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Dehghan et al. (2008) report that rs2231142 in ABCG2
is associated with gout by a genome-wide association study
(OR = 1.74 and 1.71 in white and black participants,
respectively). Woodward et al. (2009) showed a significant
association between 182231142 and hyperuricemia
(OR = 1.68) in a population-based study of 14,783 indi-
viduals. Kolz et al. (2009) demonstrated that rs2231142
elevated the serum urate concentration more strongly in
men than in women by meta-analysis of 28,141 individu-
als. Stark et al. (2009) analyzed 683 patients with gout and
indicated a significant association between rs2231142 and
gout (OR = 1.37). Although rs2231142 is an attractive
causative SNP, our normouricemic subjects were also
heterozygous for rs2231142.

Graessler et al. (2006) analyzed 389 German individuals
with primary hyperuricemia and found that rs3825016 and
rs11231825 in SLC22A12 were significantly associated
with reduced fractional excretion of urate in the kidney.
Tabara et al. (2010) analyzed 1,526 normal Japanese
individuals retrospectively and longitudinally, and clarified
that rs11231825 was associated with reduced urate excre-
tion and with future development of hyperuricemia. Again,
although the two SNPs are attractive causes of hyperuri-
cemia, we observe variable dosages of these SNPs even in
our normouricemic subjects.

We next looked into neighboring genes of COLIAI
without considering the functions of the gene products, and
identified that two missense variants in ZPBP2 and
GPATCHS cosegregated with the COLIA] mutation in F1.
Neither variant was detected in 300 normal alleles or in
dbSNP132. ZPBP2 p.T69I, however, is unlikely to be
pathogenic for three reasons: lack of conservation in
mammals; two missense/frameshifting SNPs at or close to
the variant site (Fig. 3a); and the benign predicted outcome
by PolyPhen-2 and SIFT. On the other hand, p.A979P in
GPATCHS substitutes an amino acid in the highly con-
served serine-rich region (Fig. 3b), and the substitution is
predicted to damage the structure and function of the
protein by in silico analysis. GPATCHS encodes the G
patch domain-containing protein 8 that harbors both an
RNA-processing domain and a zinc finger domain.
GPATCHS is expressed in a wide variety of human tissues
including skeletal muscles, brain, heart, pancreas, liver and
kidney (McKinney et al. 2004). Functions of the
GPATCHS gene product, however, have not been studied
to date. The p.A979P variant in GPATCHS is highly likely
to be associated with hyperuricemia in F1, but it may also
cause another yet unidentified phenotype that cosegregates
with Ol
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of collagen Q to MuSK

ABSTRACT

Objective: Muscle-specific receptor tyrosine kinase (MuSK) antibody-positive myasthenia gravis
(MG) accounts for 5%-15% of autoimmune MG. MuSK mediates the agrin-signaling pathway and
also anchors the collagenic tail subunit (ColQ) of acetylcholinesterase (AChE). The exact molecu-
lar target of MuSK~immunoglobulin G (IgG), however, remains elusive. As acetylcholine receptor
(AChR) deficiency is typically mild and as cholinesterase inhibitors are generally ineffective, we
asked if MuSK-IgG interferes with binding of ColQ to MuSK.

Methods: We used 3 assays: in vitro overlay of the human ColQ-tailed AChE to muscle sections of
Colg—/- mice; in vitro plate-binding assay to quantitate binding of MuSK to ColQ and to LRP4:
and passive transfer of MuSK-1gG to mice.

Results: The in vitro overlay assay revealed that MuSK-IgG blocks binding of ColQ to the neuro-
muscular junction. The in vitro plate-binding assay showed that MuSK-lgG exerts a dose-
dependent block of MuSK binding to ColQ by but not to LRP4. Passive transfer of MuSK-1gG to
mice reduced the size and density of ColQ to ~10% of controls and had a lesser effect on the size
and density of AChR and MuSK.

Conclusions: As lack of ColQ compromises agrin-mediated AChR clustering in Colg—/~ mice, a
similar mechanism may lead to AChR deficiency in MuSK-MG patients. Our experiments also
predict partial AChE deficiency in MuSK-MG patients, but AChE is not reduced in biopsied
NMJs. In humans, binding of ColQ to MuSK may be dispensable for clustering ColQ, but is
required for facilitating AChR clustering. Further studies will be required to elucidate the
basis of this paradox. Neurology® 2011;77:1819-1826

GLOSSARY

AChE = acetylcholinesterase; AChR = acetylcholine receptor; ColQ = collagen Q; IgG = immunoglobulin G; LRP4 = low-
density lipoprotein receptor-related protein 4; MG = myasthenia gravis; MuSK = muscle-specific receptor tyrosine kinase;
NMJ = neuromuscular junction; SDS-PAGE = sodium dodecy! sulfate-polyacrylamide gel electrophoresis.

During development of the neuromuscular junction (NM]J), neural agrin released from the
nerve terminal binds to the postsynaptic transmembrane protein LRP4."? Dimerized LRP4
forms a heterotetramer with the dimerized muscle-specific receptor tyrosine kinase (MuSK).?
MuSK together with Dok-7 promotes clustering of acetylcholine receptor (AChR) on the
junctional folds by rapsyn.? The clustering effect of MuSK is mediated by distinct pathways
involving Rho GTPase.®

At the NMJ, 3 tetramers of catalytic subunits of acetylcholinesterase (AChE) are linked to
ColQ, the triple helical collagenic subunit.® ColQ-tailed AChE is anchored to the synaptic
basal lamina by 2 mechanisms: 2 sets of heparan sulfate proteoglycan residues in the collagen
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domain of Col(QY” bind to heparin sulfate pro-
teoglycans, such as perlecan®; and the C-terminal
domain of ColQ binds to MuSK.?

Five percent to 15% of patients with myas-
thenia gravis (MG) carry antibodies against
MuSK (MuSK—immunoglobulin G [IgG]).1%!!
MuSK-MG patients respond favorably to im-
munotherapy, but usually do not respond to,
or are even worsened by, cholinesterase inhib-
itors.'>?> Anti-AChR antibodies comprise
IgG1 and IgG3 moieties that bind comple-
ment whereas anti-MuSK antibodies are
largely IgG4 that do not activate comple-
ment, and complement deposits at the NM]J
are sparse.’®"'® However, the exact target of
MuSK-IgG remains elusive. We therefore ex-
amined an effect of MuSK-IgG on an interac-
tion between ColQ and MuSK by in vitro
and in vivo assays, and found that MuSK-IgG
blocks this interaction.

METHODS Patients. We obtained serum from 4
MuSK-MG patients (patients 1~4) and a patient with limb-
girdle muscular dystrophy as a control (control 1). We obrained
10 mL peripheral blood from patients 1, 3, 4, and control and
residual plasmapheresis fluid from patient 2. We also obrained
expired fresh-frozen plasma (control 2) from Dr. Isao Takahashi
at the Aichi Red Cross Blood Center with institutional approval.
We used sera of patient 2 and control 2 for all the experiments,
and sera of patients 1, 3, 4, and control 1 only for the in vitro
overlay and in vitro plate binding assays because only small
amounts of sera were available from these patients.

