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of two types of microarray, BAC array and oligonucleotide array. The
BAC array was applied for 298 patients to detect 58 CNVs in 47
patients, and among them 26 CNVs (8.7%) were determined to be
causal (pathogenic). Conversely, the oligonucleotide arrays were
applied for 703 patients to detect 1538 CNVs in 603 patients, and
among them 74 CNVs (10.5%) were determined to be pathogenic,
These results may lead to the following idea: a lower-resolution
microarray detects a limited number of CNVs likely to be pathogenic,
because such CNVs tend to be large, and a higher-resolution micro-
array detects an increasing number of bCNVs or VOUS.? Indeed, in
studies using a high-resolution microarray, most of the CNVs detected
were smaller than 500kb but almost all pCNVs were relatively
large>*80%5 Most of the small CNVs were judged not to be patho-
genic, and the percentage of pCNVs stabilized at around 10%. This
percentage may suggest a frequency of patients with MCA/MR caused
by CNV affecting one or more genes, other than known syndromes
and subtelomeric aberrations. The other patients may be affected by
another cause undetectable by genomic microarray; for example a
point mutation or microdeletion/duplication of a single gene, aberra-
tion of microRNA, aberration of methylation states, epigenetic aberra-
tion or partial uniparental disomy.

As recently hypothesized secondary insult, which is potentially
another CNV, a mutation in a phenotypically related gene or an
environmental event influencing the phenotype, may result in clinical
manifestation.* Especially, in two-hit CNVs, two models have been
hypothesized: (1) the additive model of two co-occurring CNVs
affecting independent functional modules and (2) the epistatic
model of two CNVs affecting the same functional module.® It also
suggests difficulty in selecting an optimal platform in the clinical
screening. Nevertheless, information on both pCNVs and bCNVs
detected through studies using several types of microarrays is unam-
biguously significant because an accumulation of the CNVs will create
a map of genotype-phenotype correlation that would determine the
clinical significance of each CNV, illuminate gene function or establish
a new syndrome.
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Abstract Mutations in the progressive external ophthal-
moplegia 1 (PEQI), adenine nucleotide translocator 1
(ANTI) and DNA polymerase gamma (POLG) genes were
reported in patients with progressive external ophthalmo-
plegia and parkinsonism. However, the genotype-pheno-
type correlation and pathophysiology of these syndromes
are still unknown. In order to define the molecular basis of
progressive external ophthalmoplegia and parkinsonism,
we screened for mutations in PEQI, ANTI, POLG genes
and the whole mitochondrial genome in two families. In
results, we identified a compound heterozygous POLG
substitutions, ¢.830A>T (p.H277L) and c¢.2827C>T
(p.R943C) in one of the families. These two mutations in
the coding region of POLG alter conserved amino acids in
the exonuclease and polymerase domains, respectively, of
the POLG protein. Neither of these substitutions was found
in the 100 chromosomes of ethnically matched control
subjects. In the other family, no mutations were detected in
any of the three genes and the whole mitochondrial genome
in the blood sample, although mitochondrial DNA
deletions were observed in the muscle biopsy sample.
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Progressive external ophthalmoplegia and parkinsonism
are genetically heterogenous disorders, and part of this
syndrome may be caused by mutations in other, unknown
genes.

Keywords Progressive external ophthalmoplegia - DNA
polymerase gamma gene - Parkinsonism - Mitochondria

Introduction

Mutations in genomic genes that alter mitochondrial
DNA (mtDNA) are being increasingly reported, and can
affect a variety of organs with variable ages of onset [1].
The hereditary forms are either autosomal dominant, or
recessive, and rarely sporadic. DNA polymerase gamma
(POLG, MIM ID #174763) encodes the catalytic subunit
of DNA polymerase gamma, the only polymerase
involved in replication of the mitochondrial genome [2].
A mutation in POLG associated with dominant progres-
sive external ophthalmoplegia (PEO) was first described
in 2001 [3]. In 2004, mutations in POLG in two indi-
viduals with a co-occurrence of dominant PEO and
parkinsonism were reported [4]. Subsequently, mutations
in the progressive external ophthalmoplegia 1 (PEOI,
MIM ID #606075) and adenine nucleotide translocator 1
(ANTI, MIM ID #103220) genes were reported in
patients with similar clinical phenotypes [5-11]. How-
ever, the genotype—phenotype correlation and patho-
physiology of these syndromes are still unknown. We
performed genetic analyses in two unrelated Japanese
patients with PEO and parkinsonism and their families
who had no maternal inheritance and found a compound
heterozygotic missense mutation in POLG in one of the
families.
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Subjects and methods
Subjects

Information from both families was not suggestive of
maternal inheritance.

Family A (Fig. 1a): patient 1 (AIl:2) was a 78-year-old
man, who was healthy until the onset of slowly progressive
bilateral ptosis with diplopia in his early 50s. At the age of
60 years, he developed left dominant hemi-parkinsonian
features, such as rigidity with cogwheel phenomenon,
bradykinesia, gait disturbance, resting tremor and postural
instability. He was receiving no drugs that cause parkin-
sonism and there were no obvious infarctions on his brain
MRI scan. Laboratory data and electrophysiological
studies, including hyperammonemia, serum lactate and
pyruvate values, nerve conduction studies, electrocardio-
gram, and electroencephalogram, all showed no abnor-
malities. He could not perform the exercise test because of
his bradykinesia. Cardiac '*’I-metaiodobenzylguanidine
(MIBG) scintigraphy showed slightly reduced heart-to-
mediastinum (H/M) ratios at both the early and delayed
phases. The mini mental state examination (MMSE)
revealed no dementia (28/30). He showed a good response
to L-DOPA (300 mg/day) treatment, so we diagnosed him
with Parkinson’s disease (PD). His father (AI:1) had a past

history of blepharoplasty for bilateral ptosis but no par-
kinsonism and died of unknown cause at the age of 94
years. His mother (AI:2) was healthy until she died of
stroke at the age of 96 years. His nine siblings are healthy
and alive except for two brothers (AIl:7 and AIL:9) who
died of intussusception at the age of 3 years. Neurological
examinations confirmed that two siblings, AIl:5 (68-year-
old female) and AIL:10 (60-year-old male), did not show
any abnormalities including parkinsonism; however,
AII:10 shows signs of slight ptosis without external
ophthalmoplegia.

