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To investigate layer-specific molecule expression in human de-
veloping neocortices, we performed immunohistochemistry of the
layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and
CTIP2), using frontal neocortices of the dorsolateral precentral gyri
of 16 nermal controls, aged 19 gestational weeks to 1 year old,
lissencephalies of 3 Miller-Dieker syndrome (MDS) cases, 2 X-linked
lissencephaly with abnormal genitalia (XLAG) cases, and 4 Fukuyama-
type congenital muscular dystrophy (FCMD) cases. In the fetal period,
we observed SATB2+ cells in layers H-IV, CUTL1+ cells in layers
1I-V, FOXP1+ cells in layer V, O0TX1+ cells in layers Il or V, and
CTIP2+ and TBR1+ cells in layers V and VI. SATB2+ and CUTL1+
cells appeared until 3 months of age, but the other markers
disappeared after birth. Neocortices of MDS and XLAG infants
revealed SATB2+, CUTL1+, FOXP1+, and TBR1+ cells diffusely
located in the upper layers. In fetal FCMD neocortex, neurons labeled
with the layer-specific markers located over the glia limitans. The
present study provided new knowledge indicating that the expression
pattern of these markers in the developing human neocortex was
similar to those in mice. Various lissencephalies revealed abnormal
layer formation by random migration.

Keywords: developing human neocortex, layer-specific marker,
lissencephaly

Introduction

The experimental neurosciences have recently provided many
pew insights into the molecular mechanisms of mammalian
cerebral formation. Past knowledge revealed that some
molecules are regulated with a well-designed genetic algorithm
during the developmental stages, with interrelated phenomena
that include cell proliferation, fate determination and migration
to the proper laminar, and final position in the cerebral cortex.
Neocortical laminar formation is highly programmed by genetic
control in the early embryonic period. At the decided time,
projection neurons migrate into the cortical plate (CP) along
the radial glial process from the subventricular germinal zone
with an inside out pattern. At this neural migration stage,
integration of reelin (RELN), Lis-1, doublecortin (DCX), and
other molecules is required to form a complete neocortex
(Guillemot et al. 2006; Mochida and Walsh 2004). Finally,
mammalian brains commonly show a 6-layer neocortex, and

© The Author 2010. Published by Oxford University Press. All rights reserved.
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each layer has a specific function with a synaptic connection.
In each step, specific genes have important roles, and the
molecular mechanism is well known in rodent brains (Arlotta
et al. 2005; Alcamo et al. 2008). Satb2, a special AT-rich binding
protein 2, generates callosal projection neurons in layers II-IV
(Alcamo et al. 2008; Britanova et al. 2008). Ctip2, encoding
a C2H2-type zinc finger protein, locates in layers V and VI and
promotes corticospinal motor neuron projection (Arlotta et al.
2005; Britanova et al. 2008). Satb2 is a repressor of Ctip2 and
makes not only the callosal projection but also the subcortical
connections (Alcamo et al. 2008). Mouse Otx1, orthodenticle
homeobox 1, is expressed in a number of cells in layers V and
VI (Weimann et al. 1999). Tbrl, a member of the T-box
homeobox gene family, expresses in preplate and layer VI in
mouse fetal brain (Hevner et al. 2001) and layers I-1II and layer
VI in mouse adult brain (Bulfone et al. 1995). Tbrl contributes
to make corticocortical projection neurons (Hevner et al
2001). Tbrl expresses in the deep layer of the human fetus
cortex (Sheen et al. 2006). A transcription factor Cutll,
drosophia homeobox CUT like 1, is expressed in pyramidal
neurons of the upper layer (Nieto et al. 2004). Foxpl,
a transcription factor of the winged-helix/forkhead family,
expresses in layers III-V of mouse neocortex (Ferland et al
2003) and layer V in human neocortex (Sheen et al. 2006).
Foxpl expresses in the deep layer of Miller-Dieker syndrome
(MDS) neocortex (Sheen et al. 2006). However, many rodent
studies show that the other layer-specific molecules also play
very important roles in forming cortical lamination (Molyneaux
et al. 2007) and that such gene disruption leads to profound
cortical malformation (Mochida and Walsh 2004).
Lissencephaly, formed at the neuronal migration period,
is classically recognized to be mainly of 2 types; smooth
pacthygyria-agyria as type I lissencephaly and cobblestone
lissencephaly as type II lissencephaly (Olson and Walsh 2002).
Type I (classical) lissencephaly shows a thick 4-layer cortex and
is typically known as MDS and double cortex syndrome. The
causative genes of type I lissencephaly are known as RELN,
Lis-1, DCX, and filamine. Interestingly, the gene products are
associated with the microtubules and can alter the cytoskeleton
size for cell movement (de Rouvroit and Goffinet 2001; Reiner
and Sapir 2009) or its related molecules (Olson and Walsh 2002;
Assadi et al. 2003). Typical type II (cobblestone) lissencephalies



