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Introduction

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the
central nervous system (CNS) white matter mediated by an autoimmune
process triggered by a complex interplay between genetic and environmental
factors, in which the precise molecular pathogenesis remains to be compre-
hensively characterized. The global analysis of genome, transcriptome,
proteome and metabolome, collectively termed omics, promotes us to
characterize the genome-wide molecular basis of MS. However, as omics
studies produce high-throughput experimental data at one time, it is often
difficult to find out the meaningful biological implications from huge data-
sets. Recent advances in bioinformatics and systems biology have made
major breakthroughs by illustrating the cell-wide map of complex molecular
interactions with the aid of the literature-based knowledgebase of molecular
pathways. The integration of omics data derived from the disease-affected
cells and tissues with underlying molecular networks provides a rational
approach not only to identifying the disease-relevant molecular. markers and
pathways, but also to designing the network-based effective drugs for MS.
(Clin. Exp. Neuroimmunol. doi: 10.1111/j.1759-1961.2010.00013.x, September
2010)

remyelination, oligodendrocyte apoptosis, and
axonal degeneration.” Currently available drugs in

Multiple sclerosis (MS) is an inflammatory demye-
linating disease affecting exclusively the central ner-
vous system (CNS) white matter mediated by an
autoimmune process triggered by a complex inter-
play between genetic and ‘environmental factors.!
Intravenous administration. of interferon-gamma
(IFNYy) provoked acute relapses of MS, indicating a
pivotal role of proinflammatory T helper type 1
(Th1l) lymphocytes. More recent studies proposed
the pathogenic role of Thl7 Ilymphocytes in
sustained tissue damage in MS.? MS shows a great
range of phenotypic variability. The disease is classi-
fied into relapsing-remitting MS (RRMS), secondary
progressive  MS (SPMS) or primary progressive
MS (PPMS) with respect to the clinical course.
Pathologically, MS shows a remarkable heterogene-
ity in the degree of inflammation, complement
activation, antibody deposition, demyelination and
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clinical practice of MS, including interferon-beta
(IFNP), glatiramer acetate, mitoxantrone, FTY720
and natalizumab, have proven only limited efficacies
in subpopulations of the patients.* These observations
suggest the hypothesis that MS is a kind of neurologi-
cal syndrome caused by different immunopathological
mechanisms leading to the final common pathway
that provokes inflammatory demyelination. There-
fore, the identification of specific biomarkers relevant
to the heterogeneity of MS is highly important to
establish the molecular mechanism-based personal-
ized therapy in MS.

After the completion of the Human Genome Pro-
ject in 2003, the global analysis of genome, tran-
scriptome, proteome and metabolome, collectively
termed omics, promotes us to characterize the gen-
ome-wide molecular basis of the diseases, and helps
us to identify disease-specific molecular signatures
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and biomarkers for diagnosis and prediction of prog-
nosis. Actually, the genome-wide association study
(GWAS) of MS revealed novel risk alleles for suscep-
tibility of MS.> The comprehensive transcriptome
and proteome profiling of brain tissues and lympho-

cytes identified key molecules aberrantly regulated

in MS, whose role has not been previously predicted
in the pathogenesis of MS.*” Most recently, the
application of next-generation sequencing technol-
ogy to personal genomes has enabled us to investi-
gate the genetic basis of MS at the level of
individual patients.®

Because omics studies usually produce high-
throughput experimental data at one time, it is often
difficult to find out the meaningful biological impli-
cations from such a huge dataset. Recent advances
in bioinformatics and systems biology have made
major breakthroughs by showing the cell-wide map
of complex molecular interactions with the aid of
the literature-based knowledgebase of molecular
pathways.” The logically arranged molecular net-
works construct the whole system characterized by
robustness, which maintains the proper function of
the system in the face of genetic and environmental
perturbations.'? In the scale-free molecular network,
targeted disruption of limited numbers of critical
components designated the hub, on which the bio-
logically important molecular connections concen-
trate, could disturb the whole cellular function by
destabilizing the network.!! From the point of these
views, the integration of omics data derived from
the disease-affected cells and tissues with underlying
molecular networks provides a rational approach not
only to characterizing the disease-relevant pathways,
but also to identifying the network-based effective
drug targets.

Increasing numbers of human disease-oriented
omics data have been deposited in public data-
bases, such as the Gene Expression Omnibus (GEO)
repository (http://www.ncbi.nlm.nih.gov/geo) and
the ArrayExpress archive (http://www.ebi.ac.uk/
microarray-as/ae). Most of these are transcriptome
datasets. Importantly, they really include the data
that have potentially valuable information on
molecular biomarkers and networks of the dis-
eases, when they are reanalyzed by appropriate bio-
informatics approaches, followed by validation of
in silico observations with in vitro and in vivo
experiments.'?

The present review has focused on bioinformatics
approaches to identifying MS-associated molecular
biomarkers and networks from high-throughput data
of omics studies.

128

J. Satoh

Global gene expression analysis

DNA microarray - technology is an innovative
approach that allows us to systematically monitor
the genome-wide gene expression pattern of disease-
affected tissues and cells. This approach enables us
to illustrate most efficiently a global picture of cellu-
lar activity by the messenger RNA (mRNA) expres-
sion levels as an indicator, although the levels of
mRNA do not always correlate with the levels of
proteins directly involved in cellular function. How-
ever, the use of DNA microarray is more convenient
to collect temporal and spatial snapshots of gene
expression than the conventional mass spectrometry,
which is often hampered by limited resolution of
protein separation. In transcriptome analysis, we
could logically assume that a set of coregulated
genes might have similar biological functions within
the cells.

First of all, I would like to briefly overview the
gene expression analysis (Fig. 1). In general, total
RNA fractions containing mRNA species are
extracted from cells and tissues, individually labeled
with fluorescent dyes, and processed for hybridiza-
tion with thousands of oligonucleotides of known
sequences immobilized on the arrays. After wash-
ing, they are processed for signal acquisition on a
scanner. Various types of microarrays are currently
available, although the MicroArray Quality Control
(MAQC) project verified that the core results are
well reproducible among different platforms used.*’
However, it is recommended that each experiment
should contain biological replicates to validate
reproducibility of the observations. The raw data
are normalized by representative methods, includ-
ing the quantile normalization method and the
Robust MultiChip Average (RMA) method using
the r software of the Bioconductor package (cran.r-
project.org) or the GeneSpriNG software (Agilent
Technology, Palo Alto, CA, USA).

To identify differentially expressed genes (DEG)
among distinct samples, the normalized data are
processed for statistical analysis using t-test for com-
parison between two groups or analysis of variance
(anova) for comparison among more than three
groups, followed by the multiple comparison test
with the Bonferroni correction or by controlling
false discovery rate (FDR) below 0.05 to adjust
P-values.

In the next step, the levels of expression of DEG
should be validated by quantitative reverse transcrip-
tion polymerase chain reaction (QRT-PCR). The nor-
malized data are also processed for hierarchical
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Figure 1 The load map from global gene expression profiling to molecular network analysis. Total RNA samples labeled with fluorescent dyes are
processed for hybridization with oligonucleotide probes on the arrays, which should include biological replicates. They are processed for signal acquisi-
tion on a scanner. To identify the list of differentially expressed genes (DEG) among the samples, the normalized data are processed for statistical anal-
ysis, followed by validation by quantitative reverse transcription polymerase chain reaction (GRT-PCR). They are also. processed for hierarchical
clustering analysis and gene ontology and function analysis. To identify biologically relevant molecular pathways, the list of DEG is imported into path-
way analysis tools endowed with a comprehensive knowledgebase. ANOVA, analysis of variance; DAVID, Database for Annotation, Visualization and
Integrated Discovery; FDR, false discovery rate; GSEA, Gene Set Enrichment Analysis; IPA, Ingenuity Pathways Analysis; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MCT, multiple comparison test; PANTHER, Protein Analysis Through Evolutionary Relationships; and STRING; Search Tool for the

Retrieval of Interacting Genes/Proteins.

