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sured. At L1 and L5 levels, the intensity was increased gradually to-

the maximal stimulator output (100%). The amplitudes of maximal
MEPs were compared between two level stimulation positions
(maximal MEP means an MEP to supramaximal stimulation or
MEP to submaximal stimulation with maximal stimulator output).
The MEP amplitudes of the two level stimulation positions were
compared using Wilcoxon's signed rank test; p values less than
0.05 were considered statistically significant.

3. Results

No subjects experienced any intolerable discomfort during
MATS coil stimulation. No side effect was noted. Fig. 3 shows rep-
resentative MEPs in a normal subject. The conventional CMCT was
obtained using the MEPs to cortical and L5 level stimulation
(14.0 ms). Moreover, L1 level stimulation evoked discernible MEPs.
The CCCT was 10.8 ms, and the CECT 3.2 ms.

In all subjects, L1 level MATS coil stimulation evoked reproduc-
ible MEPs. The L1 level latency was longer than L5 level latency.
The mean latencies and conduction times are presented in Table 1.

The correlations between each conduction time and body
height are depicted in Fig. 4. Significant and positive linear rela-
tions were found between the conventional CMCT and body height
(p<0.001; conventional CMCT=0.045 x body height + 7.166,
R=0.366), and between CECT and body height (p = 0.001; laten-

Table 1
Normal values of latencies (51 subjects, 92 sides).
' Mean £ SD (ms)

Cortical latency 26.11+1.6
L1 level latency 14.0+£14
L5 level latency 11509
CCCT 123+12
Conventional CMCT 146+1.2
CECT 26+0.9

CCCT, cortico-conus motor conduction time; CMCT, central motor conduction time;
CECT, cauda equina conduction time; SD, standard deviation.
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cy =0.032 x body height — 2.602, R=0.331). No significant corre-
lation was found between CCCT and body height (p = 0.298).

The MEPs to L1 level stimulation (median: 1.0 mV, 25-75 per-
centiles: 0.5-1.8 mV) were significantly smaller than MEPs to L5
level stimulation were (1.3 mV, 1.0-3.5) (p < 0.001).

4. Discussion

In all subjects, L1 level MATS coil stimulation elicited discern-
ible MEPs to measure onset latency. It enabled us to obtain CCCTs.
The CCCT is more suitable for evaluating the corticospinal function
for leg muscles than the conventional CMCT because no cauda equ-
ina conduction component contributes to CCCT. Another superior
point of this stimulation method is the evaluation of conduction
through the cauda equina using CECT. The authors have earlier re-
ported some utility of this stimulation method for evaluating cau-
da equina conduction in patients with peripheral neuropathy
(Matsumoto et al., 2010).

In this study, the CECT was found to be 2.6 + 0.9 ms, which is
similar to previously reported values obtained using an 8-shaped
coil (2.3 or 2.6 ms) (Maccabee et al., 1996; Maegaki et al., 1997).
Therefore, L1 level MATS coil stimulation does activate the cauda
equina at the root exit site from the conus medullaris, as described
in previous reports (Maccabee et al., 1996; Maegaki et al., 1997;
Matsumoto et al., 2009b), namely at the conus medullaris level.
Therefore, the latency difference between cortical and L1 level
stimulation was designated as the cortico-conus motor conduction
time (CCCT). )

Regarding the relation between each conduction time and body
height, the conventional CMCT and CECT had significant correla-
tion with body height, but the CCCT did not. These results are
not completely consistent with those of previous reports (Chu,
1989; Ugawa et al., 1989a; Claus, 1990; Furby et al., 1992). Previ-
ous reports have described that the conventional CMCT for lower
extremities is significantly affected by the body height (Chu,
1989; Furby et al.,, 1992), according with our results. On the other
hand, the correlation between the CCCT and body height is contro-