Ages and genders of patients 1-4 were a 48-year-old woman,
a 30-year-old woman, a 59-year-old man, and a 45-year-old
woman, respectively. The titers of anti-MuSK antibodies of pa-
tients 1-3 were 22.0 nM, 11.2 nM, and 0.12 nM, respectively
(normal <0.01 nM). Patient 4 was positive for anti-MuSK anti-

body, but the titer was not determined.

Standard protocol approvals, registrations, and patient
consents. We performed all human studies under the institu-
tional review board approvals of the Nagoya University Gradu-
ate School of Medicine and the Mayo Clinic, and obtained
written informed consents from each patient and a control. We
also obtained approvals of the Colg—/— mice studies and the
passive IgG transfer studies by the Animal Care and Use Com-
mittee of the Nagoya University.

Plasmids. We previously made CMV-based mammalian ex-
pression vectors, pTargeT-COLQ and pTargeT-ACHE.” To
generate hMuSKect-myc, we cloned the extracellular domain (aa
1-393) of human MUSK ¢cDNA (Open Biosystems) into a
mammalian expression vector pAPtag-5 (GenHunter) at the
Nbel and Xhol sites upstream of a myc epitope. For hLRP4N-
FLAG, we cloned the extracellular domain (aa 1-1722) of hu-
man LRP4 cDNA (Open Biosystems) into the HindIII and Xbal
sites upstream of a 3xFLAG epitope of a mammalian expression

vector p3XFLAG-CMV-14 (Sigma Aldrich).
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Preparation of recombinant human ColQ-tailed
AChE. We prepared human ColQ-tailed AChE for in vitro
overlay assay and for in vitro plate-binding assay. Both pTargeT-
COLQ and pTargeT-ACHE were transfected into HEK293 cells
in a 10-cm dish using the calcium phosphate method as de-
scribed elsewhere.?” We extracted proteins from the cells in Tris-
HCI buffer (50 mM Tris-HCl [pH 7.0], 0.5% Triton X-100,
0.2 mM EDTA, leupeptin [2 ug/mL}, and pepstatin [1 pg/mL])
containing 1 M NaCl, and diluted the extracts containing ColQ-
tailed AChE in Tris-HCl buffer containing 0.2 M NaCl and
loaded onto the HiTrap Heparin HP columns (GE Healthcare).
We washed the columns with 5 volumes of Tris-HCl buffer con-
taining 0.2 M NaCl, and eluted ColQ-tailed AChE with Tris-
HCI buffer containing 1 M NaCl. We concentrated the eluate
with an Amicon Ultra-4 Centrifugal Filter (50K) (Millipore) to
12-Ellman units per mL. The units were normalized with the
Torpedo-derived AChE (C2888, Sigma-Aldrich).

Preparation of hMuSKect-myc and hLRP4N-FLAG
proteins. We prepared hMuSKect-myc and hLRP4N-FLAG
for in vitro plate-binding assays. We introduced a construct carrying
either hMuSKect-myc or hLRP4N-FLAG into HEK293 cells in a
10-cm dish using the calcium phosphate method as above. We pu-
rified the hMuSKect-myc with the c-myc-Tagged Protein Mild Pu-
rification Kit version 2 (MBL), and purified the hLRP4N-FLAG
with the Anti-DYKDDDDK-tag Antibody Beads (Wako). We de-
tected purified hMuSKect-myc and hLRP4N-FLAG by anti-myc
antibody (9E10, Abcam) and anti-FLAG antibody (M2, Sigma-
Aldrich), respectively (data not shown), and also detected
hMuSKect-myc by sodium dodecyl sulfate~polyacrylamide gel elec-
trophoresis (SDS-PAGE) followed by protein staining with the Ori-
ole Fluorescent Gel Stain (Bio-Rad).

Purification of plasma IgG. We purified IgG as described
elsewhere? with minor modifications. We adjusted plasma to
pH 8.0 with 1 M NaOH. While stirring 1 volume of plasma, we
slowly added 3.5 volumes of 0.4% rivanol (Tokyo Chemical
Industries) in water for 30 minutes. We left the solution over-
night at RT, and removed a tenacious yellow precipitate. After
filcering the supernatant through Whatman no. 1 paper to re-
move residual precipitates, we added 8 g of activated charcoal
(Wako Chemicals) for 100 mL of the IgG solution and incu-
bated overnight at 4°C to remove rivanol. We then slowly added
an equal amount of saturared ammonium sulfate, and again in-
cubated overnight at RT to precipitate crude IgG. We centri-
fuged the solution at 3,000 x g for 30 minutes, and added saline
to the precipitate to form a slurry, which was then transferred to
a dialysis tube (Spectra/Por MWCO 50,000, Spectrum Labora-
tories). We dialyzed the solution in saline at 4°C for 3 hours,
followed by dialysis in PBS at 4°C for 2 hours and then over-
night. We removed residual charcoals by filtering through a
0.22-pm Millex-GP filter (Millipore), and concentrated IgG us-
ing Amicon Ultra 50K (Millipore). We confirmed purity of iso-
lated IgG by 6% SDS-PAGE under a nonreducing condition.
‘We also reduced IgG in 4% 2-mercaptoethanol and fractionated
the heavy and light chains by 10% SDS-PAGE.

Incubation of purified IgG to a muscle section of
Colg—/— mice. We prepared 10-um-thick sections of quadri-
ceps muscles of Colg—/— mice? with a Leica CW3050~4 cryo-
stat at —20°C. We blocked nonspecific binding of a muscle
section with the blocking buffer that contained 5% sheep serum
in PBS at RT for 2 hours. We suspended the purified IgG in the
blocking buffer at 50 ug/mL, and overlaid it on a muscle section
at 4°C overnight. We detected human IgG by FITC-labeled
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anti-human IgG antibody (02-10-06, KPL), and AChR by
Alexa594-labeled a-bungarotoxin (Molecular Probes).

In vitro overlay assay. The overlay binding method was es-
sentially as previously described.”? We overlaid 600 pg IgG of
patients at 4°C overnight before adding 120-milli-Ellman units
of ColQ-tailed AChE.

In vitro plate-binding assay for quantifying ColQ-
MuSK interaction. We coated the Maxi-Sorp Immuno Plate
(Nunc) with 0.15 ug of purified hMuSKect-myc at 4°C over-
night and then incubated it with a blocking buffer that con-
tained 50 mM Tris-HCI (pH 7.4), 0.5% BSA, 0.5% ovalbumin,
and 0.5 M NaCl at RT for 1 hour. We incubated the wells with
1 pg to 100 pg of IgG of controls 1 and 2 and patients 1-4 at

Figure 1 Muscle-specific receptor tyrosine kinase (MuSK)-immunoglobulin G
(lgG) recognizes the neuromuscular junction (NMJ) of Colg—/— mice

A
kD

250

150

100

ct 1

Pt 1

Pt. 2

Nonreducing (A} and reducing (B) sodium dodecyl sulfate-polyacrylamide ge! electrophore-
sis of serum proteins and purified IgG of patient 1. Gels are stained with Coomassie brilliant
blue. M = molecular weight markers; 1 = serum before purification; 2 = purified IgG. Arrow-
heads point to IgG of 160 kD (A), as well as the heavy (50 kD) and light (25 kD) chains of IgG
(B). (C) In vitro overlay of purified IgG on a 10-um skeletal muscle section of Colg—/- mice.
IgG is visualized with FITC-labeled antihuman IgG and acetylcholine receptor with
Alexa594-labeled a-bungarotoxin. Scale bar = 50 um.

