). Protein (40 to 100 pg) from each cardiac sample was
separated by running the sample on a NuPage 8% Tris-acetate gel
(Invitrogen, Carlsbad, CA). The protein was transferred to 0.2 um
nitrocellulose membranes (Amersham Biosciences, Sweden),
which were blocked overnight in 0.05% Tween-20 Tris-buffed
saline (TTBS) plus 5% nonfat dry milk at 4°C and then incubated
with antibodies targeting anti-Nav1.5 (polyclonal antibody,
1:200; Alomone Labs, Israel) or anti-calnexin (polyclonal anti-
body, 1:1000, Stressgen Bioreagents, Belgium) at room temper-
ature for 2 hours. Membranes were washed 3 times with TTBS for
10 minutes each and incubated with secondary anti-mouse and
anti-rabbit horseradish peroxidase-linked antibodies (Amersham
Biosciences) in TTBS at room temperature for 1 hour. The blots
were then washed 4 times for 10 minutes each in TTBS. We
visualized antibody interactions with the ECL system (Amersham
Biosciences).

Immunostaining/Confocal Microscopy

Unfixed hearts were frozen in Tissue Tek and sectioned at 6 pm.
Sections were washed in 1X Dulbecco phosphate-buffered saline
and then incubated in 1X Dulbecco phosphate-buffered saline
containing 0.3% fish gelatin and 0.1% Triton (block) for 1 hour at
4°C. Sections were immunostained with antibodies targeting anti~
Nav1.5 (polyclonal antibody 1:50, Alomone Labs) diluted in block
solution overnight. Samples were then washed 3 times and incubated
with Alexa 488 - conjugated goat anti-mouse IgG (1:400, Invitrogen)
secondary antibody for 1 hour at room temperature. Then sections
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Figure 1. D1275N SCN5A mutation in a patient

with sinus node dysfunction, atrial flutter, and

conduction disease. A, Pedigree. The proband

is indicated by the arrow. Individuals carrying

C wrsensa

the mutation are indicated (+). Individuals who
tested negative for the mutation are indicated
(—). Filled symbols indicate phenotype positive.
B, Electrocardiogram and rhythm strips in the
proband. C, Heterozygous single-nucleotide
change in SCN5A (c.3823G—A) resulting in
p.D1275N.

Alrioventricular block

A T Ai

were washed and coverslips were applied with Vectashield (Vector
Labs, Burlingame, CA). Images were collected with a Zeiss LSM510
Meta confocal imaging system with 20X 1.3 NA lens (pinhole equals
1 airy disk) with 2X zoom and analyzed with LSM 4.0 software.

Sodium Current Recordings

Sodium current was recorded with the whole-cell voltage-clamp
technique in single ventricular myocytes isolated by a modified
collagenase/protease method or in Chinese hamster ovary (CHO)
cells transiently expressing wild-type or D1275N SCN5A.21.30.31
The SCN5A DNA (NM 198056) was subcloned into the pBK-
CMV vector (Stratagene, La Jolla, CA), and the mutation was
prepared with the QuickChange II XL site-directed mutagenesis
kit (Stratagene), followed by verification by resequencing.
SCN5A DNA (1 pg) was transfected with the plasmid encoding
the enhanced green fluorescent protein (pEGFP-IRES, Clontech)
by use of Fugene6 (Roche Applied Science, Indianapolis, IN) in
CHO cells. Cells were grown for 48 hours after transfection
before study. Similar methods were used to study the biophysical
properties of wild-type and D1275N sodium channels transfected
with the sodium channel 81 subunit in human embryonic kidney
cells (tsA201). Late sodium current was measured at the end of
200-ms test pulses to —20 mV from a holding potential of —120
mV (interpulse duration, 5 seconds).

The extracellular bath solution contained (in mmol/L) 145
NaCl, 4.0 KCl, 1.0 MgCl,, 1.8 CaCl,, 10 glucose, and 10 HEPES,
pH 7.4 (NaOH), for sodium current recording in CHO and tsA201
cells. Patch pipettes (=~1.5 mol/L{)) contained (in mmol/L) 10
NaF, 110 CsF, 20 CsCl, 10 EGTA, and 10 HEPES, pH 7.4
(CsOH). To allow recording of sodium current in cardiomyocytes,
the external Na* concentration was lowered to 5 mmol/L,
electrodes with tip resistance <1 mol/L{) were used, and exper-
iments were conducted at 18°C. Data acquisition was carried out
with an Axopatch 200B patch-clamp amplifier and pCLAMP
software (version 9.2, Molecular Devices, Sunnyvale, CA). Cur-
rents were filtered at 5 kHz and digitized with an analog-to-digital
interface (Digidata 1322A, Molecular Devices). To minimize
capacitive transients, capacitance and series resistance were
adjusted to 70% to 85%. Details of the pulse protocols are
presented schematically in the figures.

Action Potential Recordings

Action potentials from isolated mouse ventricular myocytes were
elicited with injection of brief stimulus current (1 to 2 nA, 2 to 6
ms) at 5 Hz in current clamp mode (Axopatch 200A amplifier,
Molecular Devices). The extracellular bath solution contained
(in mmol/L) NaCl 140, KCl 5.4, CaCl, 1.8, MgCl, 1, HEPES 5,
and glucose 10, pH 7.4 (adjusted by NaOH). Patch pipettes
contained (in mmol/L) KCI 110, K,-ATP 5, MgCl, 1, BAPTA
0.1, and HEPES 10, pH 7.2 (adjusted by KOH). Microelectrodes
of 3 to 5 mol/L{) were used. Data acquisition was carried out with
an Axopatch 200B patch-clamp amplifier and pCLAMP. The
action potential durations at 50% and 90% repolarization and the
action potential amplitude were measured.

Data Analysis

Results are presented as mean*SEM. The unpaired ¢ test was used
for comparisons of electrophysiological characteristics between
D1275N and wild-type channels expressed in heterologous expres-

* sion systems. We used ANOVA followed by a post hoc analysis with

Bonferroni correction for all of comparisons among the genotypes of
mice, except for the linear mixed-effects models with Bonferroni
correction for comparisons of in vitro electrophysiological charac-
teristics of mice. All statistical analyses were performed with SPSS,
version 12.0 (SPSS Inc, Chicago, IL). A 2-tailed value of P<0.05
was considered statistically significant.