of Muscle-eye-brain disease, Walker-Warburg syndrome (WWS),
and Fukuyama-type congenital muscular dystrophy (FCMD),
are caused by mutated genes encoding enzymes of
alpha-dystroglycan glycosylation, such as POMGnT1, protein-O-
mannosyltransferase (POMT) 1 and 2, and Fukutin, respectively
(Mochida and Walsh 2004). The posttranslational glycosylated
alpha-dystroglycan binds to extracellular matrix (Michele et al.
2002). Reduction of glycosylation leads to disruption of the glia
limitans over which neurons migrate (Yamamoto et al. 2004).

Recently, it has been reported that X-linked lissencephaly
with abnormal genitalia (XLAG), whose causative gene is
Aristaless-related homeobox gene (4ARX), is a new type of
lissencephaly that shows a 3-layer neocortex (Dobyns et al
1999; Kitamura et al. 2002; Bonneau et al. 2002; Okazaki et al.
2008). ARX has a homeodomain and decides the migration of
interneurons in the ganglionic eminence. However, it is
unknown why ARX dysfunction leads to abnormal radial
neuronal migration in human XLAG, whereas ARX-null mice
show reduced cortical proliferation but normal migration
(Kitamura et al. 2002; Okazaki et al. 2008).

It is very important to reveal the molecular and morpholog-
ical relationship between these malformed brains to under-
stand human neocortical formation and pathophysiology,
although little is known about the expression pattern of
layer-specific markers in human developing brain (Hevner
2007). In the present study, we focus on layer formation
and investigate the expression of layer-specific molecules in
neocortices of human developing brains and lissencephalies.

Materials and Methods

Human Brain Tissues

All cerebral tissues used in the present study were approved for
research usage by parents and Ethical Committees of the involved
hospitals and institutes. For the developmental study, we used frontal
cortices of the dorsolateral precentral gyri of 16 controls, showing no
neuropathological findings (age 19 gestational weeks [GWs] to 1 year
after birth) (Supplementary Material). In addition, we examined the
same frontal cerebral hemispheres of lissencephaly, which were
clinicopathologically diagnosed as MDS, XLAG, and FCMD (Supplemen-
tary Material). The postmortem interval (time from death to fixation) of
all subjects was within 12 h (Supplementary Material). After removal, all
brains were fixed in 10% buffered formalin or 4% paraformaldehyde for
2 weeks. Then, brains were dehydrated with 70-100% alcohol and
embedded in paraffin. The serial sections were cut 6 pm thick for
histological and immunohistological examination.

Histology and Immunobistochemistry
For investigation of brain architecture, the sections were stained with
hematoxylin and eosin (HE) and Kliiber-Barrera (KB) method. To
investigate cortical layer formation, we performed immunohistochem-
istry using cortical layer-specific markers; polyclonal antibodies against
TBR1 (dilution of 1:100; Abcam), FOXP1 (1:100; Abcam), and OTX1
. (1:100; Abcam), as well as monoclonal antibodies against SATB2 (1:100;
Bio Matrix Research Inc.), CUTL1 (1:100; Abnova), and CTIP2 (1:20;
Abcam).