Family B (Fig. Ic): patient 2 (BII:3) was a 64-year-old
man, who developed slowly progressive external ophthal-
moplegie and ptosis at age 40 years and resting tremor of
the left hand and stooped posture at age 60 years. Neuro-
logical examination at age 62 revealed other right dominant
parkinsonian features, such as rigidity with cogwheel
phenomenon of the bilateral arms, bradykinesia and pos-
tural instability, and mild proximal dominant muscle
weakness. Pramipexole (1.5 mg/day) was started and
thought to be effective. Laboratory findings showed
increases in lactate and pyruvate in an exercise test but no
other remarkable abnormalities; electrophysiological tests,
including electroencephalogram, were also negative.
MIBG cardiac scintigraphy showed markedly reduced
H/M ratios at both the early and delayed phases. His

A Family A C Family B
Al:1 Al:2 Bi:1 Bl:2
dies at 94y dies at96y dies at 91y
W< O ONON
BN
All:1 Ali:2 Al:3 Ali:4 Ali:5 All:6 AN:7 Al:8 “ All:9  Ali:10 Bli:1 Bi:2 BII3
dies at3y dies atdy
A H I _2_ R E _A H 1 $§ RC E
T
GCTCATATCIrCAGCCGTIG GCTCATATC|ITCAGCRGT G
208 211 21 185 & 205 208 211 |j193 18

Exon3

Exon18 Exon3
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Exon3

Exon18

All:2 All:S

Fig. 1 Modified family pedigrees and electropherogram. a Family A
(open square) man; (open circle) woman; (slash) deceased. Open
diamond, family members not tested. Solid symbols show affected
individuals with progressive external ophthalmoplegia and parkin-
sonism. Gray symbols show affected individuals with ptosis. b Elec-
tropherograms from members of family A. The proband (AIL:2) of
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family A has two substitutions, ¢.830A > T (p.H277L) and
c.2827C > T (p.R943C) in exons 3 and 18, respectively, of POLG.
AILS exhibited neither of these substitutions and AII:10 has a single
change of ¢.2827C > T (p.R943C). ¢ None of the members of family
B have substitutions in POLG, PEOI, or ANTI
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MMSE score was 30. His father died of senile decay at the
age of 91 years. We examined his mother (BI:2) and two
sisters (BII:1 and BIL:2) and found them to be healthy and
with no neurological abnormalities.

Blood sampling and DNA extraction

All procedures used in this study were approved by the
Hokkaido University Ethics Committee, and written
informed consent was obtained from each individual (AIL:2,
AILS, AIL:10, BL:2, BII:1, BIL:2 and BII:3) examined as well
as from 50 ethnically matched control subjects. Blood sam-
ples were collected and genomic DNA and mtDNA were
extracted from leukocytes using standard protocol.

Analysis of mitochondrial DNA deletion

The presence of mtDNA deletions was examined in muscle
biopsy samples (see below) from patients 1 (AIl; 2) and 2
(BIL; 3) using Southern blot DNA hybridization (Mitsubi-
shi Chemical Medience Corporation, Tokyo) according to
the manufacturer’s instructions. Whole cell DNA was
prepared by phenol—chloroform extraction after incubation
with proteinase K at 37°C overnight, and then purified by
ethanol precipitation.

For Southern blotting and hybridization, 0.1 pg of
genomic DNA or mtDNA were digested with 10 U of
BamHI (Roche) and Pvull (Roche), respectively, at 37°C
overnight. Digested DNA was separated by agarose elec-
trophoresis (1% agarose gel, 55 V(CV)), hybridized with
the probe recognizing mtDNA3307-4520 and exposed to
X-ray film (XR, Fujifilm) at —70°C overnight.

DNA sequencing

Primers for PCR amplification of the 22 exons of the
POLG gene, the 5 exons of the PEO] gene, and the 4 exons
of the ANTI gene were as previously reported [12-14].
Sequencing was performed using the BigDye Terminator
Cycle Sequencing Kit v.3.1 (Applied = Biosystems).
Sequencing products were purified by BigDye X Termi-
nator (Applied Biosystems) and analyzed on an ABI3130
genetic analyzer with sequencing analyzer software
(Applied Biosystems). In addition, whole mtDNA genome
analyses of blood from the two probands (AIL:2 and BII:3)
were conducted (mitoSEQr resequencing system, for
resequencing the entire mitochondrial genome with 46
RSAs; Applied Biosystems, USA).

Muscle pathology V

Open muscle biopsy was "pe}ffdrmcd‘ on the rectus femoris
of both patients. Transverse frozen sections were prepared

and stained with hematoxylin-eosin (HE), modified Go-
mori trichrome (m-GT), nicotinamide adenine dinucleo-
tide-tetrazolium (NADH-tr), non-specific enolase (NSE),
and alkaline phosphatase (ALP). Histochemical stainings
for the mitochondrial enzymes succinate dehydrogenase
(SDH) and cytochrome ¢ oxidase (CCO) were also
performed.