clustering analysis to classify the expression of pro-
file-based groups of genes and samples by using
GeNeSPRING or the open-access resources, such as
Cruster 3.0 (bonsai.ims.u-tokyo.ac.jp/~mdehoon/
software/cluster) and TreeView (sourceforge.net/pro-
jects/jtreeview). The Gene ID Conversion tool of the
Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) (david.abcc.nciferf.gov)'
converts the large-scale array-specific probe IDs into
the corresponding Entrez Gene IDs, HUGO Gene
Symbols, Ensembel Gene IDs or UniProt IDs, being
more convenient for application to the downstream
analysis. Both the DAVID Functional annotation
tool and the Gene Set Enrichment Analysis (GSEA)
tool (www.broad.mit.edu/gsea/downloads.jsp)'’ are
open-access resources that help us to identify a set
of enriched genes with a specified functional anno-
tation in the entire list of genes. Many other

approaches for - preprocessing microarray data
are applicable, and the resources are available
elsewhere.
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Molecular network analysis

To identify biologically relevant molecular pathways
from large-scale data, we could analyze them by
using a battery of pathway analysis tools endowed
with a comprehensive knowledgebase; that is, Kyoto
Encyclopedia of Genes and Genomes (KEGG; http://
www.kegg.jp), the Protein Analysis Through Evolu-
tionary Relationships (PANTHER) classification sys-
tem (http://www.pantherdb.org), Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING;
string.embl.de), Ingenuity Pathways Analysis (IPA;
Ingenuity Systems, http://www.ingenuity.com). and
KeyMolnet (Institute of Medicinal Molecular Design,
http://www.immd.co.jp) (Fig. 1). KEGG, PANTHER
and STRING are open-access databases, whereas IPA
and KeyMolnet are commercial databases updated
regularly. Both transcriptome and proteome data are
acceptable for all the databases described here.
KEGG systematically integrates genomic and
chemical information to create the whole biological

129



Bioinformatics for MS biomarkers

system in silico."® KEGG includes manually curated
reference pathways that cover a wide range of meta-
bolic, genetic, environmental and cellular processes,
and human diseases. Currently, KEGG contains
108 983 pathways generated from 358 reference
pathways. PANTHER, operating on the computa-
tional algorithms that relate the evolution of protein
sequences to the evolution of protein functions and
biological roles, provides a structured representation
of protein function in the context of biological reac-
tion networks.'” PANTHER includes the information
on 165 regulatory and metabolic pathways, manu-
ally curated by expert biologists. By uploading the
list of Gene IDs, the PANTHER gene expression data
analysis tool identifies the genes in terms of over- or
under-representation in canonical pathways, fol-
lowed by statistical evaluation by multiple compari-
son test with the Bonferroni correction. STRING is a
database that contains physiological and functional
protein-protein interactions composed of 2 590 259
proteins from 630 organisms.'® STRING integrates
the information from numerous sources, including
experimental repositories, computational prediction
methods and public text collections. By uploading
the list of UniProt IDs, STRING illustrates the union
of all possible association networks.

IPA is a knowledgebase that contains approxi-
mately 2 270 000 biological and chemical interac-
tions and functional annotations with definite
scientific evidence, curated by expert biologists.'® By
uploading the list of Gene IDs and expression values,
the network-generation algorithm identifies focused
genes integrated in a global molecular network. IPA
calculates the score P-value, the statistical signifi-
cance of association between the genes and the net-
works by the Fisher's exact test.

KeyMolnet contains knowledge-based content on
123 000 relationships among human genes and pro-
teins, small molecules, diseases, pathways and drugs,
curated by expert biologists.?® They are categorized
into the core content collected from selected review
articles with the highest reliability or the secondary
contents extracted from abstracts of PubMed and
Human Reference Protein database (HPRD). By
importing the list of Gene ID and expression values,
KeyMolnet automatically provides corresponding
molecules as a node on networks. The “common
upstreamn’” network-search algorithm enables us to
extract the most relevant molecular network com-
posed of the genes coordinately regulated by puta-
tive common upstream transcription factors. The
“neighboring” network-search algorithm selected
one or more molecules as starting points to generate
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the network of all kinds of molecular interactions
around starting molecules, including direct activa-
tion/inactivation, transcriptional activation/repres-
sion, and the complex formation within the
designated number of paths from starting points. The
“N-points to N-points” network-search algorithm
identifies the molecular network constructed by the
shortest route connecting the start-point molecules
and the end-point molecules. The generated net-
work was compared side-by-side with 430 human
canonical pathways of the KeyMolnet library. The
algorithm counting the number of overlapping
molecular relations between the extracted network
and the canonical pathway makes it possible to iden-
tify the canonical pathway showing the most signifi-
cant contribution to the extracted network. The
significance in the similarity between both is scored
following the formula, where O is the number
of overlapping molecular relations between the
extracted network and the canonical pathway, V is
the number of molecular relations located in the
extracted network, C is the number of molecular
relations located in the canonical pathway, T is the
number of total molecular relations, and X is the
sigma variable that defines coincidence.

Score = —log, (Score[P])
Min(C,V)
Score(P) = Z f(x)
x=0
f(x) = cCy - 1-cCy-x/Cv

Biomarkers for predicting MS relapse

Molecular mechanisms underlying acute relapse of
MS remain currently unknown. If molecular biomar-
kers for MS relapse are identified, we could predict
the timing of relapses, being invaluable to start the
earliest preventive intervention.

By gene expression profiling with Affymetrix
Human Genome U133 plus 2.0 arrays, Corvol et al.
identified 975 genes that separate clinically isolated
syndrome (CIS) into four groups.21 Surprisingly,
92% of patients in group 1 were characterized by a
subset of 108 genes converted to clinically definite
MS (CDMS) within 9 months of the first attack.
They suggest downregulation of TOB1, a negative
regulator of T cell proliferation as a marker predict-
ing the conversion from CIS to CDMS.

By gene expression profiling with Affymetrix
Human Genome UI133A2 arrays, Achiron et al.
showed that 1578 DEG of peripheral blood mono-
nuclear cells (PBMC) of RRMS patients, differentiating

©® 2010 Japanese Society for Neuroimmunology



J. Satoh

acute relapse from remission, are enriched in the
apoptosis-related pathway, in which proapoptotic
genes are downregulated, whereas antiapoptotic
genes are upregulated during acute relapse.?’ The
same group also compared 62 patients with CDMS
and 32 patients with CIS by combining gene expres-
sion profiling with the support vector machine
(SVM)-based prediction of time to the next acute
relapse, setting a two stage predictor composed of
First Level Predictors (FLP) and Fine Turning Predic-
tors (FTP).>> They identified three sets of the best
10-gene FLP that predict the next relapse with a res-
olution of 500 days and four sets of the best 9-gene
FTP that predict the forthcoming relapse with a reso-
lution of 50 days. The predictor genes are enriched
in the TGFB2-related signaling pathway. More
recently, Achiron et al. compared nine subjects who
developed MS during a 9-year follow-up period (the
preactive stage of MS; MS-to-be) and 11 control sub-
jects unaffected with MS (MS-free) by gene expres-
sion profiling.?* They found downregulation of
nuclear receptor NR4Al in the preactive stage of
MS, suggesting that self-reactive T cells are not elim-
inated in the MS-to-be population, owing to a defect
in the NR4A1-dependent apoptotic mechanism.