Our immunohistochemistry technique was previously described
(Okazaki et al. 2008). Briefly, the serial sections were deparaffinized
and rehydrated. For antigen retrieval, we performed an autoclave
treatment (120 °C for 10 min in 10 mM citrate buffer, pH 6.0). Sections
were incubated in primary antibodies at 4 °C for overnight, and then
reacted with the secondary antibodies (Nichirei). We used amino ethyl
carbazole (Nichirei) as a chromogen. For counterstaining, 0.2% methyl
green was used. For double labeling, we used Alexafluor-488- and
568-conjugated secondary antibodies (Invitrogen Corporation) with

4’6’ -diamidino-2-phenylindole (DAPI). We observed the stained tissues
with FLUOVIEW 500 fluorescent microscope (Olympus).

Results

Cortical Lamination of Normal Developing Brains
Generally, we confirmed cortical formation of all subjects with
HE- and KB-staining. We observed the CP and intermediate
zone around 20 GW (Fig. 14). At this embryonic period,
SATB2+ cells located in the upper region of CP (Fig. 1B).
CUTL1+ cells were diffusely distributed in CP (Fig. 1C).
FOXP1+ cells were restricted to the middle region of CP (Fig.
1D). OTX1+ cells and CTIP2+ cells are seen in the lower region
of CP (Fig. 1EF). The distribution of TBR1+ cells exhibited a
2-layer pattern of CP and SP (Fig. 1G).

At approximately 30 GW, the neocortex was divided into
6 layers (Fig. 24). The distribution of SATB2+ cells was ob-
served in layers II-V, predominantly in layers Il and IV (Fig. 2B).
CUTL1+ cells were diffusely seen in layers II-VI (Fig. 2C).
FOXP1+ cells were in layer IV and the upper region of layer V
(Fig. 2D). OTX1+ cells were concentrated in layers IV and V
(Fig. 2E). CTIP2+ and TBR1+ cells were located in layers V and
VI (Fig. 2F,G). The developmental expression pattern is shown
in Supplementary Figure 1.

In the perinatal period, the expression pattern of the cortical
layer-specific markers is very similar to that of around 30 GW
(Fig. 3). In the late gestational period, SATB2 expressed in the
superficial region of the neocortex and CUTL1, FOXP1, and
CTIP2 gradually demonstrated in the deep region, while TBR1
was in the bottom. Interestingly, OTX1+ cells were only in layer
V (Fig. 3E). After birth, SATB2+ and CUTL1+ cells appeared
until 3 months of age, although the other markers had already
disappeared (data not shown).

In order to investigate the relationships among these layer-
specific markers, we performed double fluorescent staining of
SATB2 and FOXP1, SATB2 and TBR1, CTIP2 and SATB2, SATB2
and OTX1, CTIP2 and FOXPI1, and CTIP2 and TBR1 (Fig. 4,
Supplementary Figure 1). FOXP1+ and SATB2+ merged
(FOXP1+/SATB2+) cells were observed in the superficial CP
of 23 GW but in the deep layer after 20 GW (Fig. 44).
Throughout the fetal period, FOXP1+/CTIP2+ cells might be in
the deep layer (Fig. 4E), and many SATB2+/OTX1+ cells were in
layers II and IV or V (Fig. 4D). However, SATB2+ cells did not
express CTIP2+ (Fig. 4C). TBR1+ cells had no SATB2, but there
were a few CTIP2 signals in layer VI (Fig. 4B,F). The double
staining of layer-specific marker expression was shown in
Supplementary Figure 1.