—
~ 0
°

el e
W B

Conventional CMCT (ms)
¥ >

140 150 160 170 180 190
BH (em)

anmavasvansnnenesaes 95 %PI
~~~~~~~~~~~ 95%CT

140 -150 160 170 180 190

BH (cm)

Fig. 4. Relation between each conduction time and body height. The CCCT is not significantly correlated with body height (p = 0.298). A significant and positive linear relation
was found between the conventional CMCT and body height (p < 0.001; conventional CMCT = 0.045 x body height + 7.166, R = 0.366). Similarly, a significant correlation was
found for CECT (p = 0.001; latency = 0.032 x body height — 2.602, R = 0.331). PI, prediction interval; CI, confidence interval.

— 137 —



H. Matsumoto et al./Clinical Neurophysiology 121 (2010) 1930-1933 1933

versial. Ugawa et al. reported that the cortical-L1 conduction time
measured using high-voltage electrical stimulation was not signif-
icantly correlated with body height (Ugawa et al.,, 1989b). In con-
trast, Claus reported that the cortical-L1 conduction time
measured using transcranial magnetic stimulation and high-volt-
age electrical stimulation had a significant correlation with body
height (Claus, 1990). The results in this study were similar to that
in the former report. One plausible explanation of this discrepancy
might be the difference in the body height of subjects. The average
(range) of body height in the paper of Ugawa et al. was about 163
(151-178) cm and that in Claus was about 173 (156-191) cm. The
body height in this study was almost same (164 cm) as that in the
paper of Ugawa et al. The difference in body height seems to be due
to the difference between Japanese and European peoples. What-
ever the difference, this study demonstrates that the CCCT is rela-

_tively independent of body height compared to the conventional
CMCT and CECT. '

The relative independence of the CCCT from the body height
might be mainly explained by the disproportion between growths
in length of the spinal cord and the vertebral column (Kunitomo,
1918; Vettivel, 1991). The spinal cord length does not elongate
proportionally to body height, although the cauda equina elongates
concomitantly with the spine growth proportionally to body
height. Large variability of the conduction velocity of the cortico-
spinal tracts between subjects might also explain the lack of signif-
icant relation between CCCT and body height. Indeed, the
conduction velocity in awake human estimated by Ugawa et al.
(1995) ranged from 62.0 to 79.0 m/s, and that in anesthetized hu-
man by Fujiki et al., (1996) ranged from 50.5 to 72.7 m/s (Ugawa
et al., 1995; Fujiki et al., 1996).

One point of caution related to this method is the MEP ampli-
tude. The MEPs evoked by L1 level stimulation were often smaller
than those by L5 level stimulation in normal subjects, which sug-
gests that an amplitude comparison between L1 and L5 level stim-
ulation is not useful for evaluation of the conduction block within
the cauda equina even though the latencies are good parameters
for evaluation of motor conduction. Another point of caution is
the difference of CCCT between target muscles. If another muscle
is selected, the normal value of CCCT should be made for each tar-
get muscle.

In conclusion, we propose that the MATS coil is useful for the
accurate evaluation of corticospinal tract function for leg muscles.
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Gene transfer of dopamine-synthesizing enzymes into
the striatal neurons has led to behavioral recovery in
animal models of Parkinson’s disease (PD). We evaluated
the safety, tolerability, and potential efficacy of adeno-
associated virus (AAV) vector-mediated gene delivery of
aromatic L-amino acid decarboxylase (AADC) into the
putamen of PD patients. Six PD patients were evaluated
at baseline and at 6 months, using multiple mea-
sures, including the Unified Parkinson’s Disease Rating
Scale (UPDRS), motor state diaries, and positron emis-
sion tomography (PET) with 6-['®F]fluoro-L.-m-tyrosine
(FMT), a tracer for AADC. The short-duration response
to levodopa was measured in three patients. The pro-
cedure was well tolerated. Six months after surgery,
motor functions in the OFF-medication state improved
an average of 46% based on the UPDRS scores, with-
out apparent changes in the short-duration response to
levodopa. PET revealed a 56% increase in FMT activity,
which persisted up to 96 weeks. Our findings provide
