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To investigate layer-specific molecule expression in human de-
veloping neocortices, we performed immunchistochemistry of the
layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and
CTIP2), using frontal neocortices of the dorsolateral precentral gyri
of 16 nermal controls, aged 19 gestational weeks to 1 year old,
lissencephalies of 3 Miller-Dieker syndrome (MDS) cases, 2 X-linked
lissencephaly with abnormal genitalia (XLAG) cases, and 4 Fukuyama-
type congenital muscular dystrophy (FCMD) cases. In the fetal period,
we observed SATB2+ cells in layers 111V, CUTL1+ cells in layers
1=V, FOXP1+ cells in layer V, 0TX1+ cells in layers Il or V, and
CTIP2+ and TBR1+ cells in layers V and VI. SATB2+ and CUTL1+
cells appeared until 3 months of age, but the other markers
disappeared after birth. Neocortices of MDS and XLAG infants
revealed SATB2+, CUTL1+, FOXP1+, and TBR1+ cells diffusely
located in the upper layers. In fetal FCMD neocortex, neurons labeled
with the layer-specific markers located over the glia limitans. The
present study provided new knowledge indicating that the expression
pattern of these markers in the developing human neocortex was
similar to those in mice. Various lissencephalies revealed abnormal
layer formation by random migration.

Keywerds: developing human neocortex, layer-specific marker,
lissencephaly

Introduction

The experimental neurosciences have recently provided many
new insights into the molecular mechanisms of mammalian
cerebral formation. Past knowledge revealed that some
molecules are regulated with a well-designed genetic algorithm
during the developmental stages, with interrelated phenomena
that include cell proliferation, fate determination and migration
to the proper laminar, and final position in the cerebral cortex.
Neocortical laminar formation is highly programmed by genetic
control in the early embryonic period. At the decided time,
projection neurons migrate into the cortical plate (CP) along
the radial glial process from the subventricular germinal zone
with an inside out pattern. At this neural migration stage,
integration of reelin (RELN), Lis-1, doublecortin (DCX), and
other molecules is required to form a complete neocortex
(Guillemot et al. 2006; Mochida and Walsh 2004). Finally,
mammalian brains commonly show a G-layer neocortex, and

© The Author 2010. Published by Oxford University Press. All rights reserved.
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each layer has a specific function with a synaptic connection.
In each step, specific genes have important roles, and the
molecular mechanism is well known in rodent brains (Arlotta
et al. 2005; Alcamo et al. 2008). Satb2, a special AT-rich binding
protein 2, generates callosal projection neurons in layers II-IV
(Alcamo et al. 2008; Britanova et al. 2008). Ctip2, encoding
a C2H2-type zinc finger protein, locates in layers V and VI and
promotes corticospinal motor neuron projection (Arlotta et al.
2005; Britanova et al. 2008). Satb2 is a repressor of Ctip2 and
makes not only the callosal projection but also the subcortical
connections (Alcamo et al. 2008). Mouse Otx1, orthodenticle
homeobox 1, is expressed in a number of cells in layers V and
VI (Weimann et al. 1999). Tbrl, a member of the T-box
homeobox gene family, expresses in preplate and layer VI in
mouse fetal brain (Hevner et al. 2001) and layers I-III and layer
VI in mouse adult brain (Bulfone et al. 1995). Tbr1 contributes
to make corticocortical projection neurons (Hevner et al.
2001). Tbrl expresses in the deep layer of the human fetus
cortex (Sheen et al. 2006). A transcription factor Cutll,
drosophia homeobox CUT like 1, is expressed in pyramidal
neurons of the upper layer (Nieto et al. 2004). Foxpl,
a transcription factor of the winged-helix/forkhead family,
expresses in layers III-V of mouse neocortex (Ferland et al.
2003) and layer V in human neocortex (Sheen et al. 2006).
Foxpl expresses in the deep layer of Miller-Dieker syndrome
(MDS) neocortex (Sheen et al. 2006). However, many rodent
studies show that the other layer-specific molecules also play
very important roles in forming cortical lamination (Molyneaux
et al. 2007) and that such gene disruption leads to profound
cortical malformation (Mochida and Walsh 2004).
Lissencephaly, formed at the neuronal migration period,
is classically recognized to be mainly of 2 types; smooth
pacthygyria-agyria as type I lissencephaly and cobblestone
lissencephaly as type II lissencephaly (Olson and Walsh 2002).
Type I (classical) lissencephaly shows a thick 4-layer cortex and
is typically known as MDS and double cortex syndrome. The
causative genes of type I lissencephaly are known as RELN,
Lis-1, DCX, and filamine. Interestingly, the gene products are
associated with the microtubules and can alter the cytoskeleton
size for cell movement (de Rouvroit and Goffinet 2001; Reiner
and Sapir 2009) or its related molecules (Olson and Walsh 2002;
Assadi et al. 2003). Typical type II (cobblestone) lissencephalies



of Muscle-eye-brain disease, Walker-Warburg syndrome (WWS),
and Fukuyama-type congenital muscular dystrophy (FCMD),
are caused by mutated genes encoding enzymes of
alpha-dystroglycan glycosylation, such as POMGnT1, protein-O-
mannosyltransferase (POMT) 1 and 2, and Fukutin, respectively
(Mochida and Walsh 2004). The posttranslational glycosylated
alpha-dystroglycan binds to extracellular matrix (Michele et al.
2002). Reduction of glycosylation leads to disruption of the glia
limitans over which neurons migrate (Yamamoto et al. 2004).