Layer-Specific Marker Expression of Various
Lissencepbalies

MDS brains were typical agyria and pachygyria with thick
cortex and thin white matter. MDS showed a 4-layer neocortex
as previously reported (Crome 1956): a molecular layer, an
external cellular layer (layer I), a sparsely cellular layer (layer
ID), and an internal cellular layer (layer IIl) (Fig. 54). In layers II,
III, and IV, small neurons, which had immunoreactivities of
SATB2, CUTLI1, FOXP1, and TBR1, were observed diffusely but
were few in number (Fig. 5B-E). Large pyramidal neurons in
the upper layer II had TBR1 (Fig. SE). The neocortex in XLAG
exhibited a 3-layer pattern (Bonneau et al. 2002): a molecular
layer (layer I), an intermediate layer with densely packed
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Figure 1. Layer-specific marker expression of the neocortex at 23 GWs. Around 20 GWs, the 3-layer pattern, that is, the marginal zone (MZ), CP, and subplate (SP), are seen
(A). SATBZ expresses in the upper region of CP (B). CUTL1 diffusely expresses in the whole cortex and intermediate zone (C). FOXP1-positive cells locate in the middle region {D)
and CTIPZ-immunopositive cells (F) locate in the lower region of CP. OTX1 exhibits in CP and SP, predominantly lower region of CP (£). TBR1-immunopositive cells are in the lower

region of CP and SP, as well as those fibers in CP {G). A, HE; B-G, SATB2, CUTL1, FOXP1, OTX1, CTIP2, and TBR1 immunohistochemistry, respectively. Scale bar: 100 pum.
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Figure 2. Layer-specific marker expression of the neocortex at 29 GWSs. The B-layer neocortex is shown {(A). SATB2 expresses in layers lI-V, especially layer Il and upper region
of layer IV (B). CUTL1 diffusely expresses in layers -V and predominates in fayer Il (C). FOXP1 converges to layers VI and V (0). OTX expresses in upper layer and layers VI and V
(E}. CTIP2- and TBR1-immunopasitive cells locate in layer V and layers V and VI (F and G). A, HE; B-G, SATB2, CUTL1, FOXP1, OTX1, CTIPZ, and TBR1 immunchistochemistry,

respectively. Scale bar: 100 um.
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Figure 3. Layer-specific marker expression of the neocortex at 37 GWs. Expression of SATBZ, CUTL1, FOXP1, OTX1, CTIP2, and TBR1 has a pattern similar to those at 29 GWs.
OTX1 disappears in upper layer of neacortex (E). A, HE; B-G, SATBZ, CUTL1, FOXP1, OTX1, CTIP2, and TBR1 immunohistochemistry, respectively. Scale bar: 100 pm.

SATB2 " SATB2 cTIP2 SATB2 CTIP2. CTIP2
FOXP1 TBR1 SATBZ oTX1 FOXP1 TBRY

Figure 4. Immunofluorescence of layer-specific marker of neacortex at 23 GWs. FOXP1-immunopositive cells partially have SATB2 (merged color: arrows) in layers II-ll and V-V
(A) and CTIP2 {merged color: arrows) in layers IV-VI (£}. No double-positive cells for SATBZ and CTIP2 are scattered throughout all layers {C). No TBR1+ and SATB2+ cells are
observed in layers V and VI (B), but a few TBR1+ and CTIPZ+- cells are seen in layers V and VI (A). Many merged cells with SATB2 (red) and OTX1 (green) are diffusely
demonstrated, predominantly in layers Il and V (D). A, SATB2 (red) and FOXP1 {green) double fluorescence; B, SATB? (red) and TBR1 {green); C, CTIP2 (red) and SATBZ (green);
D. SATBZ (red) and OTX1 (green); £, CTIPZ {red) and FOXP1 (green); F, CTIP2 {red), and TBR1 {green). Scale bars: 20 pm.
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Figure 5. Layer-specific marker expression of the neocortex of 1-year-old patient with Miller-Dieker syndrome. Typical 4-layer pattern is shown. (4) SATBZ, CUTL1, FOXP1, and
TBR1 are diffusely expressed in layers I, Ill, and IV. Especially, TBR1-immunopositive cells locate in layer Il (£). Enlargement of layer Il shows A.fl, B.JI, C./l, and D./l. Enlargement of
layer Ilt shows A, B.1ll, C.lll, and D.IIl. Enlargement of layer IV shows A.IV, B.IV, C.1V, and D.IV. Gross histology shows with KB staining. A./l, A.Jll, and A1V, SATBZ in layers If, Il
and IV; BN, B.MI, and BV, CUTLY; C.JI, C.Ml, and C.1V, FOXP1; D.11, D0, and D.IV, TBR1, respectively. Scale bar: 100 um.