Results

Sequencing analyses revealed compound heterozygotic
missense mutations in POLG in patientl: ¢.830A>T in
exon 3, resulting in p.H277L and ¢.2827C>T in exon 18,
resulting in p.R943C (Fig. 1b). The former was reported
previously associated with Alpers syndrome [15] and the
latter with autosomal dominant PEO [16]; however, neither
of the substitutions have been reported in a phenotype with
parkinsonism.

One of the brothers of patient 1 (AIl:10) also exhibited
the ¢.2827C>T substitution in exon 18, but did not have the
¢.830A>T substitution in exon 3 (Fig. 1b). The sister of
patient 1 (AIL:5) had no POLG mutations (Fig. 1b). Patient
1 had no mutations in either ANT! or PEO/. Neither of the
substitutions was found in the 100 chromosomes of 50
ethnically matched control subjects. Patient 2 had no
mutations in any of the three genes examined. No muta-
tions were detected in the whole mtDNA of either blood
sample of the patients. In the analysis of mtDNA, deletions
were observed only in patient 2 (Fig. 2).

We found similar muscle pathologies in both patients
(Fig. 3). There were a few atrophic fibers and basophilic
fibers in HE staining and many ragged-red fibers in the
m-GT staining. Absence of CCO activity was found in
some fibers. Some fibers showed intense SDH activity
but no strongly stained small vessels. The histological
findings in both patients were compatible with chronic
progressive external ophthalomoplegia among mitochon-
drial myopathies.

NC ) All:2 ‘NC BI:3

Fig. 2 Mitochondrial DNA deletion analysis. Southern blots of
mitochondrial DNA isolated from muscle tissue. The muscle mito-
chondrial DNA was restricted with BamHI (B) and Pwull (P). The
sample from patient 2 (BII:3) exhibited smaller restriction bands
(arrow) than those from the normal control (NC), indicating the
existence of mitochondrial DNA deletions. The size of normal band is
16.6 kb )
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Fig. 3 Muscle pathology.

a—c From BII:3. a Modified
Gomori trichrome stained
section showing ragged-red
fiber in the center. b The same
ragged-red fiber is darkly
stained by succinate
dehydrogenase (SDH) stain.

¢ Darkly stained SDH fibers are
scattered throughout the section.
d In a section from patient
AIl:2, there are some
cytochrome ¢ oxidase-negative
fibers (asterisks)

Discussion

We revealed a compound heterozygotic missense muta-
tions in POLG in a patient with PEO and parkinsonism. To
our knowledge, this is the first such compound mutation in
a patient with PEO and parkinsonism and neither of these
substitutions were previously reported in association with
parkinsonism.

According to the genotypes of the siblings of patient 1,
his mutations may be the result of transposition and each of
his parents may have been heterozygotic for each of the
mutations, because his brother (AIl:10) has only the
p-R943C substitution; however, a potential recombination
can not be ruled out. In the POLG protein, p.H277L is
involved in the exonuclease domain and p.R943C. in the
polymerase domain. pR943C was previously reported in
autosomal dominant PEO patients [16]. Most mutations in
autosomal dominant PEO are in the polymerase domain
[1], and, therefore, may be related to the onset of PEO in
this case. In fact, the healthy sibling of patient 1 (AIIl:10)
has slight ptosis without external ophthalmoplegia. How-
ever, it is unclear whether the difference between siblings
can be explained only from the perspective of penetrance.

POLG is known as the causative gene of Alpers syn-
drome, which is a rare but severe autosomal recessive
disorder that affects young children and causes mental
retardation, seizures, deafness, liver failure, and eventual
death [1]. Childhood myocerebrohepatopathy spectrum

@ Springer

disorders (MCHS) are also known as POLG related dis-
orders, and are defined by the clinical triad of myopathy or
hypotonia, developmental delay or dementia, and liver
dysfunction [17]. The p.H277L and p.R943C substitutions
reported here are also known to occur in Alpers syndrome
and MCHS, respectively [15, 17]. Although our patient had
compound heterozygotic changes, he had no symptoms and
signs suggesting either Alpers syndrome or MCHS. How-
ever, two siblings of patient 1 died of intussusception in
their childhood. This may suggest that they had been
affected with Alpers syndrome, although this could not be
confirmed because their medical records were not avail-
able. It is reported that many POLG mutations are
responsible for PEO and Alpers syndrome, and that the
same substitutions cause PEO or Alpers syndrome [18];
however, the genotype—phenotype relationships are still
unknown. In patients with PEO and parkinsonism, muta-
tions are reported not only in the exonuclease domain [4]
and the polymerase domain [4-6, 9] but also in the linker
region [4, 7-9], therefore the correlation between mutation
sites and development of parkinsonism is not clear. It could
not be determined from our limited data whether both
allele changes are required for the development of PEO and
parkinsonism.

Although mtDNA deletions were not observed in our
patient with the POLG mutation, other patients were also
reported with PEO] or POLG mutations but with no
apparent mtDNA deletions in muscle specimens observed
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with Southern blotting [19, 20]. Real time PCR may be
required to demonstrate the defect.

In spite of the presence of a mtDNA deletion and typical
findings of muscle pathology indicative of mitochondrial

disorders, patient 2 shows neither mtDNA mutations nor

POLG, PEOI, or ANTI mutations. These results suggest
wide heterogeneity in this phenotype and possibly the
presence of mutatlons in other genes involved in the
maintenance of mtDNA partlcularly those - involved in
replicating and repairing mtDNA as does POLG.