4°C for 6 hours. We added 0.12-Ellman units of ColQ-tailed
ACHhE as described above. We then quantified the bound ColQ-
tailed AChE by the Ellman method in the presence of 5 x 10™°
M ethopropazine.™ Each time before we moved to the next step,
we washed the plate 3 times with PBS.

In vitro plate-binding assay for quantifying LRP4-
MuSK interaction. We coated the Maxi-Sorp Immuno Plate
with 0.15 pg of purified hMuSKect-myc as described above, and
then blocked with 1% BSA in PBS at RT for 1 hour, We incu-
bated the wells with 1 pg to 100 ug of IgG of control 2 and
patient 2 at 4°C for 6 hours. We added 0.12 pg of purified
hLRP4N-FLAG on each well at RT for 2 hours. We then quan-
tified the bound hLRP4N-FALG by anti-FLAG-HRP using the
TMB substrate kit (Pierce). Again, between each step, we washed
the plates 3 times with PBS.

Passive transfer of human IgG to mice. We made passive
transfer model mice as described elsewhere.” We intraperitone-
ally injecred 40 mg IgG of control 2 and patient 2 into G-week-
old female C57BL/6] mice every day for 15 days. We sterilized
IgG with a 0.22-pum fileer (Millipore) and dissolved it in 400 uL
PBS. The mice were killed on day 16 under deep anesthesia. To
suppress any active immune response to the human protein,” we
injected 300 mg/kg of cyclophosphamide monohydrate (10
mg/mL in 0.9% NaCl) intraperitoneally 24 hours after the first
IgG injection. We also injected IgG of patient 2 into 2 addi-
tional mice to confirm consistency, and analyzed a representative
mouse in detail. We detected AChR by Alexa594-labeled
a-bungaroroxin (Molecular Probes), ColQ by 1:100 of a newly
raised anti-ColQ antibody (figure e-1 on the Neurology® Web
site at www.neurology.org), and MuSK by 1:100 of anti-MuSK
antibody (C-19, Santa Cruz). We quantified signals by the BZ-
9000 microscope (Keyence) equipped with the Dynamic Cell
Count software BZ-H1C (Keyence).

RESULTS MuSK-IgG recognizes NM]J of a muscle
section of Colg—/— mouse. We first confirmed that
human MuSK-IgG recognizes the mouse NM]J. We
isolated IgG from serum of MuSK-MG patients and
confirmed the purity of IgG by Coomassie staining
of nonreducing (figure 1A) and reducing (figure 1B)
SDS-PAGEs. We then overlaid MuSK-IgG on quad-
riceps muscle sections of Colg—/— mice.?? IgG of
control 1 was not bound to the NMJ, whereas IgGs
of patients 1 and 2 colocalized to the NM]Js (figure
1C). Human MuSK-IgG thus has the potential to
bind to the mouse NM].

In vitro overlay assay discloses that MuSK-IgG blocks
binding of ColQ-tailed AChE to the NM]J of a muscle
section of Colg—/— mouse. We previously demon-
strated that the purified recombinant human ColQ-
tailed AChE protein complex could bind to sections
of the frog NMJs* and the mouse NM]s (in prepara-
tion) in vitro. Using the in vitro overlay assay, we
next examined whether MuSK-IgG blocks anchoring
of ColQ-tailed AChE to the mouse NM]Js. We incu-
bated a muscle section of Colg—/— mice with
MuSK-IgG overnight at 4°C and overlaid human
ColQ-tailed AChE followed by histologic visualiza-
tion of ColQ and AChR (figure 2). In the presence of
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Figure 2 In vitro overlay assays . ]

Ct. 1 Pt. 1 Pt. 2 Pt 3 Pt. 4

AChR

ColQ

Purified recombinant collagen Q (ColQ)-tailed acetylcholinesterase (AChE) was overlaid on a 10-um quadriceps muscle section of Colq~/— mice in the
presence of the indicated purified muscle-specific receptor tyrosine kinase-immunoglobulin G. ColQ is stained with anti-ColQ antibody and acetylcholine
receptor (AChR) with Alexa594-labeled a-bungarotoxin. Scale bar = 50 um.

IgG of control 1, ColQ was colocalized with AChRs,  artenuated, but the AChR and MuSK signal intensi-
whereas, in the presence of 4 MuSK-IgGs, no ColQ ties were only moderately reduced (figure 4, A and
signal was observed at the NMJs. B). Quantitative analysis of the fluorescence signals

In vitro plate-binding assay shows that MuSK-IgG revealed that signal areas (figure 4C), intensities (fig-

blocks binding of ColQ-tailed AChE but not of LRP4 U 4D), and densities (figure 4E) of ColQ in mice
to MuSK. We next quantified an effect of MuSK-IgG injected with patient 2 IgG were significantly re-
on an interaction of human ColQ and human MuSK  duced. Conversely, signal areas (figure 4C), intensi-
by an in vitro plate-binding assay. We synthesized ties (figure 4D), and densities (figure 4E) of AChR
and purified the myc-tagged extracellular domain of ~were only moderately reduced. Similarly, the same
human MuSK (hMuSKect-myc). We then incubated ~ parameters of the MuSK signal were moderately re-
an hMuSKect-coated plate with variable concentra-  duced (figure 4, C, D, and E). Moderate reductions
tions of control IgG or MuSK-IgG, and added a  of the areas and intensities of AChR and MuSK sig-
fixed amount of the purified recombinant human  nals are likely due to reduced sizes of the NMJs, be-
ColQ-tailed AChE. In 2 controls, AChE remained  cause the densities of AChR and MuSK were only
bound even in the presence of 100 pug of IgG, marginally affected. In addition, whereas the number
whereas in 4 MuSK-MG patients the numbers of  of MuSK per AChR remained essentially the same,
bound AChE were proportionally decreased with in-  the number of ColQ per AChR was prominently re-
creasing amounts of the patient’s IgG (figure 3A). duced (figure 4F). To summarize, MuSK-IgG com-

We also examined the effect of MuSK-IgG on the  promised anchoring of ColQ-tailed AChE and had a

interaction between the extracellular domain of e prominent effect on the expression of MuSK and
MuSK and LRP4. We found that even at 100 ug ACHR.

