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Fig. 6. Time-course analysis of the differences between upright and inverted faces
in Experiment 2 (see legends of Fig. 5 for detailed explanations). Note that the
significant differences between upright and inverted faces appeared from 110 to
145 ms after the stimulus onset in the subthreshold condition.

(from approximately 158 to 170 ms), suggesting that the pattern
mask totally blocked the perception of faces up to about 160 ms
(see Discussion). In Experiment 2, significant differences between
upright and inverted faces appeared from 110 to 145 ms after
the stimulus onset in the subthreshold condition (Fig. ). In the
subthreshold duration, face orientation had a significant effect on
occipital responses from 110 ms, approximately 30 ms earlier than
the effect of stimulus duration.

3.6. Reproducibility of the responses in the subthreshold presentation

In five subjects, we conducted two recording sessions with sub-
threshold stimulus presentation. The pattern of responses was
highly similar between the two measurement sessions. Although
the sample size was too small to allow for statistical testing, visual
inspection revealed only minor differences in amplitude between
the two data sets (data not shown).

4. Discussion

In the current study, we employed a visual masking paradigm
with briefly presented masked faces and objects to examine the
role of occipital areas at an early stage of face-specific processing.
By presenting faces below and above the threshold of recognition
for each subject, we found that two major ERP components, the
P1 and N1 (which reflect early face processing in occipital areas)
were sensitive to masked faces that were presented at durations
below the threshold at which they could be distinguished from
objects.

4.1. P1 augmentation for invisible masked faces

When images were presented below the threshold duration of
recognition, P1 amplitude was augmented for upright faces, but
not for objects. This difference between faces and objects disap-
peared when stimuli were inverted. Time-course analyses further
confirmed that face orientation affected responses from 110 to
145 ms over occipital areas, even when face stimuli were pre-
sented below the threshold of recognition. To our knowledge, this
is the first report of occipital P1 sensitivity to inversion in sub-
threshold faces. The face inversion effect, delayed P1 latency and
prolonged and enhanced N170 amplitude we observed are in ac-
cord with previous reports (Bentin et al., 1996; Rossion et al.,
1999; Itier and Taylor, 2002, 2004). The orientation sensitivity of
the P1 appeared to be opposite to the face inversion effects found
in the N170 over occipitotemnporal regions for images presented for
a recognizable duration. The face inversion effect is conventionally
explained as resulting from a disruption of configural information
processing, principally at the encoding stages of face processing
(Yin, 1969; Tanaka and Farah, 1993). However, the inversion effect
has not been found to occur when pictorial face images (e.g.,
Mooney faces, schematic faces, and pointillized faces) are used
(Sagiv and Bentin, 2001; George et al,, 2005; Linkenkaer-Hansen
et al., 1998). The inversion of pictorial stimuli has been reported
to disrupt processing of the meaning of the face representation,
which alters subjects’ recognition of the stimulus as a face. More-
over, psychophysical experiments have shown that upright and in-
verted faces are represented differently under subthreshold
conditions, such that upright faces are more easily encoded into
face representations than inverted faces (Jiang et al., 2007; Zhou
et al., 2010). Taken together, these findings suggest that a conven-
tional face inversion effect may not occur when stimuli are not de-
tected as faces. We used a stimulus duration that was below the
perceptual threshold, set for each subject. This brief duration did
not allow sufficient face encoding for the overt recognition of the
stimuli as faces or objects. Thus, under subthreshold conditions,
the differences between the P1 and N1 amplitudes elicited by objects
and those elicited by faces disappeared when stimuli were inverted.

Amplitude differences at the P1 level between faces and objects
could be due to differences in low-level features. Itier and Taylor
(2004) demonstrated that when all face stimuli presented in the
experiment were superimposed, averaged faces were very similar
to low-spatial frequency faces. They proposed that low-level spa-
tial information itself is one of the critical factors for discriminating
faces from objects. In the context of our study, this suggests that
when faces are presented repeatedly even for a brief duration, va-
gue, local contrast differences may have been introduced, changing
the holistic information of the presented faces. The P1 augmenta-
tion for upright faces could be due to the high contrast patterns
of eyes appearing in the upper visual field and mouths in the lower
visual field for upright face stimuli. This first-order relation visual
pattern information may act as a very early index differentiating
faces from other objects. Hence, P1 differences between upright
and inverted faces might represent the activity of a local contrast
detector of face parts that can be used to discriminate faces from
objects.

It has been suggested that holistic face perception relies on
coarse visual cues transmitted by early spatial frequency filters
(Sergent, 1984). Physiological findings indicate that visual infor-
mation is processed in parallel via the magnocellular and parvocel-
lular pathways (Livingstone and Hubel, 1988; Tobimatsu and
Celesia, 2006). The former is activated faster than the latter by
coarse visual cues such as low-spatial frequency (LSF) information
(Schiller et al,, 1979; Liddell et al., 2005). Previous studies have re-
ported that the P1 amplitude for faces using LSF filtering was aug-
mented in healthy subjects (Nakashima et al., 2008b; Obayashi
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et al,, 2009). These authors proposed that P1 enhancement elicited
by LSF faces reflects the function of the magnocellular pathway
(holistic processing). With brief presentations, faces are not fully
recognized but it is possible to process vague, holistic visual infor-
mation from them. We, therefore, assume that these rapid and
transient signals primarily activate the magnocellular pathway,
so that upright faces can be identified very rapidly. This, in turn,
leads to the augmentation of the P1 response to briefly presented
faces relative to objects.