PD is one of the common neurodegeneratlve dlSCaSGS
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SLC9A6 mutations have been reported in families in whom
X-linked mental retardation (XMR) mimics Angelman syn-
drome (AS). However, the relative importance of SLC9A6
mutations in patients with an AS-like phenotype or XMR has
not been fully investigated. Here, the involvement of SLC9A6
mutations in 22 males initially suspected to have AS but found on
genetic testing not to have AS (AS-like cohort), and 104 male
patients with XMR (XMR cohort), was investigated. A novel
SLCY9A6 mutation (c.441delG, p.S147fs) was identified in one
patient in the AS-like cohort, but no mutation was identified in
XMR cohort, suggesting mutations in SLC9A46 are not a major
cause of the AS-like phenotype or XMR. The patient with the
SLC946 mutation showed the typical AS phenotype, further
demonstrating the similarity between patients with AS and those
with SLC9A6 mutations. To clarify the effect of the SLC946
mutation, we performed RT-PCR and Western blot analysis on
lymphoblastoid cells from the patient. Expression of the mutated
transcript was significantly reduced, but was restored by cyclo-
heximide treatment, indicating the presence of nonsense medi-
ated mRNA decay. Western blot analysis demonstrated absence
of the normal NHE6 protein encoded for by SLC9A46. Taken
together, these findings indicate a loss-of-function mutation in
SLC9A6 caused the phenotype in our patient. ©2011 Wiley-Liss, Inc.

Key words: SLC946; sodium/hydrogen exchanger 6; Angelman
syndrome; X-linked mental retardation; nonsense mediated
mRNA decay

INTRODUCTION

SLCY9A6 mutations were first reported by Gilfillan et al. [2008] in
families exhibiting an X-linked mental retardation (XMR) syn-
drome mimicking Angelman syndrome (AS). Angelman syndrome
is characterized by severe developmental delay with absent or
minimal speech, ataxia, easily provoked laughter, epilepsy, and

© 2011 Wiley-Liss, Inc.

How to Cite this Article:

Takahashi Y, Hosoki K, Matsushita M,
Funatsuka M, Saito K, Kanazawa H, Goto Y-1,
Saitoh S. 2011. A Loss-of-Function Mutation
in the SLC9A6 Gene Causes X-Linked Mental
Retardation Resembling Angelman
Syndrome.

Am ] Med Genet Part B 156:799~807.

microcephaly. The syndrome is caused by loss-of-function of the
UBE3A gene which is subject to genomic imprinting. Patients with
SLC9A6mutations resemble patients with AS, but also demonstrate
distinctive clinical features including cerebellar atrophy, slow pro-
gression of symptoms, increased glutamate/glutamic acid peak on
magnetic resonance spectroscopy (MRS), and lack of characteristic
abnormalities seen AS patients examined using electroencephalog-
raphy (EEG). Following the first report in 2008, in 2010 Schroer
etal. reported two other families with AS due to SLC9A6 mutations,
and confirmed the findings of Gilfillan et al.

The SLC9A6 gene is located on Xq26.3, and encodes the ubig-
uitously expressed Na™/H™ exchanger protein member 6, NHE6.
The NHE protein family consists of nine members and includes
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NHEI-5 which is found in the plasma membrane, and NHE6-9
which is found in the membranes of intracellular organelles such as
mitochondria and endosomes. NHEG is predominantly present in
the early recycling endosome membranes, and is believed to have a
rolein regulatingluminal pH and monovalent cation concentration
in intracellular organelles [Brett et al., 2002; Nakamura et al., 2005].
Moreover, Roxrud et al. demonstrated that NHE6 in combination
with NHE9 participated in regulation of endosomal pH in Hela
cells by means of the procedure of co-depletion of NHEG and NHE9
[Roxrud et al. 2009}, indicating the significant role of NHE6 in fine-
tuning of endosomal pH in human cells. In the brain, exocytosis
from recycling endosomes is essential for the growth of dendritic
spines which grow during long-term potentiation (LTP). In the
absence of recycling endosomal transport, spines are rapidly lost,
and LTP stimuli fail to elicit spine growth [Park et al., 2006]. Thus,
NHES has an important role in the growth of dendritic spines, and
also in the development of normal brain wiring. Thus far, five
SLCY9A6 mutations have been reported in six AS families; two
nonsense mutations, one inframe deletion, one frameshift deletion,
and one splicing mutation [Gilfillan et al., 2008; Schroer et al.,
2010]. The precise pathogenesis by which these mutations produce
disease remains to be clarified.

The aim of this study was to clarify the incidence and importance
of SLC9A6 mutations in AS-like patients and patients with XMR,
and to shed light on the molecular pathogenesis of disease due to
SLCYA6 mutations.

MATERIALS AND METHODS
Enrolled Patients

We examined 22 affected Japanese males clinically suspected of
having AS but who lacked the genetic abnormalities reported in AS
(AS-like cohort). These patients had AS excluded by having neg-
ative results for the SNURF-SNRPN DNA methylation test (which
identifies a deletion, uniparental disomy, or imprinting defect) and
UBE3A mutation screening (performed as described previously)
[Saitoh et al., 2005]. We also examined DNA samples from 104
Japanese patients suspected of having XMR (XMR cohort). The
XMR samples were collected as a part of a project for the Japanese
Mental Retardation Consortium [Takano et al,, 2008]. This study
was approved by the Institutional Review Board of Hokkaido
University Graduate School of Medicine, and written informed
consent was obtained from the parents of the enrolled patients.