Results

Clinical Case Presentation

A 19-year-old white man (II-1) presented with recurrent
exertional syncope (Figure 1A, arrow). Physical examina-
tion and echocardiography were normal, and his ECG
demonstrated unusually slow atrial flutter that was con-
ducted 1:1 to the ventricles with hypotension during
exertion (Figure 1B). After catheter ablation of the cavo-
tricuspid isthmus for atrial flutter, he had atrial standstill,
prolonged QRS duration, sinus node dysfunction, high-
degree atrioventricular block, and normal QT interval. A
cardioverter-defibrillator was implanted. He has been
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Figure 2. Electrocardiography in mice. A,

SN

Representative ECG traces in lead | at 3
weeks. B, Representative signal-averaged
ECG traces in leads | (black) and Il (gray)
at 3 weeks. See Table 1 for detailed
results. C, Arrhythmias recorded in
DN/DN mice at 12 weeks.
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asymptomatic for 10 years, and his echocardiography has
been normal. We identified a missense mutation in SCN54,
c.3823G—A in exon 21 (Figure 1C), resulting in
p-D1275N within a transmembrane domain of the protein
(segment 3, domain III); the variant connexin 40 associ-
ated with atrial standstill in the reported Dutch kindred was
absent. 6 Both his mother (I-2) and 1 son (III-2) share the
mutation but have no clinical findings.

DN Mice Are Viable and Display
Gene-Dose-Dependent Conduction Slowing

and Arrhythmias

The distribution of pups from DN/HXDN/H matings was
in Hardy-Weinberg equilibrium (52 H/H, 107 DN/H, 54
DN/DN). During a follow-up of 12 weeks, 1 DN/DN
mouse died suddenly, but no DN/H or H/H mice died. ECG
recordings revealed that the DN allele caused abnormal
phenotypes in a gene-dose-dependent fashion at 3 weeks
(Figure 2A and 2B, and Table 1). The DN allele was
associated with slow heart rate and slow cardiac conduc-
tion (prolongation of the P-wave duration, PR interval, and
QRS duration) at 3 weeks, and similar changes were
observed at 12 weeks. In mice with ECGs recorded at both
3 and 12 weeks, the prolongation of the P-wave duration,
PR interval, and QRS duration associated with the DN

~— 100 ms i 0.5 mv

allele was progressive with age. In addition, spontaneous
monomorphic and polymorphic ventricular tachycardia
was observed in 7 of 9 DN/DN mice during 15-minute
recording periods under light anesthesia at 12 weeks, but
no arrhythmia was observed in 18 DN/H or 10 H/H
littermates studied under the same conditions (Figure 2C).
Sinus node dysfunction (n=3), atrioventricular block (second
degree or higher; n=4), and atrial fibrillation/tachycardia
{(n=5) also occurred only in DN/DN mice, not in DN/H or
H/H littermates.

Reduced Contractile Function in DN Mice

There was consistent and statistically significant end-dia-
stolic and end-systolic left ventricular dilatation and cal-
culated left ventricular fractional shortening reduction in a
gene-dose-dependent fashion (Figure 3A and Table 2).
Histological examination of mouse hearts revealed that the
DN allele was associated with ventricular dilatation but
was not associated with significant fibrosis or myocyte
disarray (Figure 3B). One possibility is that the FLAG tag
incorporated into the DN allele contributes to the pheno-
types in the DN animals. However, we found no difference
in ECG and echocardiographic phenotypes between H/H
and FG/FG animals, indicating that the FLAG tag does not
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Tahle 1.  ECG Phenotype
HH DN/H DN/DN
At 3 weeks
n 1 20 9
Heart rate, bpm 388:+8 354+8* 335+15*
P-wave duration, ms 13.0£0.6 17.0+0.3* 19.4*0.5%
PR interval, ms 33.7£0.7 356+07  44.1+0.9%
QRS duration, ms 9.8+0.2 11.8+0.3* 223+22%
QT interval, ms 485+19 50.2*+1.1 67.6+4.2*
QTc interval, ms 389+16 385+0.8  50.2+25%%
At 12 weeks
n 10 18 9
Heart rate, bpm 3878 36811 31718
P-wave duration, ms 14+£05 18603 27.1x1.2%
PR interval, ms 37.8£0.8 39.7+0.7  57.1x3.1%
QRS duration, ms 107404 12.9:+03 33427
QT interval, ms 51.2+€0.6 54.8+0.8 77.9+3.7%
QTc interval, ms 41106 428+09  559+1.8%%
Ratio of week 12 to week 3, %%
n 9 14 6
Heart rate, bpm 1012 103+4 11918
P-wave duration, ms 104+4 112+5 143114
PR interval, ms 113+3 115x2 125:+5*
QRS duration, ms 1114 1164 154+14%
QT interval, ms 1065 114::3 11711
QTc interval, ms 1065 1153 1236

QTc=QT/(RR/100)"2 (mouse-specific).
*P<0.05 vs H/H; 1P<0.05 vs DN/H.
FFor animals with measurements at both time points.

contribute to the ventricular dysfunction or other pheno-
types observed in DN animals.

Sodium Current Is Reduced in DN Myocytes

The manifest conduction slowing in DN mice is consistent
with loss of sodium channel function. However, sodium
current amplitudes and gating observed with heterologous
expression of wild-type and D1275N channels in CHO
cells were nearly indistinguishable (Figure 4A through 4C
and Table 3). In CHO cells, there was also no difference in
the voltage dependence of activation and inactivation or in
the time course of inactivation. Similarly, only minor
differences were observed between wild-type and D1275N
channels coexpressed with B1 subunits in tsA201 cells;
current amplitudes were nearly identical, but there were a
slight shift in the voltage dependence of activation and an
increase in late sodium current (percent to peak current:
wild-type, 0.22%0.05%, n=7; DI1275N, 1.34+0.11%,
n=8; P<0.001; Figure 4D through 4F and Table 3).