Recently, it has been reported that X-linked lissencephaly
with abnormal genitalia (XLAG), whose causative gene is
Aristalesstelated homeobox gene (4RX), is a new type of
lissencephaly that shows a 3-layer neocortex (Dobyns et al
1999; Kitamura et al. 2002; Bonneau et al. 2002; Okazaki et al.
2008). ARX has a homeodomain and decides the migration of
interneurons in the ganglionic eminence. However, it is
unknown why ARX dysfunction leads to abnormal radial
neuronal migration in human XLAG, whereas ARX-null mice
show reduced cortical proliferation but normal migration
(Kitamura et al. 2002; Okazaki et al. 2008).

It is very important to reveal the molecular and morpholog-
ical relationship between these malformed brains to under-
stand human neocortical formation and pathophysiology,
although little is known about the expression pattern of
layer-specific markers in human developing brain (Hevner
2007). In the present study, we focus on layer formation
and investigate the expression of layer-specific molecules in
neocortices of human developing brains and lissencephalies.

Materials and Methods

Human Brain Tissues

All cerebral tissues used in the present study were approved for
research usage by parents and Ethical Committees of the involved
hospitals and institutes. For the developmental study, we used frontal
cortices of the dorsolateral precentral gyri of 16 controls, showing no
neuropathological findings (age 19 gestational weeks [GWs] to 1 year
after birth) (Supplementary Material). In addition, we examined the
same frontal cerebral hemispheres of lissencephaly, which were
clinicopathologically diagnosed as MDS, XLAG, and FCMD (Supplemen-
tary Material). The postmortem interval (time from death to fixation) of
all subjects was within 12 h (Supplementary Material). After removal, all
brains were fixed in 10% buffered formalin or 4% paraformaldehyde for
2 weeks. Then, brains were dehydrated with 70-100% alcohol and
embedded in paraffin. The serial sections were cut 6 um thick for
histological and immunohistological examination.

Histology and Immunobistochemistry

For investigation of brain architecture, the sections were stained with
hematoxylin and eosin (HE) and Klitber-Barrera (KB) method. To
investigate cortical layer formation, we performed immunohistochem-
istry using cortical layer-specific markers; polyclonal antibodies against
TBR1 (dilution of 1:100; Abcam), FOXP1 (1:100; Abcam), and OTX1
(1:100; Abcam), as well as monoclonal antibodies against SATB2 (1:100;
Bio Matrix Research Inc.), CUTL1 (1:100; Abnova), and CTIP2 (1:20;
Abcam).

Our immunohistochemistry technique was previously described
(Okazaki et al. 2008). Briefly, the serial sections were deparaffinized
and rehydrated. For antigen retrieval, we performed an autoclave
treatment (120 °C for 10 min in 10 mM citrate buffer, pH 6.0). Sections
were incubated in primary antibodies at 4 °C for overnight, and then
reacted with the secondary antibodies (Nichirei). We used amino ethyl
carbazole (Nichirei) as a chromogen. For counterstaining, 0.2% methyl
green was used. For double labeling, we used Alexafluor-488- and
568-conjugated secondary antibodies (Invitrogen Corporation) with

4',6'-diamidino-2-phenylindole (DAPI). We observed the stained tissues
with FLUOVIEW 500 fluorescent microscope (Olympus).

Results

Cortical Lamination of Normal Developing Brains
Generally, we confirmed cortical formation of all subjects with
HE- and KB-staining. We observed the CP and intermediate
zone around 20 GW (Fig. 14). At this embryonic period,
SATB2+ cells located in the upper region of CP (Fig. 1B).
CUTL1+ cells were diffusely distributed in CP (Fig. 1C).
FOXP1+ cells were restricted to the middle region of CP (Fig.
1D). OTX1+ cells and CTIP2+ cells are seen in the lower region
of CP (Fig. 1EF). The distribution of TBR1+ cells exhibited a
2-layer pattern of CP and SP (Fig. 1G).

At approximately 30 GW, the neocortex was divided into
6 layers (Fig. 24). The distribution of SATB2+ cells was ob-
served in layers II-V, predominantly in layers IT and IV (Fig. 2B).
CUTL1+ cells were diffusely seen in layers II-VI (Fig. 20).
FOXP1+ cells were in layer IV and the upper region of layer V
(Fig. 2D). OTX1+ cells were concentrated in layers IV and V
(Fig. 2E). CTIP2+ and TBR1+ cells were located in layers V and
VI (Fig. 2F,G). The developmental expression pattern is shown
in Supplementary Figure 1.

In the perinatal period, the expression pattern of the cortical
layer-specific markers is very similar to that of around 30 GW
(Fig. 3). In the late gestational period, SATB2 expressed in the
superficial region of the neocortex and CUTL1, FOXPI1, and
CTIP2 gradually demonstrated in the deep region, while TBR1
was in the bottom. Interestingly, OTX1+ cells were only in layer
V (Fig. 3E). After birth, SATB2+ and CUTL1+ cells appeared
until 3 months of age, although the other markers had already
disappeared (data not shown).