Mutation Analysis of the SLLCIAS Gene

We amplified each exon, including exon—intron boundaries, of the
SLC9A6 gene using polymerase chain reaction (PCR), and all
amplicons were directly sequenced on an ABI 3130 DNA analyzer
(Applied Biosystems, Foster City, CA) using BigDye Terminator
V.1.1 Cycle Sequencing Kit (Applied Biosystemns). SLCIA6 encodes
two alternatively spliced transcripts produced from alternative
splicing donor sites in exon 2 which give rise to a long form
designated as variant 1, and a short form called variant 2. Variant
1 and variant 2 code for NHES6.1 (isoform a) and NHE6.0 (isoform
b), respectively (Fig. 1). The primers were designed to amplify each
transcript variant. The primers sequence used for amplification and

sequencing are available on request. Genomic DNA (10ng)
extracted from peripheral blood was amplified in a total PCR
volume of 20l containing 1% buffer, 0.4UM of each primer
(forward/reverse), 0.18mM dNTPs, 0.5U AmpliTaq Gold®
DNA Polymerase (Applied Biosystems). The PCRs for all exons
except exon one were performed at 94°C for 10 min followed by
30 cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec, then one
cycle at 72°C for 7 min. The high CpG content of exon 1 required it
to be amplified in a total reaction volume of 20 {l containing 1x
buffer, 0.4 uM of each primer, 0.2 mM dNTPs, 0.4 U Phusion® Hot
Start High-Fidelity DNA Polymerase (Finnzymes, Vantaa,
Finland), and 3% DMSO. The thermocycling conditions for
exon 1 were 98°C for 3min followed by 35 cycles of 98°C for
10 sec, 65°Cfor 30 secand 72°C for 30 secand then one cycle of 72°C
for 5min. The PCR products were purified with Wizard® PCR
Preps DNA Purification System (Promega, Madison, WI) prior to
sequencing. All mutations are referred to in relation to reference
sequence NM_001042537,

Cell Culture and Cycioheximide Treatment

Epstein—Barr virus (EBV)-transformed lymphoblastoid cells lines
were established from peripheral blood cells using standard meth-
ods. To prevent potential degradation of transcripts containing
premature translation termination codons {(PTCs) by nonsense
mediated mRNA decay (NMD), lymphoblastoid cells from the
patient with the SLC9A6 mutation and normal controls were
treated with 100 pig/ml cycloheximide (CHX) (Sigma, St. Louis,
MO). This compound interferes with NMD through inhibition of
protein synthesis [Aznarez et al., 2007]. CHX or a 0.1% DMSO
control vehicle was used 4 hr prior to RNA extraction from the cell
lines [Carter et al., 1995].

RT-PCR

Total RNA from cultured lymphoblastoid cells from the patient and
four normal controls, was extracted using the RNAqueous® Kit
(Applied Biosystems). Reverse transcription was performed using
100 ng of total RNA and the High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems) in a total reaction volume of
20 ul containing 1x Random primers, 4 mM dNTP mix, 2,5 U of
Multiscribe™ Reverse Transcriptase, and 1 p of RNase Inhibitor.
The reactions were incubated at 25°C for 10 min, then at 37°C for
120 min and then followed by 85°C for 5min to inactivate the
reverse transcriptase. Complementary DNA was then amplified
using a primer set designed to amplify exon 2-5; forward 5'-
GTCTTTTGGTGGGCCTITGT-3/, reverse 5-GTCCCGTTACC-
TTCATCAG-3". PCR products for NHE6.1 (transcript variant 1)
and NHE6.0 (transcript variant 2) were 399 and 303bp,
respectively.

Real-Time Quantification of 5LC946 mRNA

To measure SLCIAG transcript variant 1 and variant 2, both of
which are alternative splicing products, primers and TagMan®
MGB probes were designed with Primer® Express Software
(Applied Biosystems; Fig. 1). The Primer and MGB probe sequence
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for variant 1 were forward primer 5-TGAGTATATGCTG-
AAAGGAGAGATTAGTTC-3, reverse primer 5-GATAGGA-
GGAAGTAATATGTTGAAAAATACTTC-3, TagMan MGB
probe 5-CTTAGAAAGGTTACTTTTGATCC-3"; and for variant
2 forward primer 5-CTGTGAAGTGCAGTCAAGTCCAA-%,
reverse primer 5-GATAGGAGGAAGTAATATGTTGAAAAA-
TACIT-3/, TagMan MGB probe 5-CTACCTTACTGGTTA-
CTTTTGA-3'. Human GAPDH MGB probe and primers
purchased from Applied Biosystems were used as the internal
control. Patient cDNA was transcribed from 10 ng of total RNA
in a total volume of 25 Ul containing 1x TagMan® Universal PCR
Master Mix (Applied Biosystems), 0.9 UM of each primer (sense/
antisense) and 0.25 UM of probe. Thermocycling was 95°C for
10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min.
Real-time quantitative PCR was performed using the ABI PRISM
7700 (Applied Biosystems). The 274" method was used for
relative quantification.

Western Blot Analysis

Hela cells and cultured lymphoblastoid cells from the patient,
mother and normal controls were washed with phosphate buffered
saline and suspended in lysis buffer (phosphate buffered saline
containing 1% Triton-X, 1 jig/ml aprotinin, 1 ug/ml pepstatin A,
and 1pg/ml leupeptin). Hela cells expressing the NHE6.1 were
used as a control. The cells were disrupted by sonication and

Exon coding region

Exon untranslated region
initiation codon

Stop codon

Splicing donor site
c.441delG

Real-time PCR primer

TagMan MGB probe

]

#*(-4;],{:1

i

centrifuged at 20,000 for 10 min at 4°C. The supernatants were
then resolved by SDS-polyacrylamide electrophoresis and trans-
ferred to polyvinylidene fluoride membrane (Millipore, Billerica,
MA). NHE6 was detected with rabbit polyclonal anti-NHES6 anti-
body [Ohgaki et al., 2008], anti-rabbit IgG antibody conjugated
with horseradish peroxidase (Vector Laboratories, Burlingame,
CA) and chemiluminescence reagent (ECL Western Blotting Detec-
tion System; GE Healthcare, Waukesha, WI).

RESULTS
ldentification of a SLLCY948 Mutation

We identified only one male patient with a frameshift mutation
(c.441delG, p.S147fs) in exon 2, out of 22 male patients in the
AS-like cohort (Fig. 2). This frameshift mutation causes a PTC. His
healthy mother was heterozygous for the mutation.