In contrast, in ventricular cardiomyocytes, peak sodium
current amplitude was markedly reduced in DN/H and
DN/DN mice compared with H/H littermates (Figure 5A and
5B and Table 3). In addition, late sodium current was
increased in DN/DN mice compared with DN/H and H/H
littermates (Figure 5C). We also found that sodium current in

Sodium Channel Mutation In Vivo 1005

Figure 3. Dilated cardiomyopathy phenotype. A, Representative
echocardiograms showing prominent increased end-systolic
dimensions in DN/H and DN/DN mice at 12 weeks. See Table 2
for summary results. B, Masson trichrome staining in mice
hearts. Scale bars indicate 1 mm.

DN/DN myocytes displayed consistent changes in gating.
The voltage dependence of inactivation was positively shifted
in DN/DN mice compared with DN/H and H/H mice (Figure
5D). The time course of inactivation was slower in DN/DN
mice compared with DN/H and H/H littermates (time
constant at —30 mV: DN/DN, 5.5%0.2 milliseconds;
DN/H, 2.8+0.1 milliseconds; H/H, 2.7+0.2 milliseconds;
Figure 5E and 5F). There was no difference in the voltage
dependence of activation. The DN allele was associated
with decreased action potential amplitude, consistent with
the decrease in peak sodium current, and with prolonged
action potential duration, consistent with the increase in
late current (Figure 6).

Sodium Channel Protein Abundance Is Reduced in
DN Myocytes

Western blotting showed a reduction in sodium channel
protein abundance associated with the DN allele, and the
changes were much more dramatic in DN/DN compared
with DN/H hearts (Figure 7A and 7B). The abundance of

Table 2.  Echocardiographic Phenotype at 12 Weeks
HH (n=9)  DN/H (n=19)  DN/DN (n=12)

Septal wall, mm 0.75+0.02 0.72+0.02 0.69+0.03
Posterior wall, mm 0.51+0.03 0.47+0.01 0.51+0.04
Left ventricle, mm

End diastole 3.01+0.08  3.09+0.08 3.33+0.07*

End systole 1.49%0.09 1.76+0.05* 2.01+0.05%t
Fractional shortening, %  52.0+1.6 43.1£0.7* 39.9+0.7*

*P<0.05 vs H/H; 1P<0.05 vs DN/H.

Downloaded from http://circ.ahajoumals?(ﬂrg/ at Niigata Univ on September 29, 2011



1006 Circulation August 30, 2011
B C
T ofe o TDiEmg s+
@ i —— Yl o
g 5o S~ 5 oﬁi %} 3
bl H = W
£ 100/ g o8l %
3 15@% ‘ 204 %
£+190¢ , B - Figure 4. Wild-type and D1275N sodium
p el & H cR
7‘%,200;% i‘éﬁl’gi'%/%e w02 «S‘i current in Chinese hamster ovary cells (A
A L ‘ 0.0+ ~ i through C) and tsA201 cells (D through
80 40 ¢ 40 -120 -80 40 @ F). Wild-type or D1275N channels were
Test potential (mV} Test potential (mv) coexpressed with 81 subunits in tsA201
E F cells. A and D, Representative current
traces. See Table 3 for summary results.
o 6 o B and E, Current voltage relationships. C
2 % os and F, Voltage dependence of activation
= g and inactivation. The pulse protocols are
:‘g -200 3 08 shown in the inset.
% g (o] OB
& 400 4 B =
= O Wikdype £ 02
2 . DIZVEN B
= gno ; : ! . o

1

Test polential (mV)

the control calnexin protein was similar among H/H
(reference, 100+6%), DN/H (103=4% of H/H), and
DN/DN mice (1005% of H/H) (P=NS for each). Al-
though sodium current and sodium channel protein were
reduced in DN/DN and DN/H mice compared with H/H
littermates, real-time polymerase chain reaction showed
that SCN5A transcript levels were elevated in mice with the
DN allele (Figure 7C). Expression levels of B-actin tran-
scripts were similar among H/H (reference, 100x1%),
DN/H (100+1% of H/H), and DN/DN mice (102%5% of
H/H) (P=NS for each). Immunostaining experiments were
conducted in heart sections at 3 weeks (Figure 8). The DN
allele was associated with reduced levels of cell surface
expression. Notably, staining was obvious on the lateral
myocyte aspects in H/H hearts but was nearly absent in
DN/DN hearts stained under identical conditions.

PEL s QR b B+ S
Test potential (mV)

1

Discussion
The D1275N mutation has been associated with sinus node
dysfunction, conduction abnormalities, tachyarrhythmias,
and contractile dysfunction.89.16-18 However, in previous
studies, the evidence implicating D1275N as the causative
mutation has been weak: for example, in the large Dutch
kindred, the contribution of an additional connexin variant
was invoked to explain why only a minority of subjects
displayed a clinical phenotype, but that variant was absent
in the proband reported here. In addition, D1275N does not
generate major changes in sodium channel function in
heterologous expression studies.?9.16-18 Thus, despite the
previous and the present clinical case reports, the formal
possibility remained that D1275N does not actually con-
tribute to the abnormal phenotypes. To address the role of
this (and other) variants in mediating sodium channel-

Table 3. Sodium Channel Gating in Heterologous Expression Systems and Ventricular Cardiomyocytes
Peak Current Density Voltage Dependence Voltage Dependence
at —30 mV of Activation of Inactivation
pA/pF n Vi/e, MV n Vi, MV n
CHO cells
Wild type —160+20 25 —35.4+0.6 25 —84.5x1.0 24
D1275N —159+21 28 —-34.7+0.6 28 —88.4+0.8 27
1sA201 cells
Wild type —454+48 16 —47.7+1.1 16 —89.4+0.7 19
D1275N —432+71 13 —-35.7+1.1% 13 —88.0+1.6 18
Cardiomyocytes*®
H/H —40.9+2.9 10 —441+1.0 10 -84.1%+1.0 10
DN/H —-19.2+3.1% 12 —44.3+1.4 12 —81.2+11 12
DN/DN —9.3+1.1§| 12 —456+0.9 12 ~76.5+0.8§) 12

CHO indicates Chinese hamster ovary; n, number of cells. Study conditions differ for heterologous expression systems and
cardiomyocytes as described in Methods.
*Cardiomyocytes from 3 mice for each genotype.