class IV evidence regarding the safety and efficacy of
AADC gene therapy and warrant further evaluation in a
randomized, controlled, phase 2 setting.

Received 25 January 2010; accepted 5 June 2010; published online
6 July 2010. doi:10.1038/mt.2010.135

INTRODUCTION

Dopamine replacement has been the standard pharmacotherapy
for motor impairment in Parkinson’s disease (PD). Although
virtually all patients benefit from levodopa at an early stage of the
disease, severe loss of nigrostriatal nerve terminals in advanced PD
leads to profoundly decreased activities of dopamine-synthesizing
enzymes, including aromatic L-amino acid decarboxylase (AADC),
an essential enzyme that converts levodopa to dopamine. Failure to
respond to levodopa therapy may result from a reduction in AADC
activity, decreased dopamine storage capacity in synaptic vesicles,
postsynaptic changes in striatal output neurons, and abnormalities

of nondopaminergic neurotransmitter systems.» Systemic admin-
istration of high-dose levodopa enhances oscillations in motor
performance and complications, including hallucinations, due to "
dopaminergic stimulation of the mesolimbic system.

One potential treatment for advanced PD is gene therapy
to restore striatum-selective dopamine production. In addition
to AADC, tyrosine hydroxylase, which converts L-tyrosine to
levodopa, and guanosine triphosphate cyclohydrolase I, which
catalyzes biosynthesis of the essential tyrosine hydroxylase
cofactor, tetrahydrobiopterine, are necessary for efficient synthe-
sis of dopamine.? Viral vector-mediated gene transfer of these
dopamine-synthesizing enzymes has been shown to achieve
behavioral recovery in animal PD models, with efficient trans-
duction of striatal neurons that escape degeneration.’* When
tyrosine hydroxylase and guanosine triphosphate cyclohydro-
lase I are expressed in the striatum, levodopa can be synthesized
continuously. This strategy would be useful for reducing motor
fluctuations associated with intermittent levodopa intake. Gene
transfer of AADC alone in combination with oral levodopa admin-
istration would be a safer strategy for initial clinical trials. In the
latter approach, the patients still need to take levodopa to control
motor symptoms, but excess production of dopamine could be
avoided by reducing the dose of levodopa. We assessed the safety,
tolerability, and the potential efficacy of intraputaminal infusion
of recombinant adeno-associated virus (AAV) serotype 2 vector
encoding human AADC (AAV-hAADC-2) in patients with mid-
to late-stage PD. We also examined whether the short-duration
response to levodopa, the antiparkinsonian response that parallels
the plasma levodopa levels, would change after gene therapy.”

RESULTS

Patient disposition and baseline characteristics

Six patients (4 men, 2 women), mean age 60 (range, 51-68) years,
were enrolled (Table 1). The mean disease duration was 10
(range, 5-18) years, and time on levodopa was 9.3 (range, 5-15)
years. The average baseline daily levodopa and levodopa equivalent
doses were 642 and 808 mg, respectively.

Correspondence: Shin-ichi Muramatsu, Division of Neurology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi
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Table 1 Patients’ baseline characteristics

© The American Society of Gene & Cell Therapy

Disease Time on Levodopa Levodopa

Subject Age (years) Sex duration (years) levodopa (years) dose (mg) equivalents (mg)
A-1 51 M 11 9 600 900

A-2 63 M 9 9 450 650

A-3 66 F 7 7 500 700

A-4 58 M 11 11 700 700

A-5 68 F 18 15 1,000 1,100

A-6 56 M 5 5 600 800

Mean (SD) 60 (6.5) 67% M 10 (4.5) 9.3(34) 642 (196) 808 (169)

Abbreviations: F, female; M, male.

Patients are listed in the order in which they received treatment. Levodopa equivalents were estimated as follows: 100mg of levodopa with a dopa-decarboxylase
inhibitor is equivalent to 0.8 mg talipexole, 1 mg pergolide, 1 mg pramipexole, and 1.5 mg cabergoline.

Primary end point

The procedure was well tolerated. All patients completed all
protocol-defined visits. One patient (patient A-2) had a venous
hemorrhage in the right frontal lobe just below a burr hole that
was found on CT scan 3 days after infusion. The patient used his
left arm less frequently than his right arm for 3 weeks; this was
assumed to reflect mild frontal lobe dysfunction and resolved
completely. Mild, transient headache around the burr holes was