IgG of control 2 or patient 2 did not block binding
of LRP4 to MuSK (figure 3B). DISCUSSION Molecular basis of MuSK-MG has

i ; 30,31 ; _
Passive transfer model exhibits reduced ColQ signals been examined in cultured cells as well as in ac

at the NMJs. As described in the introduction, active ~ tive™? and passive?**¢? immunization models. Ap-
and passive immunization of model animals reveals ~plication of MuSK-MG antibodies to TEG71 muscle
reduction of AChRs at the NMJs,2426-2 but an effect  cells induces inhibition of cell proliferation and sec-
of MuSK-IgG on ColQ-tailed AChE has not been ondarily leads to downregulation of AChR and
examined to date. We thus injected IgG of control 2 rapsyn.®® Similarly, MuSK-MG antibodies have no
and patient 2 for 14 days to C57BL/G] female mice or minimal effect on the cell surface expression of
and visualized the expression of AChR, ColQ, AChR in TE671 and C2C12 muscle cells.?* Con-
MuSK, and AChE in quadriceps muscle sections.  versely, mice? and rabbits?®® immunized with recom-
Signal intensities of ColQ and AChE were markedly  binant MuSK develop myasthenic symptoms and

1822 Neurology 77 November 15,2011

M evemuriodnt B b A AR Kb ammriene Tre D hinasdboavioand vaemremd o mtioon oF dlaie o ediala e mes baibs oo

—365—



Tmooriedat @35 e A RRE I md e et e

[ Figure 3 In vitro plate-binding assays }
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(A) Increasing amounts of muscle-specific receptor tyrosine
kinase (MuSK)}-immunoglobulin G (IgG) block binding of the
purified recombinant collagen Q {ColQ)-tailed acetylcholin-
esterase (AChE) to the extracellular domain of human
MuSK that is coated on a 96-well plate. Bound ColQ-tailed
AChE is quantified by AChE activity. AChE activities are
normalized for that at 1 pg IgG of each sample. Mean and
SEM of 3 experiments are plotted. *p < 0.01 between con-
trols and patients. (B} MuSK-lgG does not block binding of
the purified FLAG-tagged extracellular domain of human
LRP4 (LRP4N-FLAG) to MuSK that is coated on a 96-well
plate. Bound LRP4N-FLAG is quantified with anti-FLAG-
HRP. HRP activities are normalized for that at 1 pg IgG of
each sample. Mean and SEM of 3 experiments are plotted.

NM] AChR deficiency. Similarly, injection of
MuSK-IgG into mice reduces the number of AChRs
at the NMJ to 22% of controls, compromises the
apposition of the presynaptic and postsynapric
components of the NMJ,* and reduces muscle contrac-
tility.” A recent report demonstrates that MuSK-IgG
enhances internalization of MuSK from plasma
membrane, which leads to progressive dispersal of
postsynaptic AChRs by disruption of the MuSK scaf-
fold and not by disruption of the agrin/LRP4/MuSK
signaling pathway.?¢ To summarize, MuSK-IgG does
not reduce AChR expression in cultured cells, but
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active and passive immunization of model animals
results in AChR deficiency, which is not likely due to
blocking of the agrin/LRP4/MuSK pathway. Our
findings that MuSK-IgG blocks binding of ColQ
but not of LRP4 to MuSK are consistent with these
findings. In myotubes of Colg—/~ mice, the aumber
of membrane-bound MuSK is prominently reduced,
and agrin-mediated phosphorylation of the AChR 8
subunit and the subsequent clustering of AChR are
reduced to 30%-50% of the wild type.?? Thus, com-
promised clustering of AChRs at the NM]Js in some
MuSK-MG patients could result from blocking of
ColQ binding to MuSK but not from blocking of
LRP4 binding to MuSK.

Although our results predict endplate AChE defi-
ciency in MuSK-MG patients, we found no AChE
deficiency in intercostal muscles of one reported®
and two unreported cases of MuSK-MG. In vitro
microelectrode studies showed a normal EPP decay
time constant.® In the 3 MuSK-MG patients ob-
served by us, the MEPC decay times were shorter
than normal, normal, and 2-fold prolonged® com-
pared to controls. Thus, our biopsy findings do not
indicate that MuSK-MG patients have endplate
AChE deficiency. There are 2 plausible explanations
for the apparently contradicting observation on the
human biopsies and the in vitro and in vivo studies.
First, MuSK-IgG does not block binding of ColQ-
tailed AChE to the NMJ to a detectable extent in the
patients. ColQ is localized to the synaptic basal lam-
ina via 2 mechanisms: one is by binding to heparin
sulfate proteoglycans including perlecan,”® and the
other is by binding to MuSK.> We previously re-
ported that both mechanisms are required for in vitro
anchoring of human ColQ to the frog NMJ.» Re-
duced clustering of ColQ in our passive transfer
model suggests that ColQ needs to bind to at least
MuSK in mice. However, binding of ColQ to MuSK
is dispensable for clustering ColQ in humans, but is
required for facilitating AChR clustering.?* Second,
AChE could be deficient in severely affected muscles
but not in the biopsied intercostal muscles. However,
the respiratory functions of the patients who had in-
tercostal muscle biopsies were severely compromised.
Expression levels of MuSK? and ColQ? were re-
ported to be different between slow- and fast-twitch
muscles in model animals. In active’” and passive?
immunization models, slow-twitch diaphragm was
more severely affected than fast-twitch tibialis ante-
rior and intercostal muscles. Similar uneven distribu-
tions of affected muscles are reported in MuSK-MG
patients.'? Further studies will be required to eluci-
date the basis of the discrepant observations between
mice and humans.
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Figure 4 Passive transfer of muscle-specific receptor tyrosine kinase (MuSK)-immunoglobulin G (IgG) of
control 2 and patient 2 to C57BL/6J mice
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(A, B) Quadriceps muscle sections of mice injected with IgG of control 2 or patient 2 are stained for acetylcholine receptor
(AChR) by Alexa594-labeled a-bungarotoxin, collagen Q (ColQ) and MuSK by immunostaining, acetylcholinesterase (AChE)
by cytochemical staining. Scale bar = 40 um. Signal areas (C), intensities (D), and densities (intensity/area) (E) of the in-
dicted molecules per neuromuscular junction (NMJ) are shown in mean and SEM. (F) Densities of ColQ and MuSK are
normalized for the density of AChR to estimate the number of ColQ and MuSK per AChR. For AChR, ColQ, and MuSK, we
analyzed 44 NMJs of control 2 and 23 NMJs of patient 2. For MuSK, we analyzed 82 NMJs of control 2 and 42 NMJs of
patient 2. Areas and intensities are quantified by the BZ-9000 microscope (Keyence). Open and closed bars represent
control 2 and patient 2, respectively. *p < 0.05, **p < 0.001. NS = not significant.
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COMMENTARY

| MEDICAL GAS
RESEARCH

The 2011 Medical Molecular Hydrogen
Symposium: An inaugural symposium of the
journal Medical Gas Research |

Shigeo Ohta'”, Atsunori Nakao? and Kinji Ohno?

Abstract

This report summarizes a brief description/history of the Hydrogen Research Meetings as well as key presentations/
oral abstracts delivered in the most recent symposium. Additionally, we introduced 38 diseases and physiological

states for which hydrogen exhibits beneficial effects.

Introduction

Novel medical gases are expected to provide us with
more effective therapeutic interventions and preventive
medicine. In the past decades, there has been extraor-
dinary, rapid growth in our knowledge of gaseous mole-
cules, including nitric oxide, carbon monoxide, and
hydrogen sulfide, which have been known to play
important roles in biological systems. Additionally, since
Dr. Shigeo Ohta’s group’s pioneering paper was pub-
lished in the June 2007 Nature Medicine showing the
potency of hydrogen as a therapeutic gas for oxidative
stress-mediated diseases including cerebral infarction
[1], basic and clinical hydrogen research has resurfaced.
In Japan, the birthplace of hydrogen gas research, Dr.
Ohta (Nippon Medical School), who is currently serving
as an Associate Editor of Medical Gas Research, orga-
nized annual “Medical Molecular Hydrogen Research
Meetings” in 2009 and 2010 to provide investigators
with focused opportunities to share their rapid scientific
progress. Most recently, we organized the Medical
Molecular Hydrogen Symposium on February 18-19,
2011 at the Nagoya University Hall (Figure 1). The latest
meeting is a “kick-off” inaugural meeting for the newly
launched journal Medical Gas Research (MGR), which
aims to promote the exchange and dissemination of the
latest scientific findings.