4.2. N1 suppression for subthreshold faces

In the current results, both the amplitude and latency of the N1
measured at Oz differed from those of the occipitotemporal N170
obtained at T5 and T6. The N1 was diminished for subthreshold
masked neutral face and fearful face stimuli, whereas it was aug-
mented for the faces in the threshold and suprathreshold condi-
tions. N170 amplitude did not differ between faces and objects in
the subthreshold condition. An analysis of the time-course of re-
sponses to faces and objects, however, revealed significant differ-
ences between the three duration conditions at 158 or 170 ms
after the stimulus onset, roughly corresponding to the peak latency
of the N1 and N170, respectively. This finding is in accord with pre-
vious reports (Nakashima et al., 2008b; Bentin et al., 1996). These
results indicate that the N1 reflects distinct activity that precedes
face recognition (i.e., the N170). A small number of studies have fo-
cused on the occipital N1 (or N2) response in face perception (Goto
et al., 2005; Nakashima et al., 2008b; Jiang and He, 2006). The N1
suppression for subthreshold face images in our results may be re-
lated to a recently reported early suppression effect for subthresh-
old faces at the OFA, which occurred even when subjects could not
detect the masked faces (Trenner et al., 2004; Martens et al., 2006;
Henson et al.,, 2008; Kouider et al., 2008; Jiang and He, 2006). Since
the physical features of the neutral and fearful faces resemble each
other but differ from the features of objects, it could be argued that
this repetition sensitivity of similar object categories alone might
cause the N1 decrement. However, in our second experiment, this
ERP signature disappeared when faces were inverted. Thus, the
sensitivity of similar object categories cannot account for the effect
we observed.

4.3. What causes the face-sensitivity of neural activity in the occipital
cortex?

The present results revealed that early ERP components (P1/N1)
derived from the occipital region were sensitive to the briefly pre-
sented masked faces, in accord with other studies using manipu-
lated face images (Itier and Taylor, 2002, 2004; Latinus and
Taylor, 2006; George et al., 2005; Nakashima et al., 2008a,b;
Obayashi et al., 2009; Jiang et al., 2009). Past studies have reported
neural responses to facial information even when face stimuli are
unrecognizable (Moutoussis and Zeki, 2002; Jiang and He, 2006;
Jiang et al,, 2009; Henson et al.,, 2008; Kouider et al., 2008). Such
ERP responses have been observed in occipitotemporal areas be-
tween 100 and 150 ms (Martens et al., 2006; Henson et al.,
2008), and between 120 and 200 ms (Jiang et al., 2009) post-stim-
ulus. These findings are related to the pattern of P1/N1 activity in
the present study.

Our results indicated that ‘face-object’ differences did not occur
during mask presentation (see Figs. 5 and 6). If the difference in
ERP responses between faces and objects is caused by differences
in the contrast or white-black ratio between these stimuli, there
would be some differences in lower-level ERP components such
as the eN. However, we found no significant differences before
158 ms in Experiment 1, and 110 ms in Experiment 2. As such,
we propose that the ERP difference between faces and objects can-

not be explained by differences in the spatial distribution of ele-
ments between the image types (ie., faces, objects, and mask
stimuli) alone.

Because retinal responses are highly sensitive to physical stim-
ulus characteristics, it is possible for ERP differences between faces
and objects to result from differences in the spatial distribution of
elements between pictures (Tobimatsu and Celesia, 2006; Yue
et al, 2010). When natural images are used to study face recogni-
tion, it is difficult to completely control stimulus characteristics of
this type. However, the P1 and N1 have been proposed to play a
specific role in face recognition regardless of physical stimulus
characteristics (Linkenkaer-Hansen et al, 1998; Liu et al., 2002;
Itier and Taylor, 2002, 2004; Goto et al., 2005; Nakashima et al.,
2008a,b).

4.4. N170 as an index of the overt face recognition

In the current study, electrophysiological differences between
faces and objects in the occipitotemporal N170 were present in
the above-threshold condition, and increased as the presentation
duration lengthened. This indicates that the amplitude differences
we observed were dependent on the subjects’ level of face recogni-
tion. The gradual emergence of the N170 as stimulus duration in-
creased thus appears to be due to the sensitivity of this component
to the recognizability of stimuli as faces. These results are consistent
with the notion that the N170 reflects perceptual integration pro-
cesses, resulting from initial ‘structural encoding’ (Haxby et al.,
2000; jemel et al,2003; Rousselet et al., 2008).

5. Conclusions

Overall, our results indicate that the processing of faces by early
visual processing areas differs from the processing of objects, even
when images were presented at a duration below the threshold of
recognition. This finding suggests the existence of fast face-sensi-
tive processes prior to the activity of advanced face-specific pro-
cessing. We propose that the P1 reflects rapid detection in the
visual system of information from faces based on the local contrast
of the spatial alignment of face parts. In addition, we suggest that
the N1 detects information regarding facial features, which is then
transferred to the fusiform area. Thus, we believe that the P1 and
N1 components reflect early sensitivity to facial features, that is
predominantly supported by LSF information, operating before
the face selective responses reflected by the occipitotemporal
N170.
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