In order to investigate the relationships among these layer-
specific markers, we performed double fluorescent staining of
SATB2 and FOXP1, SATB2 and TBR1, CTIP2 and SATB2, SATB2
and OTX1, CTIP2 and FOXPI, and CTIP2 and TBR1 (Fig. 4,
Supplementary Figure 1). FOXP1+ and SATB2+ merged
(FOXP1+/SATB2+) cells were observed in the superficial CP
of 23 GW but in the deep layer after 29 GW (Fig. 44).
Throughout the fetal period, FOXP1+/CTIP2+ cells might be in
the deep layer (Fig. 4E), and many SATB2+/OTX1+ cells were in
layers II and IV or V (Fig. 4D). However, SATB2+ cells did not
express CTIP2+ (Fig. 4C). TBR1+ cells had no SATB2, but there
were a few CTIP2 signals in layer VI (Fig. 4B,F). The double
staining of layer-specific marker expression was shown in
Supplementary Figure 1.

Layer-Specific Marker Expression of Various
Lissencepbalies

MDS brains were typical agyria and pachygyria with thick
cortex and thin white matter. MDS showed a 4-layer neocortex
as previously reported (Crome 1956): a molecular layer, an
external cellular layer (layer I), a sparsely cellular layer (layer
I1), and an internal cellular layer (layer IIT) (Fig. 54). In layers 11,
III, and IV, small neurons, which had immunoreactivities of
SATB2, CUTLIL, FOXP1, and TBR1, were observed diffusely but
were few in number (Fig. 5B-E). Large pyramidal neurons in
the upper layer I had TBR1 (Fig. 5E). The neocortex in XLAG
exhibited a 3-layer pattern (Bonneau et al. 2002): a molecular
layer (layer I), an intermediate layer with densely packed

Cerebral Cortex March 2011, V 21 N 3 589



HE SATB2 CUTLY FOXP{ oTXd CTIP2 TBRY
Figure 1. layer-specific marker expression of the neocortex at 23 GWs. Around 20 GWs, the 3-layer pattern, that is, the marginal zone (MZ}, CP, and subplate (SP}, are seen
(A). SATB2 expresses in the upper region of CP (8). CUTL1 diffusely expresses in the whole cortex and intermediate zone (C). FOXP1-positive cells locate in the middle region (D)

and CTIPZ-immunopositive cells (F) locate in the lower region of CP. OTX1 exhibits in CP and SP, predominantly lower region of CP (£). TBR1-immunopositive cells are in the lower
region of CP and SP, as well as those fibers in CP (G). A, HE; B-G, SATB2, CUTL1, FOXP1, OTX1, CTIPZ, and TBR1 immunchistochemistry, respectively. Scale bar: 100 pm.
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Figure 2. Layer-specific marker expression of the neocortex at 29 GWs. The 6-layer neacortex is shown (A). SATB2 expresses in layers {l-V, especially layer Il and upper region
of layer IV (B). CUTL1 diffusely expresses in layers II-V and predominates in layer Il (C). FOXP1 converges to layers Vland V (D). OTX expresses in upper layer and layers VI and V
(E). CTIP2- and TBR1-immunopositive cells locate in layer V and layers V and VI {F and G). A, HE; B-G, SATB2, CUTL1, FOXP1, OTX1, CTIP2, and TBR1 immunohistochemistry,
respectively. Scale bar: 100 pm.
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Figure 3. Layer-specific marker expression of the neocortex at 37 GWs. Expression of SATB2, CUTL1, FOXP1, OTX1, CTIP2, and TBR1 has a pattern similar to those at 29 GWs.
OTX1 disappears in upper layer of neocortex {£). A, HE; B-G, SATB2, CUTL1, FOXP1, OTX1, CTIP2, and TBR1 immunchistochemistry, respectively. Scale bar: 100 pm.
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FOXPY TERY BATHEZ OT¥ FORPY TR

Figure 4. Immunofluorescence of layer-specific marker of neocortex at 28 GWs. FOXP1-immunopositive cells partially have SATB2 (merged color: arrows) in layers lI-Ill and V-V
{A) and CTIP2 (merged color: arrows) in layers IV-VI (£). No double-positive cells for SATB2 and CTIP2 are scattered throughout all fayers (C). No TBR1+ and SATB2+ cells are
observed in layers V and VI (B), but a few TBR1+ and CTIP2+ cells are seen in layers V and VI (F). Many merged cells with SATB2 (red} and OTX1 (green) are diffusely
demonstrated, predominantly in layers l and V (D). A, SATBZ (red) and FOXP1 (green) double fluorescence; B, SATBZ (red) and TBR1 (green): C, CTIPZ {red) and SATB? (green);
D, SATBZ {red) and OTX1 (green); £, CTIPZ {red) and FOXP1 (green); £, CTiP2 {red), and TBR1 {green). Scale bars: 20 pm.
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Figure 5. Layer-specific marker expression of the neocortex of 1-year-old patient with Miller-Dieker syndrome. Typical 4-layer pattern is shown. (4) SATB2, CUTL1, FOXP1, and
TBR1 are diffusely expressed in layers I, lll, and IV. Especially, TBR1-immunopositive cells locate in fayer Il {£). Enlargement of layer Il shows A./f, B, C.II, and D./I. Enlargement of
layer Il shows A/, B.MI, C.Jil, and D.Jil. Enlargement of layer IV shows A.JV, B.AV, C.IV, and D./V. Gross histology shows with KB staining. A.//, A./ll, and A.[V, SATBZ2 in layers Il, lll,
and IV; B, BJIl, and B.AV, CUTLY; C.I, CJII, and C.IV, FOXP1; D.J, D.JIl, and D.IV, TBR1, respectively. Scale bar: 100 pm.