By gene expression profiling with a custom micro-
array of the Peter MacCallum Cancer Institute,
Arthur et al. showed that a set of dysregulated genes
in peripheral blood cells during the relapse and the
remission phases of RRMS are enriched in the cate-
gories involved in apoptosis and inflammation, when
annotated according to the GOstat program.?®> They
also found wupregulation of TGFB1 during the
relapse. These observations support the working
hypothesis that MS relapse involves an imbalance
between promoting and preventing apoptosis of
autoreactive and regulatory T cells. By gene expres-
sion analysis with Affymetrix Human Genome U133
plus 2.0 arrays, Brynedal etal. showed that MS
relapses reflect the gene expression change in PBMC,
but not in cerebrospinal fluid (CSF) lymphocytes,
suggesting the importance of initial events triggering
relapses occurring outside the CNS.%®

By gene expression profiling with a custom DNA
microarray (Hitachi Life Science, Saitama, Japan), we
identified 43 DEG in peripheral blood CD3" T cells
between the peak of acute relapse and the complete
remission of RRMS patients.?” We isolated highly
purified CD3" T cells, because autoreactive patho-
genic and regulatory cells, which potentially play a
major role in MS relapse and remission, might be
enriched in this fraction. By using 43 DEG as a set of
discriminators, hierarchical clustering separated the

© 2010 Japanese Society for Neuroimmunology
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cluster of relapse from that of remission. The molecu-
lar network of 43 DEG extracted by the common
upstream search of KeyMolnet showed the most sig-
nificant relationship with transcriptional regulation
by the nuclear factor-kappa B (NF-xB). NF-xB is a
central regulator of innate and adaptive immune
responses, cell proliferation, and apoptosis.”® A con-
siderable number of NF-xB target genes activate
NF-xB itself, providing a positive regulatory loop that
amplifies and perpetuates inflammatory responses,
leading to persistent activation of autoreactive T cells
in MS. These observations support the logical hypoth-
esis that NF-xB plays a central role in triggering
molecular events in T cells responsible for induction
of acute relapse of MS, and suggest that aberrant gene
regulation by NF-xB on T-cell transcriptome serves as
a molecular biomarker for monitoring the clinical
disease activity of MS. Supporting this hypothesis,
increasing evidence has shown that NF-xB represents
a central molecular target for MS therapy.*®

We also studied the gene expression profile of
purified CD3" T cells isolated from four Hungarian
monozygotic MS twin pairs with a custom DNA
microarray (Hitachi Life Science, Saitama, Japan).*°
By comparing three concordant pairs and one discor-
dant pair, we identified 20 DEG aberrantly regulated
between the MS patient and the genetically identical
healthy subject. The molecular network of 20 DEG
extracted by the common upstream search of Key-
Molnet showed the most significant relationship with
transcriptional regulation by the Ets transcription
factor family. Ets transcription factor proteins, by
interacting with various co-regulatory factors, control
the expression of a wide range of target genes essen-
tial for cell proliferation, differentiation, transforma-
tion and apoptosis. Importantly, Ets-1, the prototype
of the Ets family members, acts ‘as a negative
regulator of Th17 cell differentiation.®! It is worthy to
note that discordant monozygotic MS twin siblings
do not show any genetic or epigenetic differences, as
validated by whole genome sequencing analysis and
genome-scale DNA methylation profiling.®

Biomarkers for predicting IFNJ responders

Although recombinant IFNJ therapy is widely used
as the gold standard to reduce disease activity of MS,
up to 50% of the patients continue to have relapses,
followed by progression of disability. If molecular
biomarkers for IFNP responsiveness are identified,
we could use the best treatment options depending
on the patients, being invaluable to establish the
personalized therapy of MS.
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By genome-wide screening of single-nucleotide
polymorphisms (SNP) with Affymetrix Human 100K
SNP arrays, Byun et al. identified allelic differences
between IFNf responders and non-responders of
RRMS patients in several genes, including HAPLN1,
GPC5, COL25A1, CAST and NPAS3, although odds
ratios of SNP differences of individual genes are
fairly low.>?

By gene expression profiling with Affymetrix
Human Genome U133A Plus 2.0 arrays, Comabella
et al. showed that IFNB non-responders of RRMS
patients after treatment for 2 years are characterized
by the overexpression of type I IFN-induced genes
in PBMC, associated with increased endogenous
production of type I IFN by monocytes at pre-
treatment.>> These observations suggest that a
preactivated type I IFN signaling pathway is attribut-
able to IFNPB non-responsiveness in MS. By gene
expression profiling with Affymetrix Human Gen-
ome Focus arrays, Sellebjerg etal. showed that
in vivo injection of IFNP rapidly induces elevation of
IFI27, CCL2 and CXCL1O in PBMC of MS patients,
even after 6 months of treatment,>* consistent with
previous studies.>® The induction of IFN-responsive
genes is greatly reduced in patients with neutralizing
antibodies (NAbs) against IFNB.>* In contrast, there
exist no global differences in gene expression profiles
of PBMC of RRMS patients between NAbs-negative
IFNB non-responders and responders.*®

By gene expression profiling with Affymetrix
Human Genome U133A/B arrays, Goertsches et al.
found that IFNPB administration in vivo elevates a
panel of IFN-responsive genes in PBMC of RRMS
patients during a 2-year treatment, but it also down-
regulates several genes, including CD20, a known
target of B-cell depletion therapy in MS.*” By using
the Pataway ArcHitect software (Stratagene, La Jolla,
CA, USA), they identified two major gene networks
where upregulation of STAT1 and downregulation
of ITGA2B act as a central molecule, although they
did not further characterize the responder/non-
responder-linked gene expression profiles.

By gene expression profiling with a custom array
of the National Institutes of Health (NIH)/National
Institute of Neurological Disorders and Stroke
(NINDS) Microarray Consortium, Fernald et al.
showed that a 1-week IFNB administration in vive
induces a set of coregulated genes whose networks
are related to immune- and apoptosis-regulatory
functions, involving JAK-STAT and NF-«B cascades,
whereas the networks of untreated subjects are com-
posed of the genes of cellular housekeeping func-
tions.”® By combining kinetic RT-PCR analysis of
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expression of 70 genes in PBMC of RRMS with the
integrated Bayesian inference system approach, the
same group previously reported that nine sets of
gene triplets detected at pretreatment, including a
panel of caspases, well predict the response to IFNfB
with up to 86% accuracy.>®

By gene expression profiling with a custom
microarary (Hitachi), we previously identified a set
of interferon-responsive genes expressed in purified
peripheral blood CD3* T cells of RRMS patients
receiving IFNB treatment.** IFNP immediately
induces a burst of expression of chemokine genes
with potential relevance to IFNB-related early
adverse effects in MS.*' The majority of the top 30
most significant DEG in CD3* T cells between
untreated MS patients and healthy subjects are cate-
gorized into apoptosis signaling regulators.*? Further-
more, we found that T cell gene expression profiling
classifies a heterogeneous population of Japanese
MS patients into four distinct subgroups that differ
in the disease activity and therapeutic response to
IFNB."> We identified 286 DEG expressed between
72 untreated Japanese MS patients and 22 age- and
sex-matched healthy subjects. By importing the list
of 286 DEG into the common upstream search of
KeyMolnet, the generated network showed the most
significant relationship with transcriptional regula-
tion by NF-xB.?® Although none of the single genes
alone serve as a MS-specific biomarker gene, NR4A2
(NURR1), a target of NF-xB acting as a positive regu-
lator of IL-17 and IFNy production, is highly upregu-
lated in MS T cells.*>*?* It is worthy to note that
IFNPB is beneficial in the disease induced by Thl
cells, but detrimental in the disease mediated by
Th17 cells in mouse experimental autoimmune
encephalomyelitis (EAE), and IFNB non-responders
in RRMS patients show higher serum IL-17F levels,
suggesting that IL-17 serves as a biomarker predict-
ing a poor IFNB response in MS.**

Molecular networks of MS brain lesion proteome

Recently, Han et al. investigated a comprehensive
proteome of six frozen MS brains.” Proteins were
prepared from small pieces of brain tissues isolated
by laser-captured microdissection (LCM), and they
were characterized separately by the standard histo-
logical examination, and classified into acute plaques
(AP), chronic active plaques (CAP) or chronic
plaques (CP) based on the disease activity. The pro-
teins were then separated on one-dimensional SDS-
PADE gels, digested in-gel with trypsin, and peptide
fragments were processed for mass spectrometric

© 2010 Japanese Society for Neuroimmunology
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Table 1 Multiple sclerosis-linked molecules
of the KeyMolnet library

© 2010 Japanese Society for Neuroimmunology
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KeyMolnet 1D KeyMolnet symbol Description

KMMC:04422 2,3¢nPDE 2’,3"-cyclic nucleotide 3’-phosphodiesterase
KMMC:04421 aBerystallin Alpha crystallin B chain
KMMC:01024 ADAM17 A disintegrin and metalloproteinase 17
KMMC:04753 AMPAR AMPA-type glutamate receptor
KMMC:00019 APP Amyloid beta A4 protein
KMMC:07424 AQP4 Aquaporin 4