neurons (layer II), and a deep layer (layer III) (Fig. 6A4). SATB2+
and CUTL1+ cells located in the intermediate layer and upper
region of the deep layer (Fig. 6B,C). FOXP1+ cells and TBR1+
cells were also distributed in layer II and III (Fig. 6D,E). These
labeled cells in the deep intermediate layer were large and
dense but small and sparse in the upper region of the inter-
mediate layer. Also, in the molecular layer, FOXP1+ and TBR1+
cells were few. No CTIP2+ and OTX1+ cells were observed in
either malformed brain.

Usually, FCMD cerebral cortices show type II hssencephaly
with cobblestone cortex. The cerebral cortices of FCMD fetus
already revealed typical cobblestone lissencephaly (Fig. 74).
Neurons of the fetal neocortex migrated over the glia limitans.
SATB2+, CULT1+, FOXP1+, CTIP2+, and TBR1+ cells were
dense above the glia limitans and sparse below it (Fig. 7B-D),
and TBR1+ cells were distributed predominantly below the glia
limitans (Fig. 7E). However, no markers were detected in
specimens from postnatal FCMD brains (data not shown).

The layer-specific marker expression pattern of 3 types of
lissencephalies was summarized in Supplementary Figure 2.

Discussion

Very little is known about the molecular mechanism of human
neocortex layer formation. Here, we presented new knowledge
regarding the layer-specific marker expression in fetus de-
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velopment. Recent neuronal developmental studies have
introduced some molecules as layer-specific markers. Among
them, Satb2, Cutll, Foxpl, Otxl, Ctip2, and Thrl are well-
known transcriptional factors and highly conserved. The facts
that SATB2 was relatively limited to layers I and IV of human
fetus cortex and that Cutll was not known in human but was
expressed in layers II-IV evidenced the same expression
patterns of these molecules in rodent study (Nieto et al
2004; Britanova et al. 2008). The migration pattern of callosal
projection neurons may be the same as that in the mouse.
FOXP1+ cells located in deep layers or layers IV-V before
30 GW and in layers IV-VI before birth. TBR1+ cells located in
layers V-VI in the fetal period. FOXP1+ and TBR1+ cell
localization in layers IV and V was similar to those in a previous
human study (Sheen et al. 2006). However, TBR1+ cells were
located beneath FOXP1+ cells but not colocalized. The
restricted distribution of CTIP2+ cells in layer V may reflect
the corticospinal projection formation, as indicated by mouse
ctip2 analysis (Arlotta et al. 2005). Interestingly, SATB2+ cells
were located in the upper region of layer IV and FOXP1+ cells
in the lower region of the same layer. This different localization
indicates completely different neural functions between SATB2
and FOXP1, although the FOXP1 function in neocortex is
unknown.

In mouse neocortex, Otx1+, Tbrl+, Ctip2+, Foxpl+, Cut11+
and Satb2+ neurons are born around embryonic day 12.5,10.0,
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Figure 6. Layer-specific marker expression of the neocortex of 10-month-old boy with XLAG. Neocortex shows a thin 3-layer pattern. SATB2-, CUTL1-, FOXP1-, and
TBR1-immunopositive cells locate diffusely (A-D). Gross histology shows with KB staining. A./, A/, and A.Jll, SATB2 in layers I, II, and Ill: B/, 8.1/, and B.i, CUTLY; €./, CHf, and

C.lI, FOXP1; D.1, DM, and DI, TBR1, respectively. Scale bar: 100 pm.