neurons (layer 1), and a deep layer (layer III) (Fig. 64). SATB2+
and CUTL1+ cells located in the intermediate layer and upper
region of the deep layer (Fig. 6B,C). FOXP1+ cells and TBR1+
cells were also distributed in layer I and Il (Fig. 6D,E). These
labeled cells in the deep intermediate layer were large and
dense but small and sparse in the upper region of the inter-
mediate layer. Also, in the molecular layer, FOXP1+ and TBR1+
cells were few. No CTIP2+ and OTX1+ cells were observed in
either malformed brain.

Usually, FCMD cerebral cortices show type II lissencephaly
with cobblestone cortex. The cerebral cortices of FCMD fetus
already revealed typical cobblestone lissencephaly (Fig. 7.4).
Neurons of the fetal neocortex migrated over the glia limitans.
SATB2+, CULT1+, FOXP1+, CTIP2+, and TBRI1+ cells were
dense above the glia limitans and sparse below it (Fig. 75-D),
and TBR1+ cells were distributed predominantly below the glia
limitans (Fig. 7E). However, no markers were detected in
specimens from postnatal FCMD brains (data not shown).

The layer-specific marker expression pattern of 3 types of
lissencephalies was summarized in Supplementary Figure 2.

Discussion

Very little is known about the molecular mechanism of human
neocortex layer formation. Here, we presented new knowledge
regarding the layer-specific marker expression in fetus de-

592 Layer-Specific Expression of Human Brains - Saito et al.

velopment. Recent neuronal developmental studies have
introduced some molecules as layer-specific markers. Among
them, Satb2, Cutll, Foxpl, Otx1, Ctip2, and Tbrl are well-
known transcriptional factors and highly conserved. The facts
that SATB2 was relatively limited to layers II and IV of human
fetus cortex and that Cutll was not known in human but was
expressed in layers II-IV evidenced the same expression
patterns of these molecules in rodent study (Nieto et al
2004; Britanova et al. 2008). The migration pattern of callosal
projection neurons may be the same as that in the mouse.
FOXP1+ cells located in deep layers or layers IV-V before
30 GW and in layers IV-VI before birth. TBR1+ cells located in
layers V-VI in the fetal period. FOXP1+ and TBR1+ cell
localization in layers IV and 'V was similar to those in a previous
human study (Sheen et al. 2006). However, TBR1+ cells were
located beneath FOXP1+ cells but not colocalized. The
restricted distribution of CTIP2+ cells in layer V may reflect
the corticospinal projection formation, as indicated by mouse
ctip2 analysis (Arlotta et al. 2005). Interestingly, SATB2+ cells
were located in the upper region of layer IV and FOXP1+ cells
in the lower region of the same layer. This different localization
indicates completely different neural functions between SATB2
and FOXP1, although the FOXP1 function in neocortex is
unknown.

In mouse neocortex, Otx1+, Thrl+, Ctip2+, Foxp1l+, Cutll+,
and Satb2+ neurons are born around embryonic day 12.5, 10.0,
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Figure 6. Layer-specific marker expression of the neocortex of 10-month-old boy with XLAG. Neocortex shows a thin 3-layer pattern. SATB2-, CUTL1-, FOXP1-, and
TBR1-immunopositive cells locate diffusely {A-D). Gross histology shows with KB staining. A./, A.ll, and A, SATBZ in layers I, II, and Ii; B/, B.M, and B.JI, CUTLY; C/, CHI, and

C.Hi, FOXP1; D.1, DI, and D./if, TBR1, respectively. Scale bar: 100 pm.

12.0, 14.5, 13.0, and 13.5, respectively (Simeone et al. 1993;
Bulfone et al. 1995; Hevner et al. 2001; Ferland et al. 2003;
Leid et al. 2004; Nieto et al. 2004; Arlotta et al. 2005; Britanova
et al. 2005). These labeling neurons originate from progenitor
cells residing in the ventricular zone (VZ) and the subven-
tricular zone (SVZ) of early developing brain. Early progenitor
cells in VZ produce deep layer neurons expressing Ctip2. On
the contrary, late progenitor cells in SVZ form upper layers,
expressing Cutll (Nieto et al. 2004). The previous data that
Satb2-null mice show loss of Cutll+cells in the superficial
layers (Alcamo et al. 2008) suggest the profound molecular
relationship of Satb2 and Cutll. Satb2+ cells directly contrib-
ute to the formation of a callosal projection of the bilateral
neocortical connection (Alcamo et al. 2008), while Ctip2+
cells contribute to the formation of a corticospinal projection
forming a long pathway between the neocortex and anterior
horn of the spinal cord (Arlotta et al. 2005). Interestingly, the
expression patterns of SATB2 and CTIP2 in human neocortex
mimicked those of rodent, and SATB2+ cells were also found
in part of layer V. Although SATB2+ cells and CTIP2+ cells
were in layer V, these double-marked cells were not observ-
able. This may indicate these cells have different functions.
From rodent study, 2 major projection neurons, callosal and
subcortical, are formed by Satb2 and Ctip2 interaction (Leone
et al. 2008), which may be at work in the human fetal