* Correspondence: ohta@nms.acjp

'Department of Biochemistry and Cell Biology, Institute of Development and
Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396
Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan

Full fist of author information is available at the end of the article
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This report summarizes a brief description/history of
the Hydrogen Research Meetings as well as key presen-
tations/oral abstracts delivered in the most recent
symposium.

First Medical Molecular Hydrogen Research
Meeting, 2009

The first scientific meeting organized by Dr. Ohta was held
on February 7, 2009 in Tokyo. 42 scientists and clinicians
from 30 individual institutes were invited. The aim of the
meeting was to unite innovative investigators to discuss
and propagate medical hydrogen research. Dr. Ohta deliv-
ered the keynote presentation, in which he gave a brief his-
tory of hydrogen medicine and emphasized the huge
impact of his report published in Nature Medicine. He
pointed out the great interest in the field, expressed in
more than 30 personal communications with investigators,
and the resulting need to widen the scope of basic/clinical
research to the whole world. He mentioned the successful
application of hydrogen gas in a rat neonatal hypoxic brain
injury model in collaboration with Dr. Xuejun Sun (Second
Military Medical School, Shanghai, China) [2], who is cur-
rently serving as an Associate Editor. Dr. Atsunori Nakao
(Department of Surgery, University of Pittsburgh), who is
also an Associate Editor, presented the promising prelimin-
ary results of a collaborative study with Dr. Ohta’s group in
which hydrogen water was applied in a rat kidney trans-
plant model. Dr. Nakao’s report clearly showed survival
benefits for transplant recipients. He received a research
award at this meeting and his report was later published in
Kidney International [3,4]. Dr. Takahisa Kawai (Forsythe
Research Institute, Boston, MA, USA), who is an editorial

© 2011 Ohta et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http:/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Figure 1 A snap shot of the Medical Molecular Hydrogen
Symposium in 2011.

board member, focused on hydrogen generated by intest-
inal bacteria. His initial studies elegantly demonstrated the
critical physiological roles of gut microflora-derived hydro-
gen [5]. There was a general consensus that both clinicians
and researchers in the field of molecular hydrogen research
should gather and exchange accumulating knowledge in
future annual meetings.

Second Medical Molecular Hydrogen Research
Meeting, 2010

The second meeting was also organized by Dr. Ohta on
February 3, 2010 in Tokyo. 47 basic scientists and clinical
physicians, as well as 23 corporate participants were
invited and shared the latest developments in medical
issues related to hydrogen. This meeting hosted a keynote
lecture, an invited lecture, two special lectures, and twelve
platform presentations. After Dr. Ohta began his keynote
lecture by remarking on the impressive progress over the
last year, Dr. Sun gave an invited lecture and introduced
the great effects of intraperitoneal administration of saline
dissolved with H, in several model animals. Dr. Takashi
Asada (Department of Psychiatry, Tsukuba University), an
authority on Alzheimer disease, presented the results of
clinical studies involving patients with mild cognitive
impairment (MCI). He started clinical intervention studies
on MCI patients by orally administering hydrogen water;
the project is still in progress. Dr. Toru Yoshikawa (Kaoh-
siung Medical University, Taiwan) also gave a special lec-
ture on the physical aspects of hydrogen effects. He
presented the physical characteristics of molecular hydro-
gen’s interaction with water in biological systems.

Third Medical Molecular Hydrogen Research
Meeting, 2011

The third meeting was organized by Dr. Kenji Ohno
(Nagoya University Graduate School of Medicine), an
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editorial board member, and held in Nagoya on Feb 18-
19, 2011. This symposium mainly focused on molecular
hydrogen and covered a wide-range of therapeutic gases,
including hydrogen sulfide (H,S), nitric oxide (NO), and
carbon monoxide (CO). A total of 98 academic and 53
corporate registrants attended the meeting from Japan
(144), USA (5), Korea (1), and Taiwan (1). The meet-
ing’s timetable, titles, and speakers are summarized in
Table 1. We also introduced 38 diseases and physiologi-
cal states for which hydrogen exhibits beneficial effects
(Table 2).

Hydrogen

Dr. Ohta gave a keynote lecture and introduced a num-
ber of hydrogen’s potent efficacies on a broad spectrum
of diseases in animal and human models, as well as the
emerging molecular bases of hydrogen’s effects. He
emphasized the following points: (i) In the three and a
half years since the first hydrogen paper was published
in Nature Medicine, more than 70 original papers have
been published in leading biological/medical journals.
Based on cumulative knowledge, beneficial biological
effects of hydrogen have been established with no
doubt. (ii) There are several ways to intake or consume
hydrogen, including inhaling hydrogen gas, drinking
water dissolved with hydrogen (hydrogen water), taking
a hydrogen bath, injecting hydrogen saline, dropping
hydrogen saline into the eye, and increasing production
of intestinal hydrogen by bacteria. (iii) Hydrogen shows
not only anti-oxidative stress effects, but also has var-
ious anti-inflammatory and anti-allergic effects. (iv) The
primary molecular target of hydrogen remains unknown.
In their first report published in 2007 [1], Dr. Ohta’s
group indicated that cells cultured in H,-rich medium
were protected against oxidative stress by the hydroxyl
radical-scavenging activity of Hy; however, recent evi-
dence clearly shows that the scavenging property is not
the only explanation for the potent beneficial effects of
hydrogen. For example, the amount of orally adminis-
tered H, may not be enough to scavenge hydroxyl radi-
cals. In addition, it is likely that the dwell time of H, in
the body is too short to scavenge a large amount of
hydroxyl radicals that are continuously generated. (v)
Several reports demonstrate an effect on the regulation
of gene expressions and protein-phosphorylations; how-
ever, the transcriptional factors and kinases involved in
the functions afforded by H, have not been identified. It
also remains unknown whether the regulations are
directly performed by H,. (vi) The amount of adminis-
tered H, is independent of the extent of effects. Intest-
inal bacteria seem to produce more than 1 liter of H,
gas per day, whereas the amount of H, originating from
drinking hydrogen water is less than 50 ml. Neverthe-
less, additional H, in drinking hydrogen water is
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Table 1 Scientific Program of the Medical Molecular Hydrogen Symposium in 2011
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Feb. 18, 2011 Title