KMMC:06672 b-arrestini Beta-arrestin 1

KMMC:04017 BAFF B-cell activating factor

KMMC:00868 Bcl-2 B-cell lymphoma 2

KMMC:00728 Ca Calcium ion

KMMC:00605 caspase-1 Caspase-1

KMMC:00429 CcCl2 Chemokine (C-C motif) ligand 2
KMMC:00425 CCL3 Chemokine (C-C motif) figand 3
KMMC:00424 CCLs Chemokine (C-C motif) ligand 5
KMMC:00450 CCR1 Chemokine (C-C motif) receptor 1
KMMC:00454 CCR5 Chemokine (C-C motif) receptor 5
KMMC:03088 D28 T-cell-specific surface glycoprotein CD28
KMMC:00530 CD8o T-lymphocyte activation antigen CD80
KMMC:03089 CTLA-4 Cytotoxic T-lymphocyte protein 4
KMMC:00418 CXCL10 Chemokine (C-X-C motif) ligand 10
KMMC:00447 CXCR3 Chemokine (C-X-C motif) receptor 3'
KMMC:00271 ERa Estrogen receptor alpha '
KMMC:00362 FGF-2 Fibroblast growth factor 2
KMMC:04423 GFAP Glial fibrillary acidic protein
KMMC:01120 Glu Glutamic acid

KMMC:00396 glucocorticoid Glucocorticoid

KMMC:03232 hH1R Histamine H1 receptor
KMMC:00344 HLA class I HLA class Il histocompatibility antigen
KMMC:09224 HLA-CS HLA-C5

KMMC:09221 HLA-DQA1*0102 HLA-DQA1*0102

KMMC:06358 HLA-DQA1*0301 HLA-DQA1*0301

KMMC:06359 HLA-DQB1*0302 HLA-DQB1*0302

KMMC:09222 HLA-DQB1*0602 HLA-DQB1*0602

KMMC:06309 HLA-DRB1 HLA-DRB1

KMMC:06315 HLA-DRB1*0301 HLA-DRB1*0301

KMMC:09223 HLA-DRB1*0405 HLA-DRB1*0405

KMMC:09191 HLA-DRB1*11 HLA-DRB1*11

KMMC:07762 HLA-DRB1*15 HLA-DRB1*15

KMMC:06903 HLA-DRB1*1501 HLA-DRB1*1501

KMMC:07763 HLA-DRB1*1503 HLA-DRB1*1503

KMMC:09220 HLA-DRB5*0101 HLA-DRB5*0101

KMMC:04418 HSP105 Heat-shock protein 105 kDa
KMMC:00526 IFNb Interferon beta

KMMC:00404 IFNg Interferon gamma

KMMC:00292 IGF1 Insulin-like growth factor 1
KMMC:03611 19G Immunoglobulin G

KMMC:00402 IL-10 Interleukin-10

KMMC:03248 IL-12 Interleukin-12

KMMC:04266 IL-12Rb2 Interleukin-12 receptor beta-2 chain
KMMC:03129 L-17 Interleukin-17

KMMC:03383 L-18 Interleukin-18

KMMC:00521 IL-1b Interleukin-1 beta

KMMC:00296 IL-2 Interleukin-2

KMMC:06578 1L-23 Interleukin-23

KMMC:00533 IL-2Rac Interleukin-2' receptor alpha chain
KMMC:00400 IL-4 Interleukin-4

KMMC:03255 IL-5 Interleukin-5
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Table 1 (Continued)

KeyMolnet ID KeyMolnet symbol Description

KMMC:00108 -6 Interleukin-6

KMMC:03257 IL-7Rac Interleukin-7 receptor alpha chain
KMMC:00523 -9 interleukin-9

KMMC:00555 iNOS ) Inducible nitric oxide synthase
KMMC:00982 int-a4/b1 Integrin alpha-4/beta-1

KMMC:00968 int-aM Integrin alpha-M

KMMC:00970 int-aX Integrin alpha-X

KMMC:04094 MBP Myelin basic protein

KMMC:06533 mGluR Metabotropic glutamate receptor
KMMC:04420 MOG Myelin-oligodendrocyte glycoprotein
KMMC:04419 MPLP Myelin proteolipid protein

KMMC:03210 N-VDCC Voltage dependent N-type calcium channel
KMMC:04712 NCAM Neural cell adhesion molecule
KMMC:06537 NCE Na(+)-Ca** exchanger

KMMC:05576 NeuroF Neurofilament protein

KMMC:09225 neurofascin Neurofascin

KMMC:05903 NF-H Neurofilament triplet H protein
KMMC:05904 NF-L Neurofilament triplet L protein
KMMC:03785 NMDAR N-methyl-D-aspartate receptor
KMMC:07764 NMDAR1 N-methyl-D-aspartate receptor subunit NR1
KMMC:07765 NMDAR2C N-methyl D-aspartate receptor subtype 2C
KMMC:07766 NMDAR3A N-methyl-D-aspartate receptor subtype NR3A
KMMC:02064 NO Nitric oxide

KMMC:07767 Olig-1 Oligodendrocyte transcription factor 1
KMMC:01005 OPN Osteopontin

KMMC:03073 PDGF Platelet derived growth factor
KMMC:06225 Sema3A Semaphorin 3A

KMMC:06229 Sema3F Semaphorin 3F

KMMC:00111 SMAD3 Mothers against decapentaplegic homolog 3
KMMC:03839 tau Microtubule-associated protein tau
KMMC:00349 TNFa Tumor necrosis factor alpha

KMMC:00545 VCAM-1 Vascular cell adhesion protein 1
KMMC:03832 VD Vitamin D

KMMC:03711 VDR Vitamin D3 receptor

J. Satoh

91 multiple sclerosis-linked molecules of the KeyMolnet library are listed in alphabetical order.

analysis. Among 2574 proteins determined with high
confidence, the INTERSECT/INTERACT program iden-
tified 158, 416 and 236 lesion-specific proteins
detected exclusively in AP, CAP and CP, respectively.
They found that overproduction of five molecules
involved in the coagulation cascade, including tissue
factor and protein C inhibitor, plays a central role
in molecular events ongoing in CAP. Furthermore,
in vivo administration of coagulation cascade inhibitors
really reduced the clinical severity in EAE, support-
ing the view that the blockade of the coagulation
cascade would be a promising approach for treat-
ment of MS.** However, nearly all remaining
proteins are uncharacterized in terms of their
implications in MS brain lesion development.

We studied molecular networks and pathways of
the proteome dataset of Han et al. by using four

134

different bioinformatics tools for molecular network
analysis, such as KEGG, PANTHER, KeyMolnet
and TPA.* KEGG and PANTHER showed the rele-
vance of extracellular matrix (ECM)-mediated focal
adhesion and integrin signaling to CAP and CP
proteome. KeyMolnet by the N-points to N-points
search disclosed a central role of the complex inter-
action among diverse cytokine signaling pathways
in brain lesion development at all disease stages, as
well as a role of integrin signaling in CAP and
CP. IPA identified the network constructed with
a wide range of ECM components, such as
COL1Al, COL1A2, COL6A2, COL6A3, FN1, FBLN2,
LAMAI1, VIN and HSPG2, as one of the networks
highly relevant to CAP proteome. Thus, four
distinct tools commonly suggested a role of ECM
and integrin signaling in development of chronic

© 2010 Japanese Society for Neuroimmunology
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(a)
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Figure 2 Molecular network of 91 MS-linked molecules. (a) By importing 91 MS-linked molecules into KeyMolnet, the neighboring search within one
path from starting points generates the highly complex molecular network composed of 913 molecules and 1005 molecular relations. (b) The
extracted network shows the most significant relationship with transcriptional regulation by vitamin D receptor (VDR) that has direct connections with
118 closely related molecules of the extracted network. VDR is indicated by blue circle. Red nodes represent start point molecules, whereas white
nodes show additional molecules extracted automatically from core contents to establish molecular connections. The molecular relation is shown by a
solid line with an arrow (direct binding or activation), solid line with an arrow and stop (direct inactivation), solid line without an arrow (complex
formation), dash line with an arrow (transcriptional activation), and dash line with an arrow and stop (transcriptional repression). Please refer high reso-

lution figures to URL {www.my-pharm.acjp/ satoj/sub22.html).