1P<0.001 versus wild type; $P<0.05 versus H/H; §P<0.01 versus H/H; [|P<<0.01 vs DN/H.
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linked clinical phenotypes, we generated a series of mouse
lines in which the murine cardiac sodium channel was
ablated and human alleles were substituted in the murine
Scnba locus. The technique of recombinase-mediated cas-
sette exchange allowed us to place wild-type or mutant
human sodium channel ¢cDNAs in the murine cardiac
sodium channel locus.?! We have previously reported that
this approach eliminates expression of the murine channel
and that sodium currents from unmodified wild-type mu-
rine ventricular myocytes and those expressing wild-type
human SCN5A are indistinguishable, indicating that ex-
pression of the exchanged sequence is determined by
endogenous sodium channel regulatory mechanisms.2!

DN Mice Display Sodium Channel Dysfunction

Sodium current amplitude was similar between D1275N
and wild-type channels when expressed in heterologous
expression systems in the present study in either the
absence or presence of B1 subunit.’® This is in agreement
with most results previously reported, although 1 group
has found that D1275N channels generate significantly less
current than wild-type channels in tsA201 cells; the reason
for this discrepancy is unknown.2® In our mouse model,
D1275N was associated with decreased levels of sodium

1

DRYDN
{n=12}

channel protein by Western analysis of total ventricular
protein, decreased expression of sodium channels at the
ventricular myocyte surface, and marked reduction of
sodium current. In addition, we observed increased late
current and altered voltage-dependence of channel inacti-
vation. Thus, channel dysfunction conferred by D1275N
becomes evident in the myocyte environment. The major
change, reduction in peak sodium current, could represent
decreased cell surface expression and/or altered gating of
the channel protein. One possible explanation in either
case is altered interactions with sodium channel partners,
present in myocytes and absent in CHO and tsA201
cells.3233 There is precedent for such a hypothesis; the
E1053K SCN5A mutation, which is associated with a loss
of sodium channel function phenotype, has no effect on
current density when studied in heterologous expression
systems but abolishes binding of the channel to ankyrin-G
and reduces cell surface expression and sodium current in
cultured cardiomyocytes.3* However, although E1053K
affects channel gating under heterologous expression,34
altered channel gating by D1275N was found only in the
mice, not in heterologous systems, in our study. This is
clearly not a general rule because channel dysfunction
observed with heterologous expression of other mutants
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Figure 6. Action potential in male ventricular cardiomyocytes at
3 weeks. A, Representative action potential traces. B, Action
potential duration at 50% and 90% repolarization. C, Action
potential amplitude. *P<0.05 vs H/H; 1P<0.01 vs H/H; $P<0.01
vs DN/H. n Indicates the number of cardiomyocytes from 3
mice.

(delKPQ1505-1507 and 1795insD) recapitulates pheno-
types observed clinically and in genetically modified
mice.7.35-37

Association of Sodium Channel Mutations

With Cardiomyopathy

In addition to arrhythmias, SCN5A mutations have been
associated with cardiomyopathy.8-15 To date, 12 rare
variants in SCN5A have been identified in cardiomyopa-
thy, and all of the variants have been associated with
arthythmia phenotypes that result from loss of sodium
channel function.8-15 In our mouse model, the loss of
sodium channel function by D1275N is consistent with
biophysical properties of other SCN5A mutations associ-
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Figure 7. Sodium channel expression levels at 3 weeks. A, Rep-
resentative Western blots in ventricles. B, Sodium channel
expression levels normalized to those of H/H. Calnexin was
used as the loading control. C, Relative expression levels of
SCNB5A transcript normalized to those of p-actin in ventricle.
*P<0.05 vs H/H.

Relative expression level to g-actin €7

ated with DCM, 101138 and findings in clinical and exper-
imental studies suggest that a marked reduction in sodium
current is critical for the development of cardiomyopa-
thy.13.14.39.40 In prior studies, mice with 90% reduction of
Scnba expression level developed cardiac dysfunction,3®
whereas heterozygous Scnfa knockdown mice (Scnsat’™)
display normal cardiac function.?® In our study, mice
expressing D1275N, one of the initially reported SCN5A
mutations in a cardiomyopathy kindred,?® showed a reduc-
tion in sodium current with disrupted channel gating and
developed evident cardiomyopathy at 12 weeks. This is
consistent with other reports describing that both R814Q
occurring homozygously and the compound heterozygous
occurrence of the W156X and R225W are associated with
cardiomyopathy.!3-14 In these settings, the cardiomyopathy
phenotype is generally absent in heterozygotes.!3.14
Among 12 rare variants in SCNSA associated with
cardiomyopathy, 7 are located in transmembrane domains,
and 6 of them, including D1275N, are predicted to change
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the electric charge of substituted amino acids.8-!5 These
substitutions may lead to changes in channel structure,
resulting in altered channel gating and/or reduced channel
expression levels directly or by disrupted interaction with
sodium channel accessory proteins.

Although this study and previous work strongly imply
that loss of sodium channel function has a critical role for
development of cardiomyopathy,'94! the mechanisms re-
main controversial. The surface ECG tracings in DN mice
(Figure 2) not only demonstrate gene-dose-dependent
conduction slowing but also suggest altered activation
sequence (with ECG complex splintering); thus, electro-
mechanical dyssynchrony, a well-recognized cause of
cardiac contractile dysfunction,®2 may be sufficient to
explain the DCM phenotype. Another possibility raised by
a recent report that suggests 2 pools of sodium channel
protein in heart is that the mutant channel does not target
the appropriate subcellular domain to support normal cell
propagation.** Among causative genes for DCM, cytoskel-
etal components such as syntrophins and dystrophins have
been associated with SCNSA channel, and disrupted inter-
action with such proteins may result in cardiomyopa-
thy.44-46 Although SCN5A mutations have been associated
with cardiac fibrosis,34047 we did not observe fibrosis
when the mice carrying the DN allele developed cardiac
dysfunction. It has been reported that SCNA-related DCM
phenotype usually develops later (>10 years) than the
onset of arrhythmia phenotypes, suggesting a possibility
that the DCM phenotype is secondarily mediated by
arrhythmia.8-1048 In our study, however, the cardiomyop-
athy phenotype was evident relatively early, in the absence
of sustained arrhythmia. Taking these results together, we
propose that sodium channel dysfunction and electrome-
chanical dyssynchrony represent the primary pathophysi-
ology for DCM in this setting.