Speaker

13:00 Opening Remarks Kinji Ohno, Nagoya Univ.
13.05 Keynote Lecture "Recent progress towards hydrogen medicine” Shigeo Ohta, Nippon Medical Sch.
13:35 Scientific Session |
1. Effects of hydrogen-rich water on kidney functions in SHR.Cg-Lepr™/NDmcr rat - a Michio Hashimoto, Shimane Univ.
metabolic syndrome model rat
2. Hydrogen-rich UW solution attenuates renal cold ischemia reperfusion injury Toyofumi Abe, Osaka Univ.
3. Therapeutic effect of materal hydrogen water administration in a rat model of fetal ~ Yukio Mano, Nagoya Univ.
brain damage
4. Effects of hydrogen water on human skin and hair Yoshiaki Kurita, Hosei Univ.
14:23 Coffee Break
14:50 Scientific Session I
5. Consumption of hydrogen water prevents memory impairment accompanying lkuroh Ohsawa, Metropolitan Instittue of
neurodegeneration in transgenic mice Gerontology
6. Appearance of hydrogen gas in the human skin after the ingestion of hydrogen-rich  Kazutoshi Nose, National Cerebral and
water and inhalation of hydrogen gas Cardiovascular Center
7. Effectiveness of long-term intake of hydrogen rich water in a patient with MELAS Mikio Hirayama, Kasugai Municipal
Hospital
8. Effectiveness of hydrogen rich water on myopathy Tohru Ibi, Aichi Medical Univ.
9. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/ Tomohiro Kawamura, Univ. of Pittsburgh
reperfusion injury in rats
15:50 Invited Lecture | "Deadly gas can save a life! -Preclinical studies using carbon Atsunori Nakao, Univ. of Pittsburgh
monoxide/hydrogen-"
16:30 Break
16:40 Invited Lecture Il "Medical Gas Research” John Zhang, Loma Linda Univ.
17:20 Invited Lecture I “A hypothesis on biological protection from space radiation through Michael P. Schoenfeld, NASA Marshall
the use of therapeutic gases” Space Flight Center
1810 Banquet
Feb. 19, 2011
9:30 Symposium | “CO as a therapeutic modality” Organizer: Atsunori Nakao, Univ. of
Pittsburgh
S1-1. Is exhaled carbon monoxide a marker of oxidative stress? Tohru Takahashi, Okayama Prefecture
Univ.
S1-2. A tracer analysis study demonstrates redistribution of endogenous carbon Makoto Sawano, Saitama Medical Univ.
monoxide from blood to tissue in human body
S1-3. Translational research of carbon monoxide therapy using miniature swine Hisashi Sahara, Kagoshima Univ.
10:30 Special Lecture "Function of hydrogen sulfide and its therapeutic applications” Hideo Kimura, National Center of
Neurology and Psychiatry
11:10 Break
11:20 Scientific Session Il
10. Hydrogen from intestinal bacteria is protective for Con A-induced Hepatitis Mikihito Kajiya, The Forsyth Institute
11. Abnormal breath hydrogen production by ingestion of lactulose in Parkinson's Masaaki Hirayama, Nagoya Univ.
disease
12. A new portable breath hydrogen analyzer and its clinical application Akito Shimouchi, National Cerebral and
Cardiovascular Center
13. Application of hydrogen water in the dental field Noriyuki Tanaka, Uchida Dental Clinic
12:08 Lunch
12:45 Symposium Il “Biological Effects of NO” Hirosuke Kobayashi, Kitasato Univ.
S52-1. NO-ROS cellular signaling mediated via nitrated cyclic nucleotide Hideshi Ihara, Osaka Prefecture Univ.
S$2-2. Relationship between protein S-nitrosylation and neuronal death Takashi Uehara, Wakayama Mediccal Univ.
$2-3. Role of nitrosative stress in chronic obstructive pulmonary disease Ryujiro Sugimoto, Iwakuni Clinical Center
S$2-4. Effects of simultaneous inhalation of nitric oxide and hydrogen on mouse Hirosuke Kobayashi, Kitasato Univ.
myocardial ischemia-reperfusion injury
14:15 Scientific Session 4
14. Effect of hydrogen rich water against a progression of disease and a formation of Daisuke Kawai, Okayama Univ.
liver tumor in NASH model mouse
15. The dynamic movement of H2 in a liver and its effects Naomi Kamimura, Nippon Medical Univ.
16. Molecular hydrogen effectively protects cereulide-induced liver injury by suppressing Sayaka Sobue, Chubu Univ.
apoptosis
14:51 Closing Remarks

Kinji Ohno, Nagoya Univ.
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Table 2 Thirty-eight diseases and physiological states for
which hydrogen effects are reported

Disease/Physiology Species Source of H, Reference
Brain
Cerebral infarction rodent  gas (1
Superoxide in brain rodent  water {6
Neonatal brain hypoxia rodent  gas [2.7]
rodent  saline [8]
pig gas 9
Restraint-induced dementia rodent  water [10]
Alzheimer's disease rodent  saline [11]
Senile dementia rodent  water [12]
Parkinson'’s disease rodent  water [13,14]
Hemorrhagic cerebral infarction rodent  gas [15]
Traumatic brain injury rodent  gas [16]
Spinal cord
Spinal cord injury rodent  saline [17]
Eye
Glaucoma rodent  eye drop (18]
Corneal alkali-burn rodent  eye drop [19]
Ear
Hearing disturbance rodent  medium [20]
rodent  gas [21]
rodent  water [22]
Lung
Lung cancer Cells medium [23]
Oxygen-induced lung injury rodent  saline [24,25]
Lung transplantation rodent  gas [26]
Heart
Myocardial infarction rodent  gas 27
rodent  saline [28]
Heart transplantation rodent  gas [29]
Irradiation-induced heart injury  rodent  water [30]
Liver
Hepatic ischemia rodent  gas [31]
Hepatitis rodent  bacteria [5]
Obstructive jaundice rodent  saline [32]
Kidney
Cisplatin nephropathy rodent  gas, water {33]
rodent  water {34]
Hemodialysis human  dialysis [35.36]
Kidney transplantation rodent  water [4]
Pancreas
Acute pancreatitis rodent  saline {37]
Intestine
Intestinal graft rodent  gas [3]
rodent  saline [38,39]
Ulcerative colitis rodent  gas [40]
Blood vessel
Atherosclerosis rodent  water [41]
Metabolism
Diabetes mellitus type 2 human  water [42]
Metabolic syndrome human  water [43]
Obesity/Diabetes rodent  water [44]
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Table 2 Thirty-eight diseases and physiological states for
which hydrogen effects are reported (Continued)

Cancer

Tongue carcinoma cells medium [45]
Inflammation and allergy

Allergy type | rodent  water [46]
Sepsis rodent  gas [47]
Zymosan-induced inflammation  rodent  gas [47]
Others

Multipotent stromal cells cells gas [48]
Radiation injury cells medium [49,50]

Although the observations are not directly relevant to diseases, Turmeric [51]
and acarbose [52] increase hydrogen production by intestinal bacteria in
humans.

unambiguously effective. Many mysteries of hydrogen
therapy remain unsolved. He closed his talk by empha-
sizing that the molecular mechanisms underlying the
amazing effects of a very small amount of H, remain
elusive.

Sixteen platform speakers presented clinical and basic
aspects of the medical application of molecular hydro-
gen. Among them were three treatments for patients
with neurological and dental diseases. Dr. Mikio Hir-
ayama (Department of Neurology, Kasugai City Hospi-
tal) and his colleagues presented their clinical report of
treatment for a patient with mitochondrial encephalo-
myopathy, lactic acidosis, and stroke-like episode
(MELAS) syndrome. He reported that a 33-year-old
female patient was successfully treated by drinking
hydrogen-containing water for one and half years, which
reduced the frequency of episodic cerebral ischemia. Dr.
Tohru Ibi (Department of Neurology, Aichi Medical
School) conducted an open label trial on mitochondrial
disorders and inflammatory myopathies, and demon-
strated a remarkable reduction of several serum markers
specific for myelopathy. He also conducted a double-
blind crossover trial; however, the trial showed no sig-
nificant effects, which was likely due to a small amount
of hydrogen water and to a short observation period.
Both reports suggest that oral administration of hydro-
gen water is likely to be effective for mitochondrial dis-
eases. Dr. Noriyuki Tanaka (Uchida Dental Clinic)
reported that direct dental application of hydrogen
water on injured regions reduced inflammation and pro-
moted healing in dental operations, including tooth
extraction.