neocortex. The finding of no double-labeled cells with CTIP2
and SATB2 in human neocortex is compatible with the rodent
data (Leone et al. 2008). Otx1 in mouse brain also expresses
in layer V and contributes to the formation of the cortico-
spinal projection (Frantz et al. 1994; Weimann et al. 1999).
CTIP2+/OTX1+ cells may be closely related to the forming of
the corticospinal projection. Interestingly, we found many
SATB2+/OTX1+ cells in layer V. OTX1 may play an essential
role in the specification of both callosal and corticospinal
projection neurons, although the detailed interaction be-
tween OTX1 and CTIP2 remains unknown. Moreover,
FOXP1+ cells expressed SATB2 and CTIP2 in layer V. It is
unknown whether a relationship exists between Foxpl and
Satb2 or Foxpl and Ctip2, although Ctip2 is known to
colocalize with Foxp1 in mouse striatum (Arlotta et al. 2008).
FOXP1 may also contribute callosal and corticospinal pro-
jection neurons. FOXP1 disappeared earlier than OTX1 (Figs
2 and 3 and Supplementary Figure 1). FOXP1 could strongly
control forming corticospinal projection. Tbrl+ cells derived
from the earliest progenitor cells locate in layer VI (Hevner
et al. 2003) and contribute to the development of cortico-
thalamic projection neurons (Hevner et al. 2001, 2002;
Guillemot et al. 2006; Leone et al. 2008). In our data, the
TBR1+ cells that expressed CTIP2 in layer VI may form
corticothalamic projections, as in rodent studies.
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Figure 7. Layer-specific marker expression of the neocortex of 19-GW fetus with FCMD. Neocortex shows typical cobblestone lissencephaly feature. Many SATB2-, CUTL1-,
FOXP1-, OTX1, CTIPZ-, and TBR1-immunopositive cells migrate over the glia limitans (B-G), while some labeled cells locate under it. GL, glia limitans; A, HE; B-G, SATB2, CUTL1,

FOXP1, OTX1, CTIP2, and TBR1 immunchistochemistry, respectively. Scale bar: 100 pm.

On the other hand, malformed neocortices revealed unique
distributions of the layer-specific markers. In MDS, due to
deletion of 17p13.3 with LIS1 gene, it has been thought that
neurons of the superficial layer are neuronal components of the
fundamental deep layers, and neurons of the deep layers consist
of neuronal components of layers II-IV in the normal neocortex
(Ferrer et al. 1987). Also, MDS neocortical lamination was found
to have an inverted organization (Viot et al. 2004). However,
recently the neocortex of 33 GW MDS has reportedly
demonstrated FOXP1+ cell in the deep layers or TBR1+ cells
in the first 3 layers (Sheen et al. 2006). MDS neocortical
lamination was concluded to be preserved and noninverted.
Our MDS findings supported noninverted lamination because of
the diffuse expression pattern of all layer-specific markers.
XLAG, caused by loss of function mutations of ARX gene
concerned with differentiation and migration of y-aminobutyric
acidergic interneurons, shows a 3-layer lissencephalic neo-
cortex (Kitamura et al. 2002; Bonneau et al. 2002; Cobos et al.
2005; Forman et al. 2005). Although ARX-null mice exhibit
nearly normal layer formation of the cerebral cortex (Kitamura
et al. 2002), the human XLAG neocortex was reported to
consist of 3 layers with uniform pyramidal neurons (Bonneau
et al. 2002; Okazaki et al. 2008). From our observation of layer-
specific markers in layers II and III, XLAG might also be
a random migration pattern. In human brain, ARX involves
migration of not only interneurons but also projection neurons
(Okazaki et al. 2008). XLAG neocortex may have an abnormal
interneuron migration pattern, although in the present study
this could not be demonstrated. Interestingly, our postnatal
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patients with MDS and XLAG revealed persistent expression of
these layer-specific markers, which was not found in the
normal neocortex. This suggests that MDS or XLAG neurons
arrest in the premature or undifferentiated stage.