Conclusions

We found that the D1275N SCN5A mutation was associ-
ated with cardiomyopathy and multiple arrhythmias in
vivo, in line with clinical findings in our and other
studies.®9.16-18 Although D1275N did not generate serious
channel dysfunction when studied in heterologous expres-
sion systems, the mutation produced extensive channel
dysfunction, notably marked reduction in peak current
amplitude, and a cardiomyopathy phenotype in our mouse
model. Further experiments along the lines outlined above

Sodium Channel Mutation In Vivo 1009

DN/DN

Figure 8. Immunostaining for sodium
channel (Nav1.5) at 3 weeks. Heart sec-
tions from the ventricles were stained
with anti-Nav1.5 (green). Note the obvi-
ous lateral staining in the H/H heart and
its absence in the DN/DN heart.

50um

are required to elucidate the precise mechanisms for
channel dysfunction and how this leads to the DCM
phenotype. Defining the mechanisms underlying the dis-
connect between the results in heterologous expression
systems and those in myocytes will contribute to furthering
our understanding of the variable phenotypes and pen-
etrance of D1275N and other SCN5A mutations.
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CLINICAL PERSPECTIVE

A conventional approach to characterize the function of ion channel mutations is to compare wild-type and variant channel
function by heterologous expression in mammalian, noncardiac cells like Chinese hamster ovary or human embryonic
kidney cells. The cardiac sodium channel mutation D1275N has been reported in multiple individuals and families with
a range of phenotypes, including arrhythmias and dilated cardiomyopathy; however, conventional heterologous expression
studies have not identified major differences between wild-type and D1275N function. Thus, it has even been uncertain
whether this mutation causes the clinical phenotypes with which it has been associated. In this study, we addressed this
issue by studying mice in which the cardiac sodium channel locus had been disrupted and replaced with full-length human
wild-type or D1275N mutant sodium channels. We observed slowed and disordered cardiac conduction and decreased
contractile function in mice bearing the mutation; mice with 2 D1275N alleles displayed worse phenotypes than those with
1 variant allele. In vitro electrophysiological studies identified reduced peak cardiac sodium current as a key defect, and
this is consistent with the observed reduced conduction velocity. The major clinical implication of these findings is that
heterologous expression may be insufficient to assess mutant channel function. In addition, the data lend support to the
concept that sodium channel mutations are associated not only with arrhythmias but also with dilated cardiomyopathy
phenotypes. The mutant mice will be an invaluable tool to dissect mechanisms underlying these findings.
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Electrocardiographic Characteristics and SCN54 Mutations
in Idiopathic Ventricular Fibrillation Associated With
Early Repolarization

Hiroshi Watanabe, MD, PhD, FESC; Akihiko Nogami, MD, PhD; Kimie Ohkubo, MD, PhD;
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Background—Recently, we and others reported that early repolarization (J wave) is associated with idiopathic ventricular
fibrillation. However, its clinical and genetic characteristics are unclear.

Methods and Results—This study included 50 patients (44 men; age, 45+ 17 years) with idiopathic ventricular fibrillation
associated with early repolarization, and 250 age- and sex-matched healthy controls. All of the patients had experienced
arthythmia events, and 8 (16%) had a family history of sudden death. Ventricular fibrillation was inducible by
programmed electric stimulation in 15 of 29 patients (52%). The heart rate was slower and the PR interval and QRS
duration were longer in patients with idiopathic ventricular fibrillation than in controls. We identified nonsynonymous
variants in SCN5A4 (resulting in A226D, L846R, and R367H) in 3 unrelated patients. These variants occur at residues
that are highly conserved across mammals. His-ventricular interval was prolonged in all of the patients carrying an
SCN5A4 mutation. Sodium channel blocker challenge resulted in an augmentation of early repolarization or development
of ventricular fibrillation in all of 3 patients, but none was diagnosed with Brugada syndrome. In heterologous
expression studies, all of the mutant channels failed to generate any currents. Immunostaining revealed a trafficking
defect in A226D channels and normal trafficking in R367H and L846R channels.

Conclusions—We found reductions in heart rate and cardiac conduction and loss-of-function mutations in SCN54 in patients
with idiopathic ventricular fibrillation associated with early repolarization. These findings support the hypothesis that decreased
sodium current enhances ventricular fibrillation susceptibility. (Circ Arrhythm Electrophysiol. 2011;4:874-881.)

Key Words: arthythmia m sodium channel m electrophysiology m genetics m mutations

I Early repolarization or J-wave is characterized by an decades.! However, early repolarization can be observed
elevation at the junction between the end of the QRS under various negative biological conditions, such as low

body temperature and ischemia, >4 and there is increasing
evidence that early repolarization is associated with an
complex and the beginning of the ST-segment (J-point) in a increased risk of ventricular fibrillation and sudden cardiac
12-lead ECG and generally has been considered benign for death.>-7
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In previous studies, including our own, early repolarization
in the inferior or lateral leads was associated with pathogen-
esis in idiopathic ventricular fibrillation.56 Moreover, early
repolarization in the right precordial leads also has been
associated with idiopathic ventricular fibrillation.® Heritabil-
ity of early repolarization has been shown in a recent
population-based study,” and as in other arrhythmia syn-
dromes such as long QT syndrome and Brugada syndrome, '
ion channel genes are responsible for idiopathic ventricular
fibrillation associated with early repolarization.!'-3 A muta-
tion in KCNJ8, which encodes a pore-forming subunit of the
ATP-sensitive potassium channel, has been identified in
idiopathic ventricular fibrillation with early repolariza-
tion.!!.1* Mutations in L-type calcium channel genes, includ-
ing CACNAIC, CACNB2B, and CACNA2D], also have been
associated with idiopathic ventricular fibrillation with early
repolarization.'2