present for 2 days after surgery in all patients. There were no
significant laboratory test abnormalities. All patients had mildly
increased titers of anti-AAV2-neutralizing antibodies 6 months
after treatment, which tended toward baseline concentrations
thereafter (Table 2).

Clinical evaluations

The clinical results are summarized in Table 3. Intraputaminal
AAV-hAADC-2 infusion significantly improved-both total and
motor scores of the unified Parkinson’s disease rating scale
(UPDRS) in the OFF state. Five of six patients showed sub-
stantial improvement in UPDRS motor ratings in the OFF state
(Figure 1). Changes in the UPDRS ON state and the percent of
ON state hours in a day were not significant. One patient with
relatively mild motor symptoms at baseline did not improve
on UPDRS (A-3 in Figure 1). However, this patient showed a
remarkable increase in mobile time as measured by the dia-
ries (28% at baseline to 58% at 6 months after gene transfer;
Figure 2). The daily dose of levodopa was unchanged in two
patients (A-2 and A-5) and reduced in three patients (A-1, A-3,
and A-5) at 6 months. Patient A-6, who had daytime sleepiness,
preferred to reduce pramipexole instead of levodopa after gene
therapy.

The last three patients underwent the levodopa test after our
institutional review board confirmed the safety of AADC gene
transfer in the first three patients. The short-duration response to
levodopa did not change significantly after gene therapy in these
three patients, though UPDRS motor scores at 6 months showed
slight improvement at 30 minutes in patient 5 and at 120 minutes
in patient 4 after levodopa intake (Figure 3). Significantly higher
peak plasma levodopa concentrations were observed in these two
patients after gene therapy.

The mini-mental state examination (MMSE) and geriatric
depression scale (GDS) scores did not change significantly.

1732

Table 2 Changes in neutralizing AAV2 antibody titers in sera
following gene therapy

Subject Pre 2 weeks 6 months 1 year
A-1 1:2 1:4 1:4 1:4
A-2 <1 1:32 1:4 1:2
A-3 1:32 1:64 1:64 1:32
A-4 1:32 1:32 1:256 1:64
A-5 1:4 1:32 1:32 1:32
A-6 <1 1:16 1:32 1:32

Abbreviations: AAV, adeno-associated virus.
Titers are determined by in vitro assay and represented as “1:” dilutions.

Table 3 Clinical outcomes of six patients

Baseline 6 months P value

UPDRS Total OFF 53(124)  38(10.1)  0.049*
UPDRS Total ON 15(7.2)  10.7(29) 0262
UPDRS Part ITI (Motor) OFF 253(94) 13.7(60)  0.024*
UPDRS Part III (Motor) ON 52(46) 18(15) 0120

Percent day spent in mobile state 48.8 (12.9) 55.4(14.8) 0.348

808 (169) 707 (233) 0.097

Abbreviations: OFF, off-medication state; ON, on-medication state; UPDRS,
Unified Parkinson’s Disease Rating Scale.

Data are presented as means (SD). The UPDRS scores in each patient did not
change during the 2 months of the screening period.

*P < 0.05.

Daily levodopa equivalents dose, mg

PET analysis

PET imaging revealed increased 6-["*F]fluoro-L-m-tyrosine
(FMT), a tracer for AADC, activity 4 weeks postoperatively, which
persisted at 6-month evaluation (Figure 4). The mean increase in
FMT uptake from baseline in the combined (right and left) puta-
men at 24 weeks was 56%. Two patients (A-1 and A-2) who had
PET scans 96 weeks after surgery showed persistently increased
FMT uptake. In these two patients, motor performance in the
OFF state also maintained its improvement at 96 weeks.

DISCUSSION

Extensive preclinical studies on both rodent and nonhuman pri-
mate models of PD have shown that AAV vectors can express
exogenous genes for a long time in the brain target areas without
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Figure 1 Changes in UPDRS scores. Absolute changes in scores from
baseline to 6 months for individual patients. OFF, off-medication state;
ON, on-medication state; UPDRS, Unified Parkinson’s Disease Rating
Scale.

significant toxicity.>*%%* Recently, three phase I clinical trials of
gene therapy for advanced PD demonstrated that AAV vector-
mediated gene delivery into the subthalamic nucleus or putamen
was safe and tolerable.!*-'* In this study, the safety of the AAV vec-
tors for clinical use in the human brain was confirmed. Although
one patient developed a venous hemorrhage in the subcortical
white matter along the trajectory, it is well known that cerebral
bleeding occasionally occurs in association with surgical proce-
dures for deep brain stimulation in which electrodes are inserted