No mutation in the SLCIA6 gene was identified in the XMR
cohort. However, two common polymorphisms (rs2291639,
rs2307131), and one putative novel polymorphism in intron 12
(¢.1692 +10 A>G) were detected.

Clinical Features of the Patient With the
SLE9AL Mutation

The affected male patient at birth suffered from mild neonatal
asphyxia, however he had no other perinatal problems. His parents
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p. S147fs, c. 441delG ( Reference sequence NM_001042537 )

PSTAARRTGT TAT GG RAARATTT
208 217

Patient

232

GGTAAATGTTAGTGGAAAATT]
221

GTAAAT GTT ATG GAAAAT
vV NV M E N

| GTAAATGTT AG[I' GGAAAA

g .G K

FIG. 2. Chromatographs showing the SLC9A6 mutation in our patient, and the equivalent genomic region in both his parents. The mutation c.441delG
is located in exon 2 and is only present in transcript variant 1. His mother was heterozygous for this mutation, while his father did not have the
mutation. This mutant transcript leads to premature protein truncation. The mutation is described relative to reference sequence NM 001043537.
[Color figure can be seen in the online version of this article, available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN) 1552-485X]

were non-consanguineous and he did not have any family history
of neurological diseases. Although formal clinical assessment
was not conducted to the mother, she is healthy and does not
have intellectual disability. His clinical features are summarized
in Table I. He showed typical findings of AS; severe developmental
delay with absence of verbal language, generalized hypotonia,
easily provoked laughter, epilepsy, ataxia, strabismus, and micro-
cephaly. His occipitofrontal head circumference at birth was
33.8cm (+0.4 SD), but his head growth has decelerated into
51.5cm (—3.0 SD) at 18 years of age. He acquired head
control at three months of age, sat and crawled at 6 months
of age, and walked unassisted at 18 months of age. His first
epileptic attack occurred at 4 years of age. After this first
attack, he lost his ability to walk until he was 5 years old. His
epileptic attacks consisted of multiple types of seizures, and
they were difficult to control with ACTH or several anti-epileptic
drugs. TRH treatment improved his awakening and activity
levels, and he transiently acquired the ability to walk.
However, subsequently his ability to walk was lost, probably
due to exacerbation of ataxia. His deep tendon reflex was
not increased and no other features of spasticity or peripheral
neuropathy were identified. His EEG findings included a back-
ground frequency of 5-6 Hz theta waves and spontaneous appear-
ance of 3 Hz diffuse high voltage slow waves. TRH did not change
the frequency of his seizures or his EEG findings. He showed no
cerebellar atrophy on magnetic resonance imaging (MRI) at 5 years
of age. MRS was not performed. He had a normal G-banding

karyotype.

Downregulation of the SLCIAE Variant 1 in the
Patient With the Mutation

The identified mutation c.441delG is located in exon 2 and is only
present in variant 1 (Fig. 1). Therefore, the mutation only affects
NHES6.1, leaving NHE6.0 intact. Reverse transcriptase PCR dem-
onstrated that SLC9A6 variant 1 mRNA expression decreased in our
patient (Fig. 3A) compared to that in four normal controls. On the
other hand, variant 2 expression was increased in the patient
compared to the controls. To further investigate mutant SLC9A6
gene expression, real-time quantitative PCR (qPCR) was per-
formed using cDNA from the patient and normal controls. Quan-
titative PCR confirmed that SLC9A6 variant 1 was significantly
downregulated in the patient, while it was not downregulated in
normal controls (Fig. 4A). Furthermore, the SLC9A6 variant 2
mRNA in the patient was significantly increased compared to
normal controls (Fig. 4B).

Nonsense Mediated Decay Was Involved in the
Downregulation of Mutant SLCIAG in the Patient

To investigate the possible involvement of NMD in the down-
regulation of mutant SLC9A6 in the patient’s lymphoblastoid cells,
we treated the cells with CHX. After CHX treatment, the expression
level of SLC9A6 variant 1 increased compared to normal control
samples on RT-PCR (Fig. 3B). It was also proved that the expression
level of variant 1 was significantly increased by performing
qPCR, while the expression level in normal control samples
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was unchanged (Fig. 4A). The expression level of SLC9A6
variant -2 - increased - in all - samples = after CHX treatment,
however the increase was significant only in control samples
(Fig. 4B).

Decreased Expression of the NHEB Protein
From Mutant SLC9AG

‘Western blotting was performed to investigate -expression of
the NHE6 protein in the homogenate of lymphoblastoid cell
lines from the patient and his mother. As a result, protein
expression of NHE6.1 was not detected in . the patient
(Fig. 5A,B). The same NHES6.1 was detected in Hela cells and
cells from the patient’'s mother as well as in the controls. NHE6.0,
which was expected to be 10-20kDa smaller than NHE6.lon
SDS-PAGE [Ohgaki et al., 2008], was not detected in any sample
(Fig. 5B).

195

SLCY9AB variant 1
SLCY9AG variant 2

 GAPDH

Variant 1: 399bp
Variant 2; 303bp
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DISCUSSION

In this study we investigated 22 male AS-like patients and 104 male
patients with XMR, and identified only one AS-like patient with a
SLCIA6 frameshift mutation. This result further confirms SLCIAG
is not a major cause of AS-like cases, as reported by Fichou et al.
[2009]. Although the number of patients with XMR in this study
was small, SLCIA6 is likely to account for only small proportion of
XMR cases. .

Patients with SLC9A6 mutations reported by Gilfillan et al,
exhibit cardinal features similar to those of AS including severe
developmental delay, mental retardation with absent or minimal
use ‘of words, easily provoked laughter, ataxia, epilepsy, hyper-
kinetic movement, nystagmus, and microcephaly.