In this study, we compared electrocardiographic parame-
ters between patients with idiopathic ventricular fibrillation
and healthy controls and found that heart rate and cardiac
conduction were slow in patients with idiopathic ventricular
fibrillation. Furthermore, we screened patients with idio-
pathic ventricular fibrillation for mutations in SCN54, which
encodes the predominant cardiac sodium channel « subunit
and is critical for cardiac conduction. Here, we present the
clinical and in vitro electrophysiological characteristics in
idiopathic ventricular fibrillation associated with early
repolarization.

Methods

Study Populations

This study included patients with idiopathic ventricular fibrillation
and early repolarization who were referred to our institutions.
Patients were diagnosed with idiopathic ventricular fibrillation if
they had no structural heart disease as identified using echocardiog-
raphy, coronary angiography, and left ventriculography. Baseline
electrophysiological studies without antiarrhythmic drugs were per-
formed based on the indication of each institution. Early repolariza-
tion was defined as an elevation of the J-point, either as QRS slurring
or notching =0.1 mV =2 consecutive leads in the 12-lead ECG.5
Patients were excluded if they had a short QT interval (corrected QT
interval using Bazett formula <340 ms) or a long QT interval
(corrected QT interval >440 ms) in the 12-lead ECG.!516 All
patients received sodium channel blocker challenge, and patients
with Brugada type ST-segment elevations at baseline or after sodium
channel blocker challenge were excluded.!” Twelve-lead electro-
cardiograms recorded in the absence of antiarrhythmic drugs were
compared between patients with idiopathic ventricular fibrillation
and control subjects who were matched to patients with idiopathic
ventricular fibrillation based on gender and age (patient: control
ratio, 1:5). Control subjects were selected from 86 068 consecu-
tive electrocardiograms stored in the ECG database in Niigata
University Medical and Dental Hospital from May 7, 2003 to July
2, 2009.'% Control subjects who had a normal QT interval
(corrected QT interval, 360 to 440 ms) and no cardiovascular
disease or medication use were included. Control subjects with
Brugada type ST-segment elevations or early repolarization were
excluded.

Genetic Analysis

All probands and family members who participated in the study gave
written informed consent before genetic and clinical investigations in
accordance with the standards of the Declaration of Helsinki and
local ethics committees. Genetic analysis was performed on genomic

SCNSA Mutations and Early Repolarization 875

DNA extracted from peripheral white blood cells using standard
methods. The coding regions of KCNQ!, KCNH2, SCN54, KCNEI,
KCNE2, and KCNJ$ were amplified by PCR using exon-flanking
intronic primers,'#-2! and direct DNA sequencing was performed
using ABI 310, 3130, and 3730 genetic analyzers (Applied Biosys-
tems, Foster City, CA).??

Generation of Expression Vectors and
Transfection in Mammalian Cell Lines

Full-length human SCN54 cDNA was subcloned into the mamma-
lian expression plasmid pcDNA3.1+ (Invitrogen, Carlsbad, CA).22
Mutant constructs were prepared using a QuikChange site-directed
mutagenesis kit (Stratagene, La Jolla, CA) according to the manu-
facturer’s instructions. The human cell line tsA201 was transiently
transfected with wild-type or mutant SCN54 plasmid using Lipo-
fectamine LTX (Invitrogen), in combination with a bicistronic
plasmid (pCD8-IRES-hB1) encoding CD8 and the human sodium
channel B1 subunit (hf1) to visually identify cells expressing
heterologous hf1 using Dynabeads M-450 CD8 (Invitrogen).22
Electrophysiological measurements were performed 24 to 72 hours
after transfection.

Electrophysiology

Sodium currents were recorded using the whole-cell patch clamp
technique as previously described.22 Electrode resistance ranged
from 0.8 to 1.5 mol/L{. Data were acquired using an Axopatch
200B patch clamp amplifier and pCLAMPS software (Axon Instru-
ments). Sodium currents were filtered at 5 kHz (=3 dB, 4-pole
Bessel filter) and were digitally sampled at 50 kHz using an
analog-to-digital interface (Digidata 1322A; Molecular Devices,
Sunnyvale, CA). Experiments were performed at room temperature
(20 to 22°C). Voltage errors were minimized using series resistance
compensation (generally 80%). Cancellation of the capacitance
transients and leak subtraction were performed using an online P/4
protocol. The time from establishing the whole-cell configuration to
the onset of recording was consistent (5 minutes) between cells to
exclude possible time-dependent shifts of steady-state inactivation.
The pulse protocol cycle time was 10 s. The data were analyzed
using Clampfit 10 (Molecular Devices) and SigmaPlot 9 software
(Aspire Software International, Ashburn, VA). The holding potential
was —120 mV. The bath solution contained the following (in mmol/
L): 145 NaCl, 4 KCl, 1.8 CaCl,, 1 MgCl,, 10 HEPES, and 10
glucose, pH 7.35 (adjusted with NaOH). The pipette solution
(intracellular solution) contained the following (in mmol/L): 10 NaF,
110 CsF, 20 CsCl, 10 EGTA, and 10 HEPES, pH 7.35 (adjusted
with CsOH).