into the basal ganglia through the frontal lobe white matter.!*'s
PET imaging in this patient showed that putaminal AADC expres-
sion was not affected by the subcortical venous hemorrhage and
persisted up to 96 weeks. Thus, the venous hemorrhage was prob-
ably due to the surgical procedure and not gene transduction.
Although the present trial was a small, open-label study, and
the nonblinded, uncontrolled analysis limits the interpretation,
the initial efficacy outcomes are encouraging. Our patients showed
improved motor performance in the OFF state. Levodopa has a
relatively short plasma half-life (60-90 minutes), and antiparkin-
sonian effects observed after levodopa administration have gener-
ally been recognized as short- and long-duration responses. The
short-duration response roughly parallels the plasma levodopa
concentrations and is thought to be closely linked to dyskinesia,
whereas the long-duration response builds up over weeks and
improves trough (worst) motor performance in the OFF state.”
Because the pattern of the short-duration response to levodopa
did not change after gene therapy in our patients, the beneficial
effect on the OFF state appears to be attributed to augmentation
of the long-term response to levodopa.!® In the preclinical studies
with animal models of PD, AAV vectors mainly transduced
medium spiny neurons that have dopamine receptors, and extra-
cellular dopamine was increased in the striatum after administra-
tion of levodopa.>” The mechanism underlying the long-duration
response is not sufficiently understood, and future study is neces-
sary to determine how nonphysiologic production of dopamine

Molecular Therapy vol. 18 no. 9 sep. 2010
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Figure 2 Evaluation of patients’ diaries and daily doses of levodopa
equivalents. For each 30-minute interval throughout the day, the
patients recorded whether they were mobile (ON), immobile (OFF),
or asleep. They also recorded the time with troublesome dyskinesias
(Dyskinesia). The graph shows the percentage of hours in a day spent in
each condition at baseline and at 6 months. The numbers on the bars
indicate the mean daily doses of levodopa equivalents (mg). OFF, off-
medication state; ON, on-medication state.

in the striatal neurons could enhance the response. It has been
reported that the sustained long-duration response to levodopa is
greater in patients treated with higher single doses of levodopa.!®
Thus, it is likely that increased dopamine in the putamen after
gene transfer may enhance the stable long-duration response.
Motor fluctuations in PD are associated with increased response
to levodopa with a deeper trough in motor performance, rather
than shortening of the response. Improving trough or OFF state
motor function by augmenting the long-term response would
likely reduce motor fluctuation.® Two of three patients in whom
the short-duration response to levodopa was studied showed
increased peak plasma levodopa concentrations after gene therapy.
This finding may simply reflect variable absorbance of levodopa,
and it remains to be elucidated whether changes in gastrointesti-
nal absorption could be related to better motor performance in
the OFF state."

Activities and levels of AADC mRNA and protein are pro-
foundly reduced in advanced PD,* but there are still several types of
AADC-containing cells in the striatum, such as serotonin neurons,
intrinsic dopamine neurons, AADC-containing “D” neurons, and
glial cells.” These cells may act as a local source of dopamine.
However, dopamine produced in nondopamine cells may not be
taken up into dopamine cells and stored in synaptic vesicles, as
dopamine transporter and vesicular monoamine transporter 2 are
also reduced in advanced PD. The functional efficacy of dopamine
produced from exogenous levodopa in these cells may be limited,
at least in primates.>® Striatal output neurons, main targets in
AADC gene therapy, play a principal role in dopamine modula-
tion of motor function in the basal ganglia. Dopamine synthesized
in the striatal neurons themselves may more easily stimulate both
synaptic and extrasynaptic receptors.
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Figure 3 Short-duration response to levodopa. Comparison of short-duration response to levodopa before (blue) and after gene therapy (brown)