Medical Gas Research’s editor-in-chief Dr. John
Zhang (Department of Neurosurgery, Loma Linda Uni-
versity, CA) gave a greeting talk, introducing the aims
and scope of the journal. Dr. Zhang pointed out the
importance of stimulating medical gas research and
collaborating with a wide-range of people in various
fields.

—373—



Ohta et al. Medical Gas Research 2011, 1:10
http://www.medicalgasresearch.com/content/1/1/10

Dr. Michael P. Schoenfeld from NASA gave a special
lecture on the potential application of H, to protect
astronauts from radiation-mediated injury during long
space travel. Cosmic radiation induces serious oxidative
stress, which is one of the major issues to be resolved
by hydrogen research.

Other Medical Gases (NO, CO, and H,S)

Mammals produce NO, CO, and H,S by their native
enzymes; however, mammals lack an enzyme to produce
H,. All four gases modulate signaling pathways and
have some therapeutic effects. Thus, we invited leading
NO, CO, and H,S researchers to the symposium.

Dr. Hideo Kimura (National Center of Neurology and
Psychiatry), an editorial board member, gave a special
lecture on hydrogen sulfide (H,S). Dr. Kimura discov-
ered biological roles for H,S. He reviewed studies on
H,S from past to present and emphasized the potential
for actual medical applications.

Dr. Nakao organized a mini-symposium on carbon
monoxide (CO). In the mini-symposium, the discre-
pancy between the animal and human models was dis-
cussed. CO binds to human hemoglobin more strongly
than to murine hemoglobin; this seems to be the reason
why CO is more toxic in clinical studies.

Dr. Hirosuke Kobayashi (Department of Respiratory
Medicine, Kitasato University), an editorial board mem-
ber, organized a mini-symposium on nitric oxide (NO).
Dr. Kobayashi explained the contradictory properties of
NO; while it is medically beneficial, it is also toxic and
enhances oxidative stress. NO has been approved as a
therapeutic agent in clinical practice. He presented the
amazing effects of inhaling an NO and H, mixture. NO
enhances oxidative stress and induces production of
peroxynitrite, and H, reduces peroxynitrite derived from
NO. Indeed, he presented that the mixture of NO and
H, improves the number of surviving myocytes in a
rodent model of myocardial infarction. The mixture of
NO and H; may be a promising modality for clinical
applications.

In addition to NO, CO, and H,S, Dr. Zhang addressed
potential effects of inhaled xeon and helium in animal
models in his invited lecture.

Commercial products

Six companies financially supported the meeting by
demonstrating their new commercial products. Melo-
dian Co Ltd. presented a sports drink containing H,,
and Miz Co Ltd. introduced an interesting device to
prepare a clinically applicable H,-rich infusion solution
by simply soaking an infusion bag in hydrogen water.
With this method, no other treatment is necessary to
prepare hydrogen infusion solution without opening the
infusion bag. Taiyo Co Ltd. presented reasonably priced
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devices to measure H, gas in breath. Takaoka Co Ltd.
demonstrated a tiny home apparatus to produce hydro-
gen water. Doctor’s Choice Co Ltd. demonstrated pow-
ders to prepare a hydrogen bath at home using a new
material that releases H, gas. These new products will
help expand our knowledge and applicability of hydro-
gen research.
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Mutations in the superoxide dismutase 1 (sod1) gene cause familial amyotrophic lateral sclerosis (FALS), likely
due to the toxic properties of misfolded mutant SOD1 protein. Here we report identification of various syn-
aptic molecules forming molecular complexes with misfolded SOD1 in mutant SOD1-associated FALS patient
tissues as well as in cellular FALS models. In the FALS cellular model system, we found that membrane depo-

larization that mimics synaptic hyperactivation/excitotoxicity could cause misfolding of mutant SOD, as well
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as acceleration of misfolded SOD1-synaptic protein complex formation. These results suggest that inhibition
of synaptic release mechanism by association of misfolded SOD1 with synaptic molecules plays a role in the

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurode-
generative disease characterized by motor neuron cell death in the
brain and spinal cord, accompanied by rapid loss of muscle control
and eventually complete paralysis [1,2]. Most cases of ALS are of un-
known etiology, while 5-10% are familial (FALS). Although the
cause of sporadic ALS remains unclear, 15%-20% of FALS patients
have point mutations in cytosolic Cu?*/Zn?* superoxide dismutase
(SOD1) [3]. SOD1 is an antioxidant enzyme ubiquitously expressed
in the cytosol, which converts the superoxide anion radical to hydro-
gen peroxide. More than 115 disease-causing mutations, affecting all
regions of the SOD1 gene product, have been identified.

Previous studies using transgenic animal models expressing mu-
tated human SOD1 have shown that the disease is not caused by a
loss of its dismutase activity, but by the gain of toxic properties [1].
Many mutant SOD1 proteins tend to become easily misfolded and
form aggregates especially under oxidative stress [4]. Intracellular
aggregates containing SOD1 were specifically detected in affected
regions of both patients and animal models possessing sod1 mutations.
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In spinal cords of mutant SOD1-Tg mice, misfolded intermediates of
mutant SOD1 proteins, which showed decrease in solubility and in-
crease in size, were found prior to disease onset. These results suggest
that misfolded mutant SOD1 may contribute to motor neuron-specific
damage in ALS.

We have previously reported that misfolded SOD1 specifically as-
sociates with KAP3, a component of the kinesin-2 motor complex [5].
Kinesin-2 constitutes a part of kinesin superfamily of molecules that
mediate anterograde axonal transport [6]. We showed that misfolded
SOD1 inhibits transport of choline acetyl-transferase (ChAT), a
kinesin-2 cargo, and that resultant decrease of Ach release at presyn-
aptic terminals may play a role in motor dysfunction observed in an
early stage of FALS [5]. In an effort to show association of misfolded
SOD1 species with KAP3 in FALS patient tissue homogenates, we ex-
amined migration profiles of SOD1- and KAP3-immunoreactivity in
density-gradient centrifugation. In addition to identify that KAP3 co-
migrates with misfolded SOD1 in this experiment, we realized that
this method would be suitable in screening molecules that associate
with misfolded SOD1 by using FALS patient tissues.

Here we report identification of various synaptic molecules that
co-migrate with misfolded SOD1 in SOD1-associated FALS patient tis-
sues as well as in cellular FALS models. In the FALS cellular model sys-
tem, we found that membrane depolarization that mimics synaptic
hyperactivation/excitotoxicity could cause misfolding of mutant
SOD1 molecules. These results suggest that inhibition of synaptic re-
lease mechanism by association of misfolded SOD1 with synaptic
molecules plays a role in the dysfunction of FALS.
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2. Materials and methods
2.1. Reagents

FLAG-tagged human SOD1 cDNA (wild-type and a mutant bearing
L126S mutation) at the carboxyl terminus were cloned into pcDNA3
and pTRE2hyg (Clontech) as previously described [5]. The integrity
of each clone was verified by nucleotide-sequence analysis. The anti-
bodies used in this study were obtained and used as previously de-
scribed [5,7].