Further investigation is needed to determine why these
layer-specific markers are expressed in postnatal brains, and
the nature of their molecular function. Moreover, we
investigated neocortices of typical type II lissencephaly, FCMD.
Various-sized and/or disoriented neurons were widely scat-
tered in the neocortex. In FCMD fetal brain, the layer-specific
markers diffusely expressed over and under glia limitans
(Fig. 7). Obviously, the FCMD fetal neocortex had completely
lost its layer formation. The layer-formation pattern of WWS$
fetus presents the same result as ours (Hevner 2007). This type
II lissencephaly, cobblestone lissencephaly, may commonly
have this pathological construction. Postnatal FCMD demon-
strated no expression of the layer-specific markers and was
different from MDS and XLAG. Neuronal maturation of FCMD
neocortex may be more advanced than other types of
lissencephalies. This leads us to conclude that FCMD patients
have a relatively low incidence of epilepsy and some cases are
mild (Guerrini and Filippi 2005; Spalice et al. 2009).

Our study suggests that the laminar formation pattern of
human and rodent neocortices is fundamentally the same. One
of the characteristics of the human neocortex is its gyration,
which is 1000-fold in the neocortical surface area between
human and rodent (Bystron et al. 2006; Rakic 2009). It is
thought that not only the number of neuronal progenitors but
also the number of radial glial cells in human brain is much



larger than in the rodent. As a result, the human neocortex
must fold and form gyrations. However, in case of abnormal
expression of migration- or proliferation-related genes or envi-
ronments such as trauma and infection, the number of neuronal
progenitor cells, and radial glial cells may serve to reduce and
influence the migration pattern.

We may conclude that the neocortex of lissencephalies is
formed by a unique type of neuronal migration. The late-birth
cells in MDS may migrate randomly but not the early-birth cells.
In XLAG, SATB2+, and TBR1+ cells distribute in the relatively
deep layers, but CUTL1+ and FOXP1+ cells may follow a random
migration pattern. FCMD shows the most random pattern. We
must seek to understand the mechanism behind these differ-
ences. The molecular mechanism of neuronal movement is well
known. Lis-1 or Dcx is a modulator of radial migration and
contributes to layer formation (Hirotsune et al. 1998; Meyer
et al. 2002; Bai et al. 2003). In human layer formation, various
projection neurons originate from VZ or SVZ and migrate
radially depending on the time of cell birth. In interneuron
development, Cutll and Cutl2 contribute to Reln expression
and control the number of the interneuron subpopulation
(Cubelos et al. 2008). However, little is known about inter-
action between the layer-specific markers (transcription
factors) and neuron kinetic factors including Lis-1, Dcx and
Reln. Further study is warranted to obtain more information in
this regard.
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Abstract

To clarify the pathophysiology of brain and spinal cord impairment in Rett syndrome (RTT), we report on the current status of
research on Rett syndrome and review the abnormalities reported in neurotransmitters, neuromodulators and other biological
markers in patients with RTT. We have previously investigated the levels of various factors in the blood, plasma, and cerebrospinal
fluid (CSF) of RTT patients, including biogenic amines, lactate, melatonin, pyruvate and other citric acid cycle intermediates,
substance P, B-endorphin and other neuropeptides, and a neuromodulator of B-phenylethylamine. In addition, we have performed
near-infrared spectroscopy of the cerebral cortices in patients with RTT and genetic studies of the methyl-CpG-binding protein 2
(MECP2) in these patients. Taken together, the multiple abnormalities we and other authors have revealed in the various
neurotransmitters/neuromodulator systems explain the pervasive effects of Rett syndrome. We also discuss the possible role of
plasma ghrelin and present the results of our mouse study of the MECP2-null mutation using ES cells. Finally, we consider the
potential for future analyses using our recently developed iPS cell system and discuss the future perspectives for the treatment
and management of this disease.
© 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

Keywords: Rett syndrome; Methyl-CpG-binding protein 2; Pathophysiology; Neurotransmitters; Neuromodulators; MECP2-null mutation mouse
model

1. Introduction

Rett syndrome (RTT) is a neurodevelopmental
disorder characterized by normal early psychomotor
development followed by the loss of psychomotor and
acquired purposeful hand skills and the onset of stereo-
typed movement of the hands and gait disturbance [1-4].
The gene was discovered in 1999 and the disease was
found to be caused by a mutation of the methyl-CpG-
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binding protein 2 [5,6]. However, in many ways this clin-
ically peculiar condition remains a mystery, with no
clear correlations between the gene mutation and abnor-
mal biological markers, neuropathology and/or unique
clinical symptoms and signs [1-4,6].

RTT is unique among genetic, chromosomal and other
developmental disorders because of its usually sporadic
occurrence, extreme female gender bias, early normal
development and subsequent developmental regression,
autonomic dysfunction, stagnation in brain growth and
distinctive neuropathology. MECP2 mutations lead to
the RTT phenotype in females, and profound congenital
encephalopathy in males [7]. Research needs to be direc-
ted toward clarifying the link between the MECP2
involvement and the alterations in biological, neurochem-
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ical, and neurotransmitter/receptor systems, as well as
toward developing new therapeutic modalities.