12.0, 14.5, 13.0, and 13.5, respectively (Simeone et al. 1993;
Bulfone et al. 1995; Hevner et al. 2001; Ferland et al. 2003;
Leid et al. 2004; Nieto et al. 2004; Arlotta et al. 2005; Britanova
etal 2005). These labeling neurons originate from progenitor
cells residing in the ventricular zone (VZ) and the subven-
tricular zone (SVZ) of early developing brain. Early progenitor
cells in VZ produce deep layer neurons expressing Ctip2. On
the contrary, late progenitor cells in SVZ form upper layers,
expressing Cutll (Nieto et al. 2004). The previous data that
Satb2-null mice show loss of Cutll+cells in the superficial

layers (Alcamo et al. 2008) suggest the profound molecular

relationship of Satb2 and Cutll. Satb2+ cells directly contrib-
ute to the formation of a callosal projection of the bilateral
neocortical connection (Alcamo et al. 2008), while Ctip2+
cells contribute to the formation of a corticospinal projection
forming a long pathway between the neocortex and anterior
horn of the spinal cord (Arlotta et al. 2005). Interestingly, the
expression patterns of SATB2 and CTIP2 in human neocortex
mimicked those of rodent, and SATB2+ cells were also found
in part of layer V. Although SATB2+ cells and CTIP2+ cells
were in layer V, these double-marked cells were not observ-
able. This may indicate these cells have different functions.
From rodent study, 2 major projection neurons, callosal and
subcortical, are formed by Satb2 and Ctip2 interaction (Leone
et al. 2008), which may be at work in the human fetal

neocortex. The finding of no double-labeled cells with CTIP2
and SATB2 in human neocortex is compatible with the rodent
data (Leone et al. 2008). Otx1 in mouse brain also €xXpresses
in layer V and contributes to the formation of the cortico-
spinal projection (Frantz et al. 1994; Weimann et al. 1999).
CTIP2+/OTX1+ cells may be closely related to the forming of
the corticospinal projection. Interestingly, we found many
SATB2+/OTX1+ cells in layer V. OTX1 may play an essential
role in the specification of both callosal and corticospinal
projection neurons, although the detailed interaction be-
tween OTX1 and CTIP2 remains unknown. Moreover,
FOXP1+ cells expressed SATB2 and CTIP2 in layer V. It is
unknown whether a relationship exists between Foxpl and
Satb2 or Foxpl and Ctip2, although Ctip2 is known to
colocalize with Foxpl in mouse striatum (Arlotta et al. 2008).
FOXP1 may also contribute callosal and corticospinal pro-
jection neurons. FOXP1 disappeared earlier than OTX1 (Figs
2 and 3 and Supplementary Figure 1). FOXP1 could strongly
control forming corticospinal projection. Thrl+ cells derived
from the earliest progenitor cells locate in layer VI (Hevner
et al. 2003) and contribute to the development of cortico-
thalamic projection neurons (Hevner et al. 2001, 2002;
Guillemot et al. 2006; Leone et al. 2008). In our data, the
TBR1+ cells that expressed CTIP2 in layer VI may form
corticothalamic projections, as in rodent studies.

Cerebral Cortex March 2011, V 21 N 3 593
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Figure 7. Layer-specific marker expression of the neocortex of 13-GW fetus with FCMD. Neocortex shows typical cobblestone lissencephaly feature. Many SATB2-, CUTL1-,
FOXP1-, OTX1, CTIP2-, and TBR1-immunopositive cells migrate over the glia limitans (8-G), while some labeled cells locate under it. GL, glia limitans; A, HE; B-G, SATB2, CUTL1,

FOXP1, OTX1, CTIP2, and TBR1 immunchistochemistry, respectively. Scale bar: 100 pm.