Gilfillan et al. also identified possible features of difference
between these patients and AS patients, including slow progression
of symptoms, thin body, cerebellar atrophy, increased glutamate/
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glutamicacid peak on MRS, and rapid frequency of 10—14 Hz waves
onEEG (TableT). Our patientlost his ability to walk although he did
not demonstrate spasticity, demonstrating a slowly progressive
clinical course consistent with findings in Gilfillan’s report. Indeed,
slow progression may be a distinctive clinical feature for patients
with SLC9A6 mutations. One of the families which Gilfillan et al.
investigated was previously reported by Christianson et al. [1999],
and designated as Christianson syndrome. Schroer et al. reported
patients with Christianson syndrome, and they showed that the
patients demonstrated an AS-like phenotype. However, while the
clinical features of our patient were consistent with those of most
patients previously reported by Gilfillan, there were differences
including the EEG findings and lack of cerebellar atrophy. Despite
this, our patient did meet the diagnostic criteria for AS [Williams
et al., 2006]. Therefore, this study further demonstrated that a
patient with a SLC9A6 mutation may resemble patients with AS.
Further, this striking similarity between patients with AS and those
with SLC9A6 mutations suggests a possible relationship between
the gene function of UBE3A and SLC946 in the developing brain.

Our patient’s mutation created a frameshift resulting in 7
missense amino acids followed by a stop codon. This mutation
was present only in SLCYA6 transcript variant 1. SLCIA6 mRNA has
two transcript variants caused by alternative splicing in exon 2
(Fig. 1), but the role of each variant has not been clarified. The
mutation detected in our patient only affects variant 1 sequence, but
the phenotype of the patient was as severe as those in previously
reported patients. Therefore, our finding suggests that the NHE6.1
plays an important role in brain function.

Nonsense mediated decay is involved in regulating the expres-
sion of alternatively spliced forms containing PTCs [Lareau et al.,
2007; Nietal., 2007]. Since the identified mutation was predicted to
result in a PTC, we speculated that NMD could be involved in
disease pathogenesis. The result of QRT-PCR showed a significant
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decrease in SLC9A6 variant 1 mRNA expression in the patient
sample. This reduction was restored by CHX treatment, while
SLC9AG variant 1 expression was unaltered by CHX treatment in
normal control samples. Expression of SLC9A6 variant 2 in the
patient on the other hand, was significantly increased compared to
that in control samples, however it was not influenced by CHX
treatment. Therefore, the ¢.441delG mutation in the patient seems
to have modified the alternative splicing pattern, leading to an
increase in variant 2 expression. Alternatively, low variant 1 could
trigger a regulatory feed back on transcription causing the apparent
increase in variant 2 expression. A mutation causing premature
protein truncation could alter the splicing pattern and lead to exon
skipping, use of alternative splice sites, and intron retention
[Hentze and Kulozik, 1999; Mendell and Dietz, 2001]. Our results
indicated that the ¢.441delG mutation caused a PTC altered the
splicing pattern, and activated NMD machinery then downregu-
lated SLCYAG variant | expression.

As protein NHES.1 was not detected, this indicates an absence of
intact NHE6.1. NHE6.0 was also not detected. These findings
conclusively indicated that the identified mutation should cause
total loss-of-function. Recently, Garbern et al. identified cases with
an in-frame deletion of three amino acids, who showed milder
dysmorphic features and higher gross motor abilities than those in
cases previously reported [Garbern et al,, 2010]. Their in-frame
deletion should not cause total loss-of-function but create a mildly
dysfunctional protein. Therefore, severe phenotypes including
severe developmental delay and progressive neurological deterio-
ration may be caused by truncated mutations and less severe
phenotypes may be caused by missense or in-frame mutations,
and such mild phenotypes are likely missed in patients with mild
developmental delay.

Given that the SLC9A6 variant 2 was upregulated, we speculated
that upregulated variant 2 might partially compensate for the
absence of NHES.1. However, we could not establish the upregu-
lation of the NHE6.0 protein, rather it was not detected in the
patient’s lymphoblastoid cells. NHE6.0 may be unstable compared
to NHEG6.1. Alternately, NHE6.0 translation may be inhibited.
Further investigation is required to definitively answer this
question.

NHES is found in the membranes of early recycling endosomes
and transiently in plasma membranes. Its distribution is regulated
by RACK1 [Ohgaki etal., 2008]. Recycling endosomal trafficking is
essential for the growth of dendritic spines during LTP in the brain
[Park et al., 2006]. The function of the protein product of UBE3A4,
E3 ubiquitin ligase, is also associated with dendritic spine mor-
phology. Mice with a maternal null mutation in Ube3a are also
reported to have defects in LTP, and manifest motor and behavioral
abnormalities [Jiang et al., 1998]. In a recent study, Ube3a deficient
mice demonstrated dendritic spine dysmorphology [Dindot et al.,
2008]. Thus, UBE3A and SLC9A6 could interact in a common
pathway involved in dendritic spine development, with a mutation
in either leading to an AS-like phenotype.
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CLINICAL RECORD

Successful cochlear implantation in a patient
with mitochondrial hearing loss and m.625G>A

transition
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! Department of Pediatrics, Sapporo City General Hospital, and the Departments of *Otolaryngology and
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Abstract

Objective: We present a patient with mitochondrial hearing loss and a novel mitochondrial DNA transition, who

underwent successful cochlear implantation.