Immunocytochemistry

For immunocytochemistry, the FLAG epitope was inserted between
residues 153 and 154 of the extracellular linker S1-S2 in domain I.
The FLAG insertion into the S1-S2 linker previously has been shown
to have no effect on channel gating or cell surface expression.22.23
Immunocytochemistry was performed in HEK293 cells transfected
with wild-type or mutant SCN54 plasmid as described previ-
ously.2224 After 48 hours of transfection, the cells were washed with
phosphate-buffered saline, fixed in 4% paraformaldehyde, and
permeabilized with 0.15% Triton X-100 in phosphate-buffered
saline with 3% bovine serum albumin. Then the cells were stained
with anti-FLAG polyclonal antibody (F7425; Sigma-Aldrich, St
Louis, MO; 1:100) for 1 hour at room temperature. Protein
reacting with antibody was visualized with Alexa Fluor 568
labeled secondary antibody (A-11011, Invitrogen, 1:1000). Im-
ages were collected using a Zeiss LSM 510 laser confocal
microscope and analyzed using LSM 4.0 software.

Data Analysis

Differences in parameters between patients with idiopathic ventric-
ular fibrillation and control subjects were analyzed using conditional
logistic regression models. To exclude the effects of multicol-
linearity among electrocardiographic parameters, each electrocar-
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Table 1.  Electrocardiographic Parameters
IVF Patients  Controls  OR (95% Cl)/

N=50 N=250 10 Unit Increase P Value
Male sex, N (%) 44(88)  220(88)
Age, y 4517 45+16
Heart rate, beats/min 62+9 70+=14  0.62 (0.47-0.81) <0.001
PR interval, ms 17534 14720 1.32(1.22-1.43) <0.001
QRS interval, ms 9614 89+8  1.63(1.31-2.02) <0.001
QTc, ms 38825  397x22 0.85(0.75-0.98) 0.02

IVF indicates idiopathic ventricular fibrillation; OR, adds ratio; QTc, corrected
QT interval.

diographic parameter was separately tested in the logistic models.
All statistical analyses were performed with SPSS, version 12.0
(SPSS Inc, Chicago, IL). A 2-sided P<<0.05 was considered
statistically significant. Values are expressed as mean*SD. The
study protocol was approved by the ethics committee of each
institution.

Results

We identified 50 patients with idiopathic ventricular fibrilla-
tion and early repolarization (44 men [88%]; mean age,
4517 years). All of the patients had experienced arrhythmia
events, and 8 (16%) had a family history of sudden death.

Electrocardiographic parameters were compared between
50 patients with idiopathic ventricular fibrillation and 250
healthy control subjects without cardiovascular disease and
not taking medication who were matched with gender and age
(Table 1). The heart rate was slower, and the PR interval and
QRS duration were longer in patients with idiopathic ventric-
ular fibrillation compared with control subjects. The cor-
rected QT interval was shorter in patients with idiopathic
ventricular fibrillation than control subjects. No patient with
idiopathic ventricular fibrillation showed type I Brugada
electrocardiograms in repeated recordings.?* Sodium channel
blockers were administered in all patients, and Brugada type
electrocardiograms were not provoked in any of these pa-
tients.?> Electrophysiological study was performed in 29
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patients. His-ventricular interval was 48 =9 ms, and 4 patients
had prolonged His-ventricular time =55 ms.26 Ventricular
fibrillation was inducible by programmed electric stimulation
in 15 patients (52%).

We screened for mutations in SCN54 in 26 unrelated
patients with idiopathic ventricular fibrillation and identified
3 mutations (A226D, R367H, and L846R) in 3 patients
(Figure 1, Table 2). R367H and L846R are predicted to be
located in the pore region. These mutations were not found in
the genomes of 200 healthy control individuals. Two of the
patients exhibited prolongation of the PR interval, and so-
dium channel blocker challenge was negative for Brugada
syndrome in all of them. Alignment of the amino acid
sequences from multiple species demonstrated that the amino
acids substituted by mutations are highly conserved, support-
ing the importance of these amino acids. A226D and L846R,
but not R367H, are predicted to change the electric charge of
substituted amino acids.

A missense mutation, A226D (Figure 1A), was identified
in a 36-year-old man (patient 1) resuscitated from ventricular
fibrillation. He had experienced multiple episodes of syn-
cope. The physical examination and echocardiography were
normal. His ECG showed prolongation of the PR interval and
early repolarization in leads II, III, and aVF, and J-point/ST-
segment elevation in lead V1 (Figure 2A). Administration of
pilsicainide augmented early repolarization in the inferior
leads and induced ventricular fibrillation, but did not produce
a type I Brugada ECG in the right precordial leads (Figure
2B). Electrophysiological study revealed prolongation of
His-ventricular interval (68 ms), and ventricular fibrillation
was induced by programmed electric stimulation. The pa-
tient’s family history was negative for syncope, sudden
cardiac death, and epilepsy.

A missense mutation L846R (Figure 1B) was identified in
a 27-year-old man (patient 2). He was admitted after multiple
episodes of syncope, and polymorphic ventricular tachycardia
was documented when he lost consciousness. The physical
examination and echocardiography were normal. His ECG
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Figure 1. Mutations in SCN5A identified
in patients with idiopathic ventricular
fibrillation associated with early repolar-
ization. A, The ¢.677C—A mutation in
SCNB5A resulting in p.A226D found in
patient 1. B, The ¢.2537T—>G mutation in
SCNB5A, resulting in p.L846R found in
patient 2. C, The ¢.1100G—A mutation
in SCN5A, resulting in p.R367H found in
patient 3. We previously reported the
R367H mutation (modified from Takehara
et al??). D, Predictive topology of the
SCN5A channel. Circles indicate the
locations of the mutations.
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Table 2.  Characteristics of Idiopathic Ventricular Fibrillation Patients With SCN5A Mutations
Patient Age at Family History Presenting Location of Other ECG Response to Sodium Amino Acid
No. Sex Onset () of SCD Symptom J Wave Abnormalities Channel Blocker Substitution
1 M 36 N Aborted SCD I, N, avF, 1 PR prolongation Augmentation of J-peint A226D

amplitude and VF
2 M 27 Y Aborted SCD I, I, I, avVF PR prolongation Marked QRS prolongation L846R
and VF

3 F 37 N Aborted SCD I, I, avF, V2 N Augmentation of J-point R367H

amplitude and marked
QRS prolongation

ECG indicates electrocardiogram; SCD, sudden cardiac death.

showed prolongation of the PR interval and early repolariza-
tion in lead I (Figure 2C). During the recovery phase of
exercise testing, the amplitude of the J-point/ST-segment was
augmented in leads I, TI, TII, and aVF, and ventricular
fibrillation was induced. Pilsicainide caused marked prolon-
gation of QRS duration and augmented the J-point/ST-
segment amplitude in leads V1 and V2, followed by the
development of ventricular fibrillation (Figure 2C and 2D).
Pilsicainide did not produce a type T Brugada ECG. During
electrophysiological study, His-ventricular interval was 55
ms. His uncle died suddenly.