2. Neurotransmitters and biological markers
2.1. Biogenic amines

Nomura and Segawa have suggested that hypoactiv-
ity or underdevelopment in the biogenic amines might
account for the range of abnormalities found in RTT.
Specifically, they suggested that the disease might be
associated with impairments in noradrenalin, serotonin,
and dopamine based on a series of clinical, electrophys-
iological and polysomnographic studies. They have
proposed that the following points are important in con-
sidering the pathophysiology of RTT. First, the charac-
teristic symptoms and signs appear in sequence within a
specific age from infancy. The earliest and pathogno-
monic manifestations of RTT are the autistic tendency
and the decreased rate in head growth [8,5]. Their report
has led to a proliferation of studies on biogenic amines
in the cerebrospinal fluid (CSF) of RTT patients, as well
as immunohistochemical studies, receptor studies, and
neuroimaging studies. Together, these investigations
have suggested that various neurotransmitters, neuro-
modulators, neurotrophic factors and neuronal markers
may be involved in RTT. Zoghbi et al. have reported
significant reductions in the levels of homovanillic acid
(HVA) and in 3-methoxy-4-hydroxy-phenylethylene gly-
col (MHPG) in the CSF of children with RTT [10].
However, Perry et al. reported no difference in these lev-
els between RTT patients and controls [11]. Therefore,
whether or not CSF biogenic amines are actually altered
in RTT remains a matter of controversy. However, a
recent report showed that HVA and 5-HIAA were
decreased in RTT patients and the MECP2™""Y mouse
brain [12]. In another study, the biogenic amines dopa-
mine, serotonin, and noradrenalin, and their respective
metabolites HVA, 5-hydroxyindoleacetic acid, and
MHPG, were measured in tissues from selected brain
regions obtained at postmortem from four patients with
RTT. A marked reduction in each of these substances
was observed and these changes appeared to be age-
related [13,14]. In addition, the endogenous levels of
dopamine and its metabolites have been shown to be
decreased throughout the neocortex and basal ganglia
of patients with RTT [15]. Kitt et al. have reported a
mild-to-moderate reduction in the number and cell size
of the basal forebrain cholinergic neurons in RTT
patients compared with controls, which might explain
the impaired cognitive function and microcephalus [16].

2.2. B-Phenylethylamine

We have reported decreased B-phenylethylamine
(PEA) levels in the CSF of patients with RTT [17].

PEA is an endogenous amine synthesized by decarbox-
ylation of phenylalanine in the dopamine neurons of
the nigrostriatal system, and plays an important role
in both the dopaminergic and noradrenergic systems.
We have also reported reduced levels of PEA in the
CSF of patients with Parkinson’s disease. The PEA level
was also negatively correlated with the severity of the
Parkinson’s disease [18].

2.3. B-Endorphin, substance P, melatonin

Myeretal. [19]and Budden et al. [20] have reported ele-
vated CSF B-endorphin in RTT. However, elevated B-
endorphin was not found in the brain, suggesting that
the alteration in f-endorphin may be a secondary change.
We have reported that the level of substance P was mark-
edly decreased in the CSF in patients with RTT, and this
was considered to play a role in the features of autonomic
dysfunction that occur in RTT, including constipation,
small and cold feet, progressive limb muscle weakness
and muscle atrophy [21]. Substance P is a neurotransmit-
ter or neuromodulator in the peripheral as well as the cen-
tral nervous system (CNS). Substance P activity is
associated with dopaminergic neurons in the substantia
nigra and the striatum, the central autonomic nuclei, the
dorsal root ganglia, and the peripheral autonomic ganglia
[22]. Hedner et al. reported that substance P acted on the
respiratory control system by at least two different mech-
anisms: the bulbo-pontine time setting mechanism, and
the inspiratory off-switch mechanism [23]. Deguchi et al.
reported that the substance P immunoreactivity was sig-
nificantly decreased in brain tissues, especially the solitary
tract and nucleus, parvocellular and pontine reticular
nuclei, and locus coeruleus, with less significant decreases
in the substantia nigra, central gray matter of the mid-
brain, and other regions. Glial fibrillary acidic protein
(GFAP)-positive astrocytes were increased in the areas
in which SP immunoreactivity was decreased [24]. Neuro-
trophic effects of substance P on the hippocampal neurons
have been reported [25]. Sleep disturbances such as
screaming attacks, fragmented nighttime sleep, and exces-
sive daytime sleeping are also common features in patients
with RTT. These symptoms may be due to the decreased
levels of melatonin, and in fact, such symptoms are ame-
liorated by exogenous melatonin treatment [26-28].

2.4. Neurotrophic factors and others

Nerve growth factor (NGF) is known to be a trophic
factor, especially for the cholinergic neurons of the basal
forebrain. NGF has been shown to be markedly
decreased in the CSF of RTT patients, which may
explain the decreased brain size [29]. Chen et al. [30]
and Martinowich et al. [31] groups found that MECP2
binds selectively to brain-derived neurotrophic factor
(BDNF) promoter and functions to regulate expression
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of the BDNF gene. Overexpression of BDNF indeed
extended the lifespan, restored locomotor activity levels,
and relieved some symptoms of the MECP2 mutant
phenotype [32,33]. Itoh et al. reported that MECP2
directly regulates expression of insulin-like growth fac-
tor binding protein 3 (IGFBP3) gene, which can be
expected in turn to inhibit IGF-1 signaling [34,35].