On the other hand, malformed neocortices revealed unique
distributions of the layer-specific markers. In MDS, due to
deletion of 17p13.3 with LIS1 gene, it has been thought that
neurons of the superficial layer are neuronal components of the
fundamental deep layers, and neurons of the deep layers consist
of neuronal components of layers II-IV in the normal neocortex
(Ferrer et al. 1987). Also, MDS neocortical lamination was found
to have an inverted organization (Viot et al. 2004). However,
recently the neocortex of 33 GW MDS has reportedly
demonstrated FOXP1+ cell in the deep layers or TBR1+ cells
in the first '3 layers (Sheen et al. 2006). MDS neocortical
lamination was concluded to be preserved and noninverted.
Our MDS findings supported noninverted lamination because of
the diffuse expression pattern of all layer-specific markers.
XLAG, caused by loss of function mutations of ARX gene
concerned with differentiation and migration of y-aminobutyric
acidergic interneurons, shows a 3-layer lissencephalic neo-
cortex (Kitamura et al. 2002; Bonneau et al. 2002; Cobos et al.
2005; Forman et al. 2005). Although ARX-null mice exhibit
nearly normal layer formation of the cerebral cortex (Kitamura
et al. 2002), the human XLAG neocortex was reported to
consist of 3 layers with uniform pyramidal neurons (Bonneau
et al. 2002; Okazaki et al. 2008). From our observation of layer-
specific markers in layers I and III, XLAG might also be
a random migration pattern. In human brain, ARX involves
migration of not only interneurons but also projection neurons
(Okazaki et al. 2008). XLAG neocortex may have an abnormal
interneuron migration pattern, although in the present study
this could not be demonstrated. Interestingly, our postnatal
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patients with MDS and XLAG revealed persistent expression of
these layer-specific markers, which was not found in the
normal neocortex. This suggests that MDS or XLAG neurons
arrest in the premature or undifferentiated stage.

Further investigation is needed to determine why these
layer-specific markers are expressed in postnatal brains, and
the nature of their molecular function. Moreover, we
investigated neocortices of typical type II lissencephaly, FCMD.
Various-sized and/or disoriented neurons were widely scat-
tered in the neocortex. In FCMD fetal brain, the layer-specific
markers diffusely expressed over and under glia limitans
(Fig. 7). Obviously, the FCMD fetal neocortex had completely
lost its layer formation. The layer-formation pattern of WWS
fetus presents the same result as ours (Hevner 2007). This type
II lissencephaly, cobblestone lissencephaly, may commonly
have this pathological construction. Postnatal FCMD demon-
strated no expression of the layer-specific markers and was
different from MDS and XLAG. Neuronal maturation of FCMD
neocortex may be more advanced than other types of
lissencephalies. This leads us to conclude that FCMD patients
have a relatively low incidence of epilepsy and some cases are
mild (Guerrini and Filippi 2005; Spalice et al. 2009).

Our study suggests that the laminar formation pattern of
human and rodent neocortices is fundamentally the same. One
of the characteristics of the human neocortex is its gyration,
which is 1000-fold in the neocortical surface area between
human and rodent (Bystron et al. 2006; Rakic 2009). It is
thought that not only the number of neuronal progenitors but
also the number of radial glial cells in human brain is much



larger than in the rodent. As a result, the human neocortex
must fold and form gyrations. However, in case of abnormal
expression of migration- or proliferation-related genes or envi-
ronments such as trauma and infection, the number of neuronal
progenitor cells, and radial glial cells may serve to reduce and
influence the migration pattern.

We may conclude that the neocortex of lissencephalies is
formed by a unique type of neuronal migration. The late-birth
cells in MDS may migrate randomly but not the early-birth cells.
In XLAG, SATB2+, and TBR1+ cells distribute in the relatively
deep layers, but CUTL1+ and FOXP1+ cells may follow a random
migration pattern. FCMD shows the most random pattern. We
must seek to understand the mechanism behind these differ-
ences. The molecular mechanism of neuronal movement is well
known. Lis-1 or Dcx is a modulator of radial migration and
contributes to layer formation (Hirotsune et al. 1998; Meyer
et al. 2002; Bai et al. 2003). In human layer formation, various
projection neurons originate from VZ or SVZ and migrate
radially depending on the time of cell birth. In interneuron
development, Cutll and Cutl2 contribute to Reln expression
and control the number of the interneuron subpopulation
(Cubelos et al. 2008). However, little is known about inter-
action between the layer-specific markers (transcription
factors) and neuron kinetic factors including Lis-1, Dcx and
Reln. Further study is warranted to obtain more information in
this regard.

Supplementary Material

Supplementary material can be found at:
.oxfordjournals.org/.
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