MS lesions, showing that the selective blockade of the
interaction between ECM and integrin molecules
in brain lesions in situ would be a target for
therapeutic intervention to terminate ongoing events
responsible for the persistence of inflammatory
demyelination.

© 2010 Japanese Society for Neuroimmunology

KeyMolnet identifies a candidate of molecular
targets for MS therapy

The KeyMolnet library includes 91 MS-linked mole-
cules, collected from selected review articles with
the highest reliability (Table 1). By importing the list
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Table 2 Molecules constucting the

KeyMolnet 1D KeyMolnet symbol Description transcriptional regulation by vitamin D

KMMC:02959 12,25(0H)2D3 1 alpha, 25-dihydroxyvitamin D3 receptor network

KMMC:00751 amphiregulin Amphiregulin

KMMC:03795 ANP Atrial natriuretic peptide

KMMC:00090 b-catenin beta-catenin

KMMC:00301 c-Fos Protooncogene c-fos

KMMC:00183 c-Jun Protooncogene c-jun

KMMC:00626 c-Myc Protooncogene c-myc

KMMC:03813 CA-ll Carbonic anhydrase Il

KMMC:04105 CalbindinD28K Vitamin D-dependent calcium-binding protein,
avian-type

KMMC:03531 CalbindinD9K Vitamin D-dependent calcium-binding protein,
intestinal

KMMC:00289 caseink2 Casein kinase 2

KMMC:04195 CaSR Extracellular calcium-sensing receptor

KMMC:00268 cBp CREB binding protein

KMMC:00922 D44 CD44 antigen

KMMC:00136 CDK2 Cyclin dependent kinase 2

KMMC:00135 CDK6 Cyclin dependent kinase 6

KMMC:01008 collagen Collagen

KMMC:06770 collagenase-I Type | collagenase

KMMC:04081 CRABP2 Cellular retinoic acid-binding protein If

KMMC:00060 CRT Calreticulin

KMMC:00401 CXCL8 Chemokine (C-X-C motif) ligand 8 (IL8)

KMMC:00137 cyclinA Cyclin A

KMMC:00061 cyclinD1 Cyclin D1

KMMC:05926 cychinD3 Cyclin D3

KMMC:00093 cyclink Cyclin E

KMMC:02960 CYP24A1 Cytochrome P450 24A1

KMMC:02958 CYP27B1 Cytochrome P450 2781

KMMC:04593 CYP3A4 Cytochrome P450 3A4

KMMC:06769 cystatin M Cystatin M

KMMC:06762 Cytokeratin 13 Keratin, type | cytoskeletal 13

KMMC:06751 Cytokeratin 16 Keratin, type | cytoskeletal 16

KMMC:00053 DHTR Dihydrotestosterone receptor

KMMC:00928 E-cadherin E-cadherin

KMMC:00594 ErbB1 Receptor protein-tyrosine kinase erbB-1

KMMC:00068 filamin Filamin

KMMC:00341 FN1 Fibronectin 1

KMMC:06760 FREAC-1 Forkhead box protein F1

KMMC:06763 G0S2 G0/G1 switch protein 2

KMMC:00617 GM-CSF Granulocyte macrophage colony stimulating
factor

KMMC:06755 Hairless Hairless protein

KMMC:05978 HOXA10 Homeobox protein Hox-A10

KMMC:06767 HOXB4 Homeobox protein Hox-B84

KMMC:00404 IFNg Interferon gamma

KMMC:00579 IGF-BP3 Insulin-like growth factor binding protein 3

KMMC:04498 IGF-BP5 Insulin-like growth factor binding protein 5

KMMC:00402 L-10 Interleukin-10

KMMC:03241 IL-10R Interleukin-10 receptor

KMMC:03239 IL-10Rac Interleukin-10 receptor alpha chain

KMMC:03240 IL-10Rbc Interleukin-10 receptor beta chain

KMMC:03248 IL-12 Interleukin-12

KMMC:03246 IL-12A Interleukin-12 alpha chain

KMMC:00403 IL-12B Interleukin-12 beta chain

KMMC:00296 -2 Interleukin-2

KMMC:00108 IL-6 Interleukin-6
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Table 2 (Continued)
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KeyMolnet ID KeyMolnet symbol Description

KMMC:00973 int-b3 Integrin beta-3

KMMC:03747 VL Involucrin

KMMC:00629 JunB Protooncogene jun-8

KMMC:04334 JunD Protooncogene jun-D

KMMC:06764 KLK10 Kallikrein-10

KMMC:06765 KLK6 Kallikrein-6

KMMC:04635 Mad1 Max dimerization protein 1

KMMC:06757 Metallothionein Metallothionein

KMMC:06722 MKP-5 MAP kinase phosphatase 5

KMMC:00595 MMP-2 Matrix metalloproteinase 2

KMMC:03104 MMP-3 Matrix metalloproteinase 3

KMMC:00631 MMP-9 Matrix metalloproteinase 9

KMMC:00556 MnSOD Manganese superoxide dismutase

KMMC:00927 N-cadherin N-cadherin

KMMC:00074 NCOA1 Nuclear receptor coactivator 1

KMMC:00075 NCOA2 Nuclear receptor coactivator 2

KMMC:00080 NCOA3 Nuclear receptor coactivator 3

KMMC:00282 NCOR1 Nuclear receptor corepressor 1

KMMC:00270 NCOR2 Nuclear receptor corepressor 2

KMMC:00392 NFAT Nuclear factor of activated T cells

KMMC:00104 NFkB Nuclear factor kappa B

KMMC:03120 OPG Osteoprotegerin

KMMC:01005 OPN Osteopontin

KMMC:00304 osteocalcin Osteocalcin

KMMC:00100 p21CIP1 Cyclin dependent kinase inhibitor 1

KMMC:00155 p27KiP1 Cyclin dependent kinase inhibitor 1B

KMMC:00195 p300 E1A binding protein p300

KMMC:03204 PLCb1 Phospholipase C beta 1

KMMC:03295 PLCd1 Phospholipase C delta 1

KMMC:00724 PLCg1 Phospholipase C gamma 1

KMMC:04869 plectini Plectin 1

KMMC:06772 PMCA1 Plasma membrane calcium-transporting ATPase 1

KMMC:06766 PPic Serine/threonine protein phosphatase PP1
catalytic subunit

KMMC:00786 PP2A Serine/threonine protein phosphatase 2A

KMMC:03442 PPARd Peroxisome proliferator activated receptor delta

KMMC:03710 PTH Parathyroid hormone

KMMC:00346 PTHIP Parathyroid hormone-related protein

KMMC:03115 RANKL Receptor activator of NFkB ligand

KMMC:04537 RelB Transcription factor RelB

KMMC:00091 RIP140 Nuclear factor RIP140

KMMC:00383 RXR Retinoid X receptor

KMMC:06771 SCCA Squamous cell carcinoma antigen

KMMC:05340 SKIP Ski-interacting protein

KMMC:04103 SUGT 265 protease regulatory subunit 8

KMMC:05702 TAFI130 Transcription initiation factor TFID subunit 4

KMMC:06753 TAFII28 Transcription initiation factor TFIID subunit 11

KMMC:06752 TAFII55 Transcription initiation factor TFIID subunit 7

KMMC:04955 TCF-1 T-cell-specific transcription factor 1

KMMC:03075 TCF-4 T-cell-specific transcription factor 4

KMMC:06754 TFIIA Transcription initiation factor llA

KMMC:04089 TFIB Transcription initiation factor 1IB

KMMC:06768 TGase | Transglutaminase |

KMMC:04184 TGFb1 Transforming growth factor beta 1

KMMC:05986 TGFb2 Transforming growth factor beta 2

KMMC:04104 TIF1 Transcription intermediary factor 1

KMMC:00349 TNFa Tumor necrosis factor alpha

137



Bioinformatics for MS biomarkers

J. Satoh

Table 2 (Continued)

KeyMolnet ID KeyMolnet symbol Description
KMMC:00277 TRAP220 Thyroid hormone receptor-associated protein
complex component TRAP220
KMMC:06759 TRPVS TRP vanilloid receptor 5
KMMC:06758 TRPV6 TRP vanilloid receptor 6
KMMC:06756 TRR1 Thioredoxin reductase 1
KMMC:03711 VDR Vitamin D3 receptor
KMMC:04853 VDUP1 Vitamin D3 up-regulated protein 1
KMMC:06761 ZNF-44 Zinc finger protein 44
KMMC:05147 Z0-1 Tight junction protein ZO-1
KMMC:05811 70-2 Tight junction protein ZO-2