in three patients (A-4, A-5, and A-6). Patients took 100 mg of levodopa with 25 mg benserazide orally after 20 hours without dopaminergic medica-
tion. Values represent means and SE of three trials. Upper panels: plasma levodopa levels; lower panels: Unified Parkinson’s Disease Rating Scale motor

scores. *P < 0.05. :

Results of a similar phase I protocol were reported recently for
the 10 patients treated with AAV-hAADC-2 (ref. 10). That study
used the same vector preparations as this study. The subjects were
divided into two groups that received the same or one-third dose
of the vector used in this study, respectively. Although the present
patients had slightly milder initial symptoms, the patients treated
with the same dose of vector in the two studies showed similar
improvement in the OFF state and putaminal FMT uptake on PET.
These findings provide independent confirmation of the safety,
tolerability, and potential efficacy of AADC gene therapy. Future
studies focusing on optimal vector dosing and defining the rela-
tionship between vector dose and clinical effects are necessary.”!

In conclusion, these data indicate that AAV vector-mediated
gene transfer of AADC is safe and may benefit advanced PD
patients.

MATERIALS AND METHODS

Study design. The protocol and consent forms were approved by the insti-
tutional review board. The protocol was also reviewed by the committee of
the Ministry of Health, Labour and Welfare of Japan. A data safety moni-
toring board reviewed the ongoing study. All subjects reviewed the consent
form and provided their written, informed consent.

This 24-week, phase I, open-label study was primarily designed to
evaluate the safety and tolerability of intraputaminal AAV-hAADC-2
infusion in idiopathic PD. Patients were evaluated preoperatively and
monthly postoperatively for 6 months, using multiple measures, including
the UPDRS, motor state diaries, the MMSE, the short form of the GDS,
and laboratory tests. The UPDRS was done in the practically defined OFF
state 12 hours after withdrawal of all antiparkinsonian medications, and
in the ON state 1 hour after administration of the usual morning dose of
medication. Motor scores for the UPDRS can range from 0 to 56, with
higher scores indicating poorer function. Using diaries that separated
the day into half-hour segments, the patients recorded their mobility
during the 4 days before admission and for another 4 days at 6 months
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Baseline

24 weeks

96 weeks

Figure 4 FMT-PET images. Axial images at the level of the putamen
are shown before and 24 weeks after gene therapy for all six patients.
Increased FMT uptake persisted until 96 weeks in two patients. The 4-week
images are not shown because they are similar to the 24-week images.
FMT, 6-["®Flfluoro-i-m-tyrosine; PET, positron emission tomography.

after admission. They were trained to rate their condition as sleeping,
immobile, mobile without troublesome dyskinesias, or mobile with
troublesome dyskinesias. The total number of hours spent in each of these
categories was calculated, and the differences between the baseline and
the 6-month scores were compared between the groups.

The short-duration response to levodopa was evaluated in three
patients (patients 4-6) at baseline and 6 months after gene transfer; they
took 100mg of levodopa orally with 25mg benserazide after 20 hours
without dopaminergic medication. Motor symptoms based on UPDRS
motor (part III) and plasma levodopa concentrations were assessed at
baseline and 30 minutes, 1, 2, 3, and 4 hours after levodopa intake.

Patients. The main entry criteria were: age 45-75 years; diagnosis of

moderate to advanced PD, defined as Hoehn and Yahr Stage IV and
UPDRS in the practically defined OFF condition of at-least 20; at least
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5 years of levodopa therapy; a minimum 8-point improvement in the
UPDRS motor score after levodopa intake; and motor complications not
satisfactorily controlled with medical therapy. The main exclusion criteria
were atypical parkinsonism, dementia (MMSE score <20), and previous
neurosurgical treatment for PD.

Vector and stereotaxic infusion. The vector used in this trial was a recom-
binant AAV?2 with an expression cassette consisting of a human cyto-
megalovirus immediate-early promoter, followed by the human growth
hormone first intron, complementary DNA of human AADC, and simian