We previously reported a missense mutation R367H in
patient 3 as a case with Brugada syndrome (Figure 1C).2”
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However, idiopathic ventricular fibrillation associated with
early repolarization was diagnosed at a later time because a
type 1 Brugada ECG has never been seen spontaneously or
after the administration of sodium channel blocker in more
than 1 right precordial lead, and thus the diagnostic criteria
for Brugada syndrome were not fulfilled.2s When the patient
admitted to the hospital after recurrent episodes of syncope,
early repolarization was present in the inferior and right
precordial leads (Figure 2E). After sinus pause, early repo-
larization was augmented in leads II, 111, and aVF, followed
by the development of ventricular fibrillation after a few
hours of the admission (Figure 2F). Procainamide further
exaggerated early repolarization but did not produce a type 1
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Figure 2. Electrocardiograms of patients
with idiopathic ventricular fibrillation and
a mutation in SCN5A. A, Early repolariza-
tion was present in the inferior and right
precordial leads in patient 1. B, After
administration of pilsicainide, early repo-
larization was augmented and ventricular
fibrillation developed. C and D, Pilsicain-
ide caused marked prolongation of QRS
duration and J-point elevation in the right
precordial leads, followed by the devel-
opment of ventricular fibrillation in
patient 2. E, Early repolarization was
present in the inferior leads and right
precordial leads in patient 3. F, The aug-
mentation of early repolarization after
sinus pause, followed by ventricular
fibrillation. G, After the administration of
procainamide, early repolarization was

i .J\M V2 _e‘%w augmented in the inferior. In all patients,
. ; sodium channel blockers did not pro-
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Figure 3. Electrophysiological characteristics of the SCN5A
mutants. Representative traces of sodium current demonstrating
that all of the mutant channels failed to generate any currents.
We previously reported that R367H mutant fails to generate any
currents.2?

Brugada ECG (Figure 2G). During electrophysiological
study, His-ventricular time was prolonged (65 ms) and
ventricular fibrillation was not induced. The patient’s family
history was negative for syncope, sudden cardiac death, and
epilepsy.

The electrophysiological characteristics of the mutant so-
dium channels were assessed in transfected mammalian cells
using the whole-cell patch-clamp technique. Figure 3 shows
representative current traces in cells expressing wild-type or
mutant SCNSA channels. There was no detectable current in
A226D, R367H,27 and L846R mutant channels. Immuno-
staining revealed that cells expressing A226D channels
showed cytoplasmic fluorescence, while cells expressing
wild-type channels showed marked peripheral fluorescence,
suggesting that the mutation results in trafficking defect
(Figure 4). Cells expressing R367H channels and those
expressing L846R channels showed a similar fluorescence
pattern to wild-type channels, suggesting that these mutations
do not affect trafficking.

Discussion

In this study, patients with idiopathic ventricular fibrillation
associated with early repolarization exhibited slower heart
rate and slower cardiac conduction properties than did con-
trols. We found rare, nonsynonymous variants in SCN54 in
patients who had idiopathic ventricular fibrillation associated
with early repolarization. These variants affect highly con-
served residues, and all of the mutant SCN5A channels failed
to generate any currents when expressed in heterologous
expression systems. Immunostaining experiments suggested
2 possible mechanisms for the sodium channel dysfunction
by the SCN54 mutations, a defect of channel trafficking to
cell surface in A226D and critical alterations of the structures
required for the sodium ion permeation or gating in R367H
and L846R that are predicted to be located at the pore region.

Loss-of-function mutations in SCN54 are associated with a
wide range of inherited arrhythmia syndromes, including
Brugada syndrome, progressive cardiac conduction disease,
and sick sinus syndrome.?8-3° Furthermore, our results sug-
gest that SCN54 is a causative gene of idiopathic ventricular
fibrillation associated with early repolarization. Evidence
supporting disease causality of the mutations includes the
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Figure 4. Representative confocal microscopy images. A, Cells
expressing wild-type SCN5A channels showed marked periph-
eral fluorescence. B, Cells expressing A226D channels showed
cytoplasmic fluorescence. C and D, Cells expressing R367H
channels and those expressing L846R channels showed a simi-
lar fluorescence pattern to wild-type channels.

identification of 3 mutations in 3 unrelated probands who
shared similar clinical phenotypes and the loss of sodium
channel function effects in heterologous expression systems
in all of the mutant channels.

Although our findings suggest that loss of sodium channel
function plays a role in idiopathic ventricular fibrillation
associated with early repolarization, the mechanisms of early
repolarization are not understood well. In wedge preparations
of canine ventricles, early repolarization results from in-
creased action potential notches at the ventricular epicardium
by either a decrease in inward currents or an increase in
outward currents.3! A mutation in KCNJ8, which encodes the
ATP-sensitive potassium channel, recently has been identi-
fied in idiopathic ventricular fibrillation associated with early
repolarization."” The KCNJS mutation has shown gain-of-
function effects in ATP-sensitive potassium channels in
heterologous expression studies,'# and augmentation of ATP-
sensitive potassium currents results in the development of
ventricular fibrillation in wedge preparations.?? Decreased
calcium currents also have been proposed as a mechanism for
idiopathic ventricular fibrillation associated with early repo-
larization.?> Mutations in L-type calcium channel genes,
including CACNAIC, CACNB2B, and CACNA2D], recently
have been identified; however, functional studies are not yet
available.’2 Our findings that mutant SCN54 channels dis-
played loss of sodium channel function, resulting in a
decrease of inward currents, are consistent with findings in
prior studies and with the proposed mechanism.!'-!2.1433
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