118 molecules constucting the transcriptional regulation by VDR network are listed in alphabetical

order.

of these molecules into KeyMolnet, the neighboring
search within one path from starting points gen-
erates the highly complex molecular network
composed of 913 molecules and 1005 molecular
relations (Fig. 2a). The extracted network shows the
most significant relationship with transcriptional reg-
ulation by vitamin D receptor (VDR) with P-value of

the score = 4.415E-242. Thus, VDR, a hub that has

direct connections with 118 closely related molecules
of the extracted network (Fig. 2b, Table 2), serves as
one of the most promising molecular target candi-
dates for MS therapy, because the adequate manipu-
lation of the VDR network capable of producing
a great impact on the whole network could effi-
ciently disconnect the pathological network of MS.
Indeed, vitamin D plays a protective role in MS by
activating VDR, a transcription factor that regulates
the expression of as many as 500 genes, although the
underlying molecular mechanism remains largely
unknown.*®

Conclusion

MS is a complex disease with remarkable hetero-
geneity caused by the intricate interplay between
various genetic and environmental factors. Recent
advances in bioinformatics and systems biology have
made major breakthroughs by illustrating the cell-
wide map of complex molecular interactions with
the aid of the literature-based knowledgebase of
molecular pathways. The efficient integration of
high-throughput experimental data derived from the
disease-affected cells and tissues with underlying
molecular networks helps us to characterize the
molecular markers and pathways relevant to MS
heterogeneity, and promotes us to identify the net-
work-based effective drug targets for personalized
therapy of MS.
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Abstract,

‘MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate transla-

‘tional repression of multiple target mRNAs. The miRNAs in a whole cell rcgulate greater than
30% of all plotem-codmg genes, The vast majortty of presently identified miRNAs are exprcssed

in the brain in a spatially and temporally controlled manner. They play a key role in neuronal
development, differentiation, and synaptic plasticity. However, at present, the pathological impli-
cations of deregulated: miRNA expression in neurodegenerative diseases remain lmgely unknowr.
This review will briefly summarize recent studies that focus attention on aberrant miRNA expres-

sion in Alzheimer’s disease brains.

Keywords: Alzheimer’s disease, bioinformatics, microRNA, neuropatholo,
) P y

1. Introduaction

MicroRNAs (miRNAs) constitute a class of endoge-
nous small noncoding RNAs conserved thirough evolu-
tion (1). They mediate posttranscriptional regulation of
pxotun—codmg genes by binding to the 3’ untranslated
region (3'UTR) of target mRNAs, leading to translational
inhibition or mRNA degradation, depending on the de-
gree of sequence complementarity. The primary miRNAs
(pri-miRNAs) are transcribed from the. intra- and inter-
genetic regions of the genome by RNA polymerase 11,
followed by processing by the RNase 11l enzyme Drosha
into pre-miRNAs, After nuclear export, they are cleaved
by the RNase [II enzyme Dicer into mature miRNAs
congisting -of approximately 22 nucleotides. Finally, a
single-stranded miRNA is loaded onto the RNA-induced
silencing complw (RISC), where the seed sequence
located at positions 2 — 8 from the 5’ end of the miRNA
plays a pivotal role in binding to the target mRNA. At
present, more than 900 human miRNAs have been iden-
tified (miRBase Release 15). A single miRNA reduces
the production of hundreds of proteins (2). The miRNAs
in a whole cell regulate approximately 30% of all protein-
coding genes (3). Furthermore, some miRNAs activate

*Corresponding author. satoj@my-pharm.ac.jp
Publighed onlinp in J-STAGE on October 9, 2010 (in advance)
doi: 10.1254/phs. 10R1 1FM

transeription and translation of the targets (4, 5). Thus,
by targeting multiple transcripts and affecting expression
of numerous proteins, miRNAs play a keyrole in cellular
development, differentiation, -proliferation, apoptosis,
and metabolism.

Increasing evidence indicates that a battery of miRNAs,
expressed in a spatially and teraporally controlled man-
ner in the brain, are involved in neuronal development
and differentiation (6). miR-134, localized to the synap-
todendritic compartment of hippocamipal neurons, regu-
lates synaptic plasticity by inhibiting translation of
Lim-domain~containing protein kinase 1 (LIMK1) (7).
miR-30a-5p, enriched in layer IIl pyramidal neurons in
the human prefrontal cortex, decreases brain- derived

neurotrophic factor (BDNF) protein levels (8). Because

a single miRNA has a great impact on the expression of

numerous downstream mRNA targets, deregulated ex-

pression of even a small set of miRNAs in the brain af-
fects diverse cellular signaling pathways essential for
neuronal survival and protection against neurodegenera-
tion (9). Importantly, approximately: 70% of presently
identified miRNAs are expressed in the brain, but the
pathological implications of dercgulated miRNA expres-
sion in neurodegenerative diseases remain largely un-
known (10). The present review will bncﬂy sumimarize
recent studies that focus attention on aberrant miRNA
expression in the brains of Alzheimer’s disease (AD).
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2. Aberrant miRNA expression in AD brains

AD is the most common cause of dementia worldwide,
affecting the elderly population, characterized by the
hallmark pathology of amyloid-g (Af) deposition and
neurofibrillary tangle (NFT) formation in the brain, Al-
though the precise mechanisms underlying neurodegen-
eration in AD remain mostly unknown, previous studies
support a-role of the complex interaction between genetic
and environmental factors (11). Furthermore, recent

studies indicate the cardinal involvement of deregulated

miRNA expression in the pathogenesis of AD (Table
1.

By using a nylon membrane-bound DNA aray, a
previous study identified upregulated expression of miR-
9 and miR-128 in the hippocampus of AD brains, al-
though they did not characterize the target mRNAs (12).
More recently, the same group showed that the levels of
miR-146a expression are clevated in the hippocampus
and the superior temporal cortex of AD (13, 14). Impor-
tantly, the expression of miR-146a is directly regulated

by nuclear factor-kappa B (NF-xB), and it targets the
mRNA of complement factor H{(CFH), a negative regu-
lator of the inflammatory response in the brain. They
validated upregulation of NF-«B in the neocortex of AD
by gel shift assay, suggesting that activation of NF-xB
induces miR-146a that amplifies inflammatory neurode-
generation via reducing CFH in AD brains. Recently, the

same group revealed the instability of brain-enriched

miRNAs that contain a high content of AU and UA di-
nucleotides (14).

A previous study showed that miR-107 targets the
B-site amyloid precursor protein (APP)-cleaving enzyme
1 (BACEL), a rate-limiting enzyme for Af production
(15). By analyzing a microarray, miR-107 levels are
substantially reduced in the temporal cortex of the pa-
tients affected with mild cognitive impairment (MCI)
and those with AD (15). These observations suggest that
downregulation of miR-107 begins at the very early stage
of AD. A different study showed that miR-29 also targets
BACE] (16). By using a microarray containing 328
miRNAs, they identified reduced expression of the miR-

Table 1. Aberrant expression of microRNAs in Alzheimer discase (AD) brains

Authors, . R Target . L Possible
i . . MicroRNAs aberrantly Upregulation or e Target prediction and 0% L.
years, and Brains of AD patients N . mRNAg A pathological
. expressed downregulation . validation P
reference No. characterized implications
Hippocampus of 5 AD o
Lukiw, 2007 patients, 5 age-matched ; general
o o e miR-9, miR-128 ND ND neuropathology of
(12) conirols, and § fetal : AD ’

brains

Hippocarapus and

suppression of’