2.2. Autopsy specimens

The studies were performed on frozen tissues (indicated regions
of the brain, spinal cord, femoral nerve, dorsal root ganglia) obtained
at autopsy from 2 FALS patients (A: 71 years old, female; B: 46 years
old male) who were members of a family, 2 sporadic ALS patients
(61 years old, female and 67 years old, male) , and 1 control patient
(73 years old, male) suffered from schizophrenia. Leucine to serine
substitution at codon 126 in the SOD1 gene in the two FALS cases
was identified by sequence analysis. Consent for autopsy was
obtained from legal representatives in accordance with the requirements
of local institutional review boards.

2.3. Isolation of misfolded SOD1-containing protein complexes by density
gradient centrifugation

The autopsy tissue samples were homogenized and the lysates
were separated by Nycodenz linear density gradient centrifugation
as previously described [5]. Briefly, the tissue samples were homoge-
nized in a buffer containing 20 mM HEPES, pH 7.4, 120 mM Nacl,
2 mM EDTA, pH 8.0, 1%Triton X-100, and complete protease inhibitor
cocktail (Roche)). The lysates were added to 3.2 ml of Nycodenz linear
density gradient in 10 mM HEPES, pH 7.4 and 1 mM EDTA, pH 8.0
(initial concentration of Nycodenz was 30%). After a centrifugation
at 87,480 g for 2 hr at 4 °C, in Optima MAX-E using MLS 50 rotor
(Beckman Coulter), a 160 ul of aliquot was collected from the top
to the bottom of the tube, totaling 22 fractions. Twenty microliters
of each fraction was collected and analyzed by immunoblot.

2.4. Cell culture

NG108-15 cells (a kind gift from Dr. Akazawa in Tokyo Medical
and Dental University) were stably transfected with pTRE2hyg-WT
SOD1-Flag or pTRE2hyg-L126S SOD1-Flag as previously described
[5]. Transgene expression in the transfected NG108-15 cells was
induced by treating the cells with doxycycline per manufacturer's
protocol. Differentiation of the transfected NG108-15 cells was
performed as previously described for 7 days. Hyperstimulation model
was generated by treating the differentiated NG108-15 cells stably
expressing WT or mutant SOD1 with 100 uM glutamate as previously
described [8].

3. Results

Misfolded SOD1 species observed in SOD1-associated FALS patients
likely show toxic properties in cells by associating with other molecules
and thereby inhibit their function [1,2]. Therefore, to gain mechanistic
insights on misfolded SOD1 toxicity, it is important to identify mole-
cules that specifically bind to misfolded SOD1. In our previous report,
we found by analyzing tissue lysate from SOD1%%*A-Tg mice in linear
density gradient centrifugation that some of the molecular motor com-
ponents, such as KAP3, co-migrate with misfolded SOD1, which lead
us to identify direct association of misfolded SOD1 with KAP3 [5].
To extend this observation in mutant SOD1-linked human FALS
cases and identify molecules that bind to misfolded SOD1 in

human FALS cases directly, we compared sedimentation of mis-
folded SOD1 in a linear density gradient centrifugation with that
of various molecules in lysates of motor areas of FALS postmortem
brain. We first examined representative molecules that compose
kinesin motor complex to confirm the findings that we reported
previously. Lysates of postmortem brain tissues from FALS cases
bearing L129S mutation in SOD1 were subject to linear Nycodenz
density gradient centrifugation analysis. Similar to what we ob-
served in the rodent FALS model, we found that misfolded SOD1
species migrate to a heavy fraction (Fig. 1A). Among kinesin
motor complex components, a fraction of KAP3 co-migrate with
misfolded SOD1, which confirmed our previous observations,
while immunoreactivity for p62, a nuclear protein, was not ob-
served in the fraction in which misfolded SOD1 is observed. These
results confirmed specificity of this assay and assured our previous
observation that KAP3 specifically associates with misfolded SOD1
in disease affected neuronal tissues in FALS.

Next, to identify other candidate molecules that associate with
misfolded SOD1, we examined migration profiles of the candidates
in this analysis. We chose to examine synaptic molecules as impor-
tant candidates, since inhibition of synaptic vesicle recycling has
been noted in other neurodegenerative disorders such as Parkinson's
disease. By applying the tissue processing and density gradient anal-
ysis strategy that we used above, we analyzed brain tissue lysate
from control patients and found that presynaptic molecules including
SNAP-25 (a SNARE complex component), and AMPA-type glutamate
receptor GluR2/3, as well as a post-synaptic molecule, PSD95 mainly
migrate to low density fractions (No1-8) as well as high density frac-
tions (No. 16-19), while synaptophysin (a synaptic vesicle protein)
migrates only to the low density fractions (Fig. 1A). We presumed
that the molecules that migrate to lower and higher density fractions
represent “free” molecules and molecules forming structural com-
plexes, respectively. These results suggest that the current experi-
mental condition allows most of the synaptic molecular structures
containing pre- and postsynaptic structural and signaling molecule
complexes to retain their association in the lysate. Analysis of the
FALS patient brain tissue lysates revealed that the pre- and post-
synaptic proteins show different distribution profile in the density
gradient. We found that major amount of synaptic molecules,
GluR2/3, SNAP-25, and PSD-95, as well as a synaptic vesicle protein,
synaptophysin, migrate to a very high density fraction (No. 19), in
which misfolded SOD1 species are observed (Fig. 1A). Decreased
amount of synaptic molecules located in the lower density fractions
relative to the amount in No. 19 was also noted. These results suggest
that, in mutated SOD1-linked FALS patients, misfolded SOD1 pro-
motes formation of very high density molecular complex in the syn-
aptic terminal region involving a large variety of synaptic molecules.

To examine how specific this observation is to motor regions of mu-
tated SOD1-linked FALS cases, we performed the same analysis using tis-
sue lysates from non-motor neuronal tissues of FALS cases and
precentral gyrus of sporadic ALS (SALS) cases. We found that the distri-
bution profiles of the pre- and post-synaptic proteins in these tissues
show patterns very similar to those in control tissues (Fig. 1B, C).
These results suggest that the shifted migration profile of synaptic pro-
teins in the density gradient analysis is observed specific to FALS
motor brain regions. Taken together, our data suggest that formation
of high-density molecular complex containing synaptic molecules
may contribute specifically to mutated SOD1-linked FALS pathogenesis.

A number of studies have supported the importance of excitotoxic
mechanisms in ALS pathogenesis [9-12]. We have previously shown
that decreased Ca®*+ permeability of AMPA-type glutamate receptors
expressed in motor neurons resulted in delayed onset and extended
lifespan in a mouse model of mutated SOD1-linked FALS, which sug-
gested that glutamate excitotoxicity promotes misfolding of mutated
SOD1 and motor neuron death [7]. To correlate the formation of high-
density molecular complex involving synaptic molecules in mutated
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