Case report: An 11-year-old girl showed epilepsy and progressive hearing loss. Despite the use of hearing aids, she
gradually lost her remaining hearing ability. Laboratory data revealed elevated lactate levels, indicating mitochondrial
dysfunction. Magnetic resonance imaging showed diffuse, mild brain atrophy. Cochlear implantation was performed,
and the patient’s hearing ability was markedly improved. Whole mitochondrial DNA genome analysis revealed a novel
heteroplasmic mitochondrial 625G>A transition in the transfer RNA gene for phenylalanine. This transition was not
detected in blood DNA from the patient’s mother and healthy controls. Mitochondrial respiratory chain activities in

muscle were predominantly decreased in complex TII

Conclusion: This case indicates that cochlear implantation can be a valuable therapeutic option for patients with

mitochondrial syndromic hearing loss.

Key words: Sensorineural Hearing Loss; Cochlear Implantation; Mitochondrial DNA

Introduction

There have recently been many reported cases of sensori-
neural hearing loss of mitochondrial origin. In such patients,
the effectiveness of cochlear implantation has been recog-
nised in those with the m.1555A>G and m.3243A>G
mutations.! However, the efficacy of such treatment for
patients with other mitochondrial DNA mutations has not
yet been defined.

Here, we present a patient with syndromic hearing loss,
probably caused by a novel mitochondrial DNA mutation
(m.625G>A), who gained excellent benefit from cochlear
implantation.

Case report

The patient, an 11-year-old girl, was the first child of healthy
and nonconsanguineous Japanese parents. There was no
family history of hearing loss or epilepsy, and the patient
had had no perinatal problems. Her motor and cognitive
development was normal, but she displayed an abnormally
short stature for her age.

The patient’s hearing difficulty had first been noticed by
her mother at the age of six years. Two years later, the
patient had been examined by an otolaryngologist for the
first time, and bilateral hearing aids had been prescribed.
However, her hearing ability continued to deteriorate.
There had been no previous exposure to aminoglycoside

antibiotics. In addition to hearing loss, at the age of eight
years the patient had begun to suffer generalised tonic sei-
zures, uncontrolled by valproic acid. At the age of 10
vears, she had been referred to our institution, as her
family had moved to the locality near our hospital.

On physical examination, the patient had a height of
119.0 cm (—3.0 standard deviations (SD)), a weight of
21.9kg (—1.7 SD) and a head circumference of 53.6 cm
(+0.9 SD). Cranial nerve and cerebellar functions were
normal. Hypertrichosis was observed. Although her muscle
force did not decrease, she was unable to exercise for extended
periods of time. Deep tendon reflexes were normal, without
spasticity. She was unable to communicate verbally, although
her intelligence appeared normal as she could communicate in
writing and could solve age-appropriate arithmetic problems.
Otitis media was not found.

Laboratory data revealed mildly elevated blood lactate
levels (24.0 mg/dl (normal range, <17 mg/dl), with a pyr-
uvate level of 1.0 mg/dl (normal range, <0.9 mg/dl)), and
noticeably elevated cerebrospinal fluid lactate levels
(55.8 mg/dl, with a pyruvate level of 2.0 mg/dl).

Electroencephalography revealed no distinct epileptic dis-
charge during waking and sleeping states.

Computed tomography showed no internal ear malfor-
mations. Magnetic resonance imaging (MRI) revealed mild
brain atrophy without focal lesions (Figure la).
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FIG. 1

(a) Axial magnetic resonance imaging brain scans, showing mild brain atrophy without focal lesions. (b) Left ear audiogram taken at {1 years,

before cochlear implantation, following progression of hearing loss (hearing aids were no longer useful). (¢) Left ear audiogram taken one month

after implantation, showing significant improvement, with hearing thresholds of almost 25 — 45 dB. A = sound source | m away, without
hearing aids; a = with hearing aids in both ears

Formal pure tone audiography revealed hearing thresholds
of between 90 and 120 dB at 250 through to 4 kHz. The
patient’s hearing aids only minimally improved her hearing
thresholds (Figure 1b).

Auditory evoked potential testing showed a barely detect-
able auditory reaction at maximum intensity stimulation of
105 dB.

Therefore, the patient was considered to be a candidate for
cochlear implantation.

Informed consent for participation in academic research
was obtained from the patient and her parents.

During cochlear implantation, temporalis muscle and skin
specimens were obtained.

Genomic DNA was extracted from blood, skin and muscle
specimens. Sequencing of the whole mitochondrial genome
was performed using the mitoSEQ resequencing system
(Applied Biosystems, Foster City, California, USA).
Polymerase chain reaction amplification was conducted,
using forward mismatch primer (nucleotides 601-624, 5'-
GCAATACACTGAAAATGTTTAGC-3; where G=
guanine, C = cytosine, A = adenine and T = thymine) and
reverse primer (nucleotides 768-786, 5-CGTTTTGAG
CTGCATTGCT-3"). This enabled the m.625G> A sequence
to be specifically recognised, and cut using the restriction
enzyme BstOl (Promega, Madison, WI, USA). The pro-
portion of heteroplasmy was approximately measured by

using a mixture-template standard curve of wild type and
mutant clones.

The activities of the mitochondrial respiratory chain com-
plexes I, II, 1II and IV were assayed, using methods pre-
viously described.> We used the diagnostic criteria for
respirsatory chain disorders previously published by Bemier
et al.

Cochlear implantation and clinical course

The patient underwent left-sided cochlear implantation
(using a CI24RCS device; cochlear LTD, Lane Cove,
Australia) at the age of 11 years.

One month after implantation, she was able to use the tele-
phone, clearly indicating improvement in her hearing func-
tion. Audiological data indicated a good response
(Figure 1c). Her speech perception score increased fo
almost 100 per cent, from 0 per cent before surgery.

Twenty months after surgery, the patient and her parents
were satisfied with her improved communication, and she
continued to attend regular school classes. Her epileptic sei-
zures were well controlled by carbamazepine and clonaze-
pam. Her neurological signs and symptoms remained
nonprogressive,  possibly due to  vitamin Bl
supplementation.
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