virus 40 polyadenylation signal sequence.’ Clinical grade AAV-hAADC-2
was manufactured by Avigen (Alameda, CA) and provided by Genzyme
(Boston, MA). The patients received AAV-hAADC-2 vig bilateral intrapu-
taminal infusions. Two target points were determined in the putamen that
were sufficiently separated from each other in dorsolateral directions and
identified on a magnetic resonance image. One burr hole was trepanned
in each side of the cranial bone, through which the vector was injected
into the two target points via the two-track insertion route. The vector-
containing solution was prepared to a concentration of 1.5 x 10" vector
genome/ml, and 50l per point of the solution were injected at 1ul/min;
each patient received 3 x 10" vector genome of AAV-hAADC-2.

Neutralizing antibody titers against AAV2 were determined by
measuring B-galactosidase activities in HEK293 cells transduced with
5 x 10° vector genome/cell of AAV2 vectors expressing B-galactosidase in
various dilutions of sera.??

PET. The AADC expression level in the putamen was assessed on PET
imaging with FMT 6 days before surgery and 1 and 6 months after gene
transfer. All patients stopped dopaminergic medications 18 hours before
PET and took 2.5 mg/kg of carbidopa orally 1 hour before FMT injection.
Subsequently, 0.12mCi/kg of FMT in saline were infused into an antecu-
bital vein, and a 90-minute dynamic acquisition sequence was obtained. The
PET and magnetic resonance imaging data were co-registered with a fusion
processing program (Syntegra; Philips, Amsterdam, The Netherlands)
to produce the fusion images. Radioactivities within volumes of interest
drawn in the putamen and occipital lobe were calculated between 80 and
90 minutes after tracer injection. A change in putaminal FMT uptake from
baseline to 24 weeks was assessed using the putaminal-occipital ratio of
radioactivities.

Statistical analysis. Values at baseline and 6 months after gene trans-
fer were compared using Student’s t-test (paired analyses). A two-sided
P value <0.05 was taken to indicate significant differences. Two-way
analysis of variance with Bonferroni correction of P values was used for
the short-duration response to levodopa.
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LRRK?2, the causal molecule of familial Parkinson's disease, is expressed strongly by one of the B cell subsets,
B-2 cells, but not by the other subset, B-1 cells, in the mouse peritoneal cavity, spleen, and peripheral blood.
Bone marrow pre-B cells or T cells exhibited little LRRK2 expression. LRRK2 expression was dramatically
downregulated upon activation of B-2 cells with various types of stimulation. These results suggest that
LRRK2, whose true function has not yet been clarified, may play some important role(s) in the development
and function of B cells, particularly the maintenance of B-2 cells in a resting status.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

‘Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of
autosomal dominant familial Parkinson's disease, PARKS, which was
originally defined in a study of a large Japanese family, the Sagamihara
family (Funayama et al., 2002, 2005; Paisan-Ruiz et al., 2004; Zimprich
et al., 2004). LRRK2 is a large complex protein with an approximate
molecular mass of 260 kDa and contains multiple domains including
the LRR (leucine-rich repeat), ROC (Ras of complex), COR (C-terminal
ROC), kinase, and WD40 domains (Meylan and Tschopp, 2005;
Paisan-Ruiz et al., 2004; Zimprich et al., 2004). The binding of GTP
to the ROC domain, as well as dimer formation, is known to increase
the kinase activity of LRRK2 (Deng et al., 2008; Ito et al., 2007; Smith
et al., 2006). Although it has been reported that LRRK2 phosphorylates
itself (autophosphorylation), and its potential interactors include
moesin, eukaryotic initiation factor 4E-binding protein (4E-BP), B-
tubulin, and mitogen-activated kinase kinase (MKK) 3, 6, and 7
(Gandhi et al., 2008; Hsu et al,, 2010; Imai et al., 2008; Jaleel et al,,
2007; West et al., 2007), the true substrate and true function of LRRK2
remain unknown.
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Analyses of LRRK2 expression in human and rodent brain have
demonstrated that LRRK2 is expressed in various regions including the
substantia nigra, putamen, cortex, and cerebellum (Higashi et al., 2007a,b;
Melrose et al., 2006; Paisan-Ruiz et al,, 2004; Simon-Sanchez et al,, 2