X o ND; introduction of
Lukiwetal,  superior tesiporal lob.of miR-146a CFH an anti-miR-146a anti-inflammator
-146 FE a -miR- anti- atory
2008 (13) 23 AD patients and 23 D antimit: Cammatony
oligonucleotide response
age-matched controls )
Temporal cortex of 6 AD miRanda,
Wang etal, -and 6 MCI patients and , . TargetScan, PicTar; increased
R=107 B ) )
2008 (15) 11 non-demented m down BACEL luciferase reporter production of AfS
controls assay
‘miRanda,
It y s - wt‘ vy 3 Y
miR-294/b-1 down BACE] TargetScan, PicTar
miRBase; huciferase
reporter assay
miRanda,
© miR-15a, miR-9, miR-19b down BAcp) ~ lereetSean PicTar
Hiiert etal Anterior tempora) cortex “M{B“f""' . d
200816 | ©OF5AD patients and 5 : e e e oA
- ’ age-matched controls miRanda, production of A
let=7i, miR-15a, miR-101, TargetScan, PicTar,
> » y o L als
miR-106b> down APP miRBase;
) not validated
i g—y Etvesnnsnnis saa e a et oian € Saea s amms Seman 11 s Snno e
mi n , iR down ND ND

miR-181¢, miR-210, miR-363

WiR-197, miR-51 1, mik-320 S
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Authors, - L Target e ossible:
HHIOTS . . . . ‘MicroRNAs aberrantly Upregulationor “x‘g'f Target prediction and P%gib‘e,,,
years, and Braing of AD patienis .. mRNAs R pathological
: ¢ ‘expressed downregulation S validation G
referen: - No. R o ) -characterized _implications
Cerebellumof 13 AD miR-274, niiR{Z?b,fmiReMa, ) )
patientsand 12 non- miR-100, miR-1256, miR-381,  up ND
‘demented controls miR-422a )
miR=0, miR-08, miR-132,  ARHGAP32
. ) . down o
mi
miR-26a, mik 7a m|R~27b
: of 15 AD s 3
H;ﬁf :ia;:l;uf ,,Of;c}m Al iR-30¢-5p, 11111{-34'1 mik: =92, W ND
gémclit“e o miR-125b, miR-145, miR-200c,
e : ,maR»BRI rmRv422a iR~ 42’% .
. - barh e nrar e s - geperal.
Cogswell etal., m;;(,g me g()t miR- m miRanda, !
‘ ARHGAP32 . “neuropathology of
200821 mTR—I%b, miR-210, mik-212,  down by miRe 132 RNAhybrid AD
Mediel frontal gyrus of  miR-29b, miR-30¢, miR-30e-5p,
15 AD patients and 12 miR-34a, 10iR-92, miR-100, up ND
non-demented controls  miR-125b, miR-145, miR-148a,
MiR-381, miR-422a, miR-423
miR-9, miR-26a, miR-132, ‘
‘miR-146h, miR-200¢, down QI:K?X:\::’?
MiR<2 10, miR=212, miR-425 -
Anfcrior temporal-cortex ‘ | miRarida,
< X PR ’ Tary o \"“ g ificrease
Hebertetal. 519 AD patients and 11 miR-106b down APP agetSican, PicTar,  inereased:
2009 (17) e miRBase; luciferase production-of Af.
non-demented controls
reporter assay ‘
“Sethi-and Temporal lobe corlex-of general
Lukiw; 2009, 6 AD:and 13 non-AD miR-9; miR-125b, miR-146a up ND ND neuropathology of
(14) patients. and 6 controls AD
' miR-18b, miR-34¢, miR-615, positively Eand
MiR-629, miR-637, miR-657, comelated PN
; miR-661, mir-00369, mir-15903, with target T EeLotan, FiCTan
Nunez- Pariutal. lobe cortexiof 5o oy mRNAS not validated general
Iglesias etal.,  ADpatientsand Sage- - 5 i neuropathology of
2010(22) matched controfs mku?ll miR-2 16, 11111(«325 ;neganvcly miRanda AD
miR-506, miR-515-3p, miR-612, correlated -
Crs g A b ND :, ) TargetScan, PicTar;
miR-768-3p, mir-06164, with target not validated g
32339, mir-45496 MRNAS e
a putative
Shioyaetal Frontal lobe of 7 AD TargetScan, PicTar, compensatory
561 OV(‘, 3 " patients.and 4 non- miR-29a down NAV3 miRBase; luciferase - mechanism against

neurological comtrols

reporter assay

neurodegenerative

events

AD, Alzheimer’ schscasc MCI, mild cognitive impairment; ND, not dcscnb(,d BACE], beta-site APP-cleaving cn/ymul APP amylmd precur-

sor protein; NAV3, ncuron navigator 3; A, amyloid-beta; and ARHGAP32, Rho GTPase activating protein 32 (p250GAP).

29a/b-1 cluster, which invcr‘;ely correlated with BACE]
protein levels, in the anterior tempoml cortex of AD (16).
The database search on miRanda, TargetScan, PicTar,
and miRBase (MicroCosm) predicted the presence of
several binding sites in the human BACE! 3'UTR for
miR-9, miR-15a, miR-19b, and miR-29a/b-1 and in the
human Ai’P 3'UTR fox lot~‘7 miR-~15a, m1R—101, zmd
miR-106b, all of which are downregulated in AD brains.
They validated miR-29a-mediated downregulation of

BACE1 by the luciferase reporter assay. Furthermore, an
introduction of the miR-29a/29b-1 precutsots reduced
secretion. of Af from HEK293 cells stably expressing
APP Swedish (APF’S‘W@) (16). Subsequently, the same
group reported reduced expression of miR=106b capable
of targeting APP in thie anterior:temporal cortex-of AD;
although they did not find a clear-cut inverse correlation
between the levels of miR-106b and APP protein expres-
sion (17).
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Thus, different studies identified various miRNAs in
AD brains. This variability is in part attfibutable to dis-
ease-specific and nonspecific inferindividual differences,
including differences in age, sex, the brain region, the
pathological stage, and the postmortem interval (PMI),
since most studies are performed on a fairly small number
of samples and controls, complicated by variable con-
founding factors (Table 1). With respect to-animal models
of AD, arecent study showed that the expression levels
of a nenceding' BACE!-antisense (BACEI-AS) RNA
that enhances BACE! mRNA stability ate elevated in the
brains of Tg19959 APP transgenic mice and those of AD
(18). Furthermore, the levels of miR-298 and miR-328,
both of which reduce the expression of mouse BACE!
protein, are decreased it the hippocampus of aged
APPswe/PS1 transgenic mice (19). All of these observa-
tions suggest that abnormally reduced expression of a set
of miRNAs accelerates A deposition via overproduction
of BACEL, the enzyme and/or APP, the substrate in AD
brains. Itis worthy to note that genetic variability involv-
ing miRNA-binding sites in both BACE1 and APP
3'UTRs does not serve as a major risk factor for develop-
ment of AD (20), suggesting that minor variations in
miRNA-binding sequences do not play a central vole in
upregulation of BACE] and APP in AD brains. These
observations sound reasonable because miRNAs gene-
rally induce translational inhibition without requiring the
perfect match in the binding scquences of target
mRNAs.

By the TagMan microRNA assay-based semi-quanti-
tative RT-PCR method, a previous study intensively
characterized miRNA expression profiles of the brains
and CSF samples derived from AD patients and nou-
demented controls (21).- They found that a wide variety
of miRNAs are either upregulated or downregulated in
specific regions of AD brains at defined pathological
stages, and the levels of all miR-30 family members are
coordinately clevated in CSF samples of AD. They pre-
dicted miRNA-binding sites of the targets and then
identified a relevant biological pathway by the hypergeo-
metric enrichment method named miRNApath. As a re-
sult, the analysis identified a meaningful relationship
between upregulated miRNAs and metabolic pathways
in AD brains such as insulin signaling, glycolysis, and
glycogen metabolism (21). By combining microarray-
based miRNA expression profiling and transcriptome
analysis of the brains of AD patients and age-matched
control subjects, a recent study showed that the levels of
various miRNAs are not only negatively but also posi-
tively correlated with those of the potential target mRNAs
(22). The expression of miR-211 shows a negative cor-
relation with mRNA levels of BACE, RAB43, LMNA,
MAP2K7, and TADA2L, whereas the expression of mir-
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44691 has a positive correlation with mRNA levels of
CYR61, CASR, POU3F2, GGPR68, DPF3, STK38, and
BCL2L2 in AD brains, supporting the previous observa-
tions that certain miRNAs activate transcription and
translation of targets (4, 5).