Blue et al. reported significant changes in specific
glutamate receptors, including NMDA, AMPA, and
metabotropic type glutamate receptors in RTT [36].
Hamberger et al. have reported an elevation in the glu-
tamate level in the CSF of children with RTT [37]. The
elevations in NMDA receptors combined with the
increased levels of CSF glutamate have suggested that
excitatory neurotransmission is enhanced early in the
course of the disease. Yamashita et al. measured benzo-
diazepine binding in stage IV RTT using single-photon
computed tomography (SPECT) imaging techniques,
and noted a significant reduction in the fronto-temporal
cortex, suggesting a decrease in GABA receptors in
adult RTT patients [38].

3. Energy metabolism: Rett syndrome is not a
mitochondrial disease

Haas et al. have reported elevated CSF lactate and
pyruvate in some patients with RTT [39). Wakai et al.
have reported morphological changes in the mitochon-
dria in sural nerve biopsy specimens from patients with
RTT [40]. We have also reported that the elevation in
CSF lactate levels constituted a secondary biochemical
change directly related to the abnormalities in
respiration [41,42]. In a related study, we continuously
monitored changes in cerebral oxygenation and hemo-
dynamics in the frontal lobes of six patients with Rett
syndrome during the awake state, which is associated
with hyperventilation (HV) and breath-holding (BH),
by near-infrared spectroscopy. We found that oxygen-
ated hemoglobin (HbO,) and total hemoglobin (HbT)
decreased significantly during HV and BH in the awake
state compared with the sleep state. The observed con-
tinuous decreases in HbO, and HbT may cause the focal
ischemia and the increased lactate levels in the brain
[43]. These finding suggested that RTT was not a pri-
mary mitochondrial disorder.

4. Neuropathological study

Armstrong reviewed the neuropathology of RTT and
pointed out several important points as follows. The
RTT brain is much smaller than a normal brain, and
the volume is reduced in specific brain regions including
the prefrontal, frontal, and anterior temporal regions. In
addition, there are alterations of dendritic arborization
in the above brain regions, and some Rett neurons have
decreased expression of prealbumin and synaptophysin

immunoreactivity and altered expression of neurotrans-
mitters. Previous neuropathologic studies have also
observed decreased melanin content of the zona com-
pacta nigrae in the CNS of RTT patients [44]. Reduced
expression of neuropeptides has been observed, includ-
ing reduced immunoreactivity for tyrosine hydroxylase,
a reduction of substance P in the parabrachial complex,
and reductions of methionine enkephalin in the brain-
stem and the basal ganglia [45].

5. Methyl-CpG-binding protein 2 gene

Amir et al. reported on the clinical and laboratory
features versus the genotype of MECP2. They also
reported that the CSF HVA was significantly decreased
in patients with truncating mutations compared with
that in patients with missense mutations [46]. Methyla-
tion of DNA is essential for development in the mouse
and plays an important role in the activation of the
X-chromosome, genomic imprinting and gene silencing.
The spectrum of MECP2 mutations reflects the impor-
tance of the methyl-CpG-binding domain and transcrip-
tional repression domains [47]. Mutation analyses of the
MECP2 gene have been performed in Japanese patients
with RTT. The T158M mutation is a common mutation
in the typical phenotype of RTT [48,49], while the
R133C mutation was associated with the mildest cases
with preserved speech [46,50]. We have already pre-
sented our preliminary clinical and basic research and
reviewed the previous literature on RTT [51].

6. Future intervention and therapeutic strategies
6.1. Ghrelin

Ghrelin, a 28 amino acid peptide isolated from the rat
stomach as an endogenous ligand for growth hormone
secretagogue receptor (GHS-R) la and expressed in
both the stomach and hypothalamus, exerts multiple
physiological functions, including the stimulation of
somatic growth, improvement of appetite, and enhance-
ment of the motility of the gut [52]. Many of these
functions are related to the clinical phenotypes of
RTT, and thus this study investigated the plasma levels
of ghrelin in 23 RTT patients in comparison to those in
39 healthy controls. The total ghrelin level in the
patients with RTT was 127 + 71 fmol/ml, and that in
the controls was 228 & 12 fmol/ml; the difference was
statistically significant (P < 0.01). Thus ghrelin may play
an important role in the pathophysiology of RTT.

6.2. MECP2-null mutation mouse model
In collaboration with Kosai et al. we developed an

MECP2-null ES cell system using an adenoviral condi-
tional targeting method [53]. We showed the roles of
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MECP2 in neuronal development in terms of neuronal
stem cells, neuronal and glial cell differentiation during
all developmental stages, the function of differentiated
dopaminergic neurons, and the maturation of neuronal
cells. All these results should prove useful for under-
standing not only the biological roles of MECP2 but
also the pathogenesis of RTT. Recently, we also
developed an iPS cell system that may provide a novel
strategy for developmental analysis at the molecular
and cellular levels.

7. Conclusion

Finally, we should consider the potential for future
mouse studies on MECP2-null mutation using ES cells
and iPS cells and discuss the future perspectives for
the treatment and management of this disease.

The reversal of early lethality and of some neurolog-
ical abnormalities in MECP2-/Y mice through the post-
natal supply of normal MECP?2 has raised hopes for an
effective treatment [54]. To this end, we should continue
to explore new therapeutic modalities, including ghrelin,
BDNF [32], and other factors [35].
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