3. miR~292 decreased in AD brains targets NAV3

To identify miRNAs aberrantly expressed in the brains
of human neurodegenerative diseases, we initially studied
miRNA expression profiles of the frontal cortex of three
amyotrophic lateral sclerosis (ALS) patients on a
microartay containing 723 miRNAs (23). The human
frontal cortex total RNA of a 79 year-old Caucasian man
who died -of bladder cancer (AM6810, Ambion) was
utilized as a universal reference. The microarray data
were filtered through the following stringent criteria, that
is, the detection of all signals above the threshold, the
reference signal value exceeding 100, and the fold change
expressed as the signal of ALS divided by the signal of
the universal reference greater than 5. After filtration, we
identified only three miRNAs, including miR-29a,
miR-29b, and miR-338-3p, as a group of miRNAs whose
expression is substantially upregulated in all three ALS
brains (23).

Next, we increased the number of the cases to validate
microarray data by TagMan microRNA assay-based
quantitative real-time RT-PCR (QRT-PCR). They include
four non-neurclogical controls (NC), six patients with
ALS, seven with AD, and four with PD. Most impor-
tantly, all the brains were carefully evaluated by patho-
logical examination of the corresponding paraffin sec-
tions, following the Braak staging system to characterize
the stage of AD pathology (24). Although we observed a
trend for upregulation of miR-29a expression levels in
ALS versus NC, the difference did not reach statistical
significance due to a great interindividual variation.
However, unexpectedly, we found that miR-29a expres-
sion levels were significantly reduced in AD when
compared with NC (£ = 0.041) (Fig. 1a). On the other

hand, the levels of miR-338-3p were not significantly

different among the study groups, although a larger co-
hort is required to obtain a statistical power enough to

‘make a definitive conclusion (23). Since miR-29a and

miR-29b are located on the identical MIRN29B/
MIRN29A gene cluster on chromosome 7q32.3, their
biological functions are presurnably similar. Therefore,
we further focused our attention solely on miR-29a.
Then, we explored putative miR-29a target genes by
searchiing them on web-accessible mictoRNA target
databases, including TargetScan, PicTar, and miRBase
(MicroCosm). When the top 200 most reliable miR-29a
targets were extracted by each program, we found 11
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Fig. 1. MicroRNA-29a decrcased it AD brain targets NAV3, a) q‘RT‘»PCR of miR-29a cxpression. The expression of miR-29a
was studicd in fmzcn fmnm} cortex tissucs of nowncumlog,ical controk,‘(NC)? (n“"-"m 4)‘ Aizhcimcr’% discasc (AD)’ (n= 7); amyo—

PCR (qRT—PCR) lollowmg the Ddla Dclla C tzmthod RNU(nB was uuh?cd foa an anlog,cnous reference to standardxze me.NA
expression levels. The results were expressed as relative expression levels afler calibration with the universal reference (AM6810,
Ambion) data. The star indicates P =0.041 by Student’s f-test. b) Two miR-29a-binding sites located in 3'UTR of the NAV3
gene. The 3'UTR of the human NAV3 gene containg two separate, evolutionarily conserved mtR—29'\~bmdmg sites, localcd in'the
nucleotide positions 793~ 814-and 1,817 - 1,838, The sceding sequence of: miR=294 is uiiderlined, ¢) GRT-PCR of NAV3 MRNA
expression. The expression of NAV3 mRNA was studied in frozen frontal cortex tissues of NC (n=4), AD (n=7), ALS (= 6),
and PD (n=4) by qRT-PCR. The levels of NAV3 mRNA are standardizéd against those of GIPDH mRNA detected inidentical
cDNA samples. The double stars indicate = 0.028 by Student's #-test. d) Enhanced NAV3 immunoreactivity in degencrating:
pyramidal nourons in AD brains. The expression of NAV3 was studicd in the frontal cortex tissue scctions of AD by immunohis-
tochemistry using anti-NAV3 antibody (ab69868, Abcam).

genes shared among the three programs: fibrillin 1
(FBN1); neuron navigator 3 (NAV3); collagen, type V,
alpha 3 (COLSA3); collagen, type XI, alpha 1
(COL11A1); collagen, type I, alpha 2 (COL1AZ2); nuclear
autoantigenic sperm protein (NASP); tripartite motif-
containing 37 (TRIM37); post-GP1 attachment to proteins
2 (PGAP2); collagen, type V1, alpha 3 (COL6A3); induc-
ible T-cell co-stimulator (ICOS); and mediator complex
subunit 12-like (MbDIZL) (23). Among them, NAV3,
alternatively named pore membrane and/or filament in-
teracting like protein 1 (POMFIL1), was selected for

further investigations because it is predominantly ex-
pressed in the niervous system (25). Although thie precise
biological function of NAV3 in the human brain remains
unknown, a Caenorhabditis elegans gene named une-53,
highly homologous to NAV3; plays. a key role:in axon
guidance (26). Although -a previous study identified

BACE! as the most important target of miR-29a (16); we
found BACET as one of miR-2%a targets ranking 750th

of 850 candidates on Tar getScan and 197th of 326 can-
didates on PicTar.
The TargetScan search indicated that the 3'U I‘R ofthe



274 J Satoh

human NAV3 gene contains two separate miR-29a-
binding sequences, highly conserved through evolution,
located in the nucleotide positions 793 —814 and
1,817 - 1,838 (Fig. 1b). We cloned the former in the lu-
ciferase reportervector, which was cotransfected with a
miR-29a expression vector in HEK293 cells. The expres-
sion of miR-29a significantly suppressed activation of
the luciferase reporter following the wild-type target se-
quence, whereas miR-29a did not affect the expression
ofithe reporter following the target sequence with a 6-bp
deletion corresponding to the seed sequence (23). Impor-
tantly, qRT-PCR indicated that the levels of NAV3
mRNA expression were significantly higher in the frontal
~cortex of AD compared with NC (£ = 0.028) (Fig. 1¢),
suggesting that NAV3 is indeed a candidate for an miR-
29a target in vivo in AD brains. However, we could not
validate elevation of NAV3 protein levels in AD brains
by western blot analysis due to a great interindividual
variation (23). The lack of the comelation between
mRNA levels and protein abundance might be in part
atiributable to the complexity of brain tissues composed
of various cellular constituents with différential expres-
sion of target proteins that affects the efficacy of purifi-
cation, or alternatively to the differential stability and
turnover of mRNA and protein via various post-tran-
scriptional mechanisis, including the selective degrada-
tion of proteins by proteasome and autophagosome ma-
chineries in individual.cells (27).

Finally, we investigated NAV3 expression in the
frontal cortex of AD, ALS, or PD by immunohistochem-
istry. In all the brains examined, large and medinm-sized
pyramidal neurons in layers HI and V of the cerebral
cortex expressed NAV3 immunoreactivity located
chicfly in the cytoplasm, gxons, and dendrites (23).
Notably, NAV3 immunolabeling was the most intense in
neurons presenting with degenerating morphology in AD
brains (Fig. 1d). In AD brains, a substantial population
(<20%) of pyramidal neurons containing tau-immunola-
beled NFT coexpressed intense NAV3 imnunoreactivity.
However, at present, it remains unknown whether en-
hanced expression of NAV3 in a subpopulation of corti-
cal pyramidal neurons in AD brains reflects a patho-
genetic-change or a compensatory mechanism against
neurodegenerative events. A recetit-study by in situ hy-
bridization (ISH) showed that each subpopulation of
neurons in different cerebral cortical layers expresses a
distinct set of miRNAs in the human transentorhinal
cortex (TEX), and the expression pattern is greatly af-
fected by AD pathology from the earliest stage of the
disease (28).

In conclusion; increasing evidence indicates that aber-
rant expression of various miRNAs, both upregulated
and downregulated species, plays an active role in the

pathological processes of AD (Table 1). A single miRNA
has a great impact on the cellular function by mostly
suppressing and occasionally activating numerous down-
stream mRNA targets. Therefore, even the small-scale
turbulence occurring in the miRNA-mediated gene regu-
lation affects various biological pathways involved in
both neurodegeneration and neuroprotection in AD
brains. We need to further elucidate the entire picture of
the pathophysiological interaction among miRNAs,
mRNAs, and proteins in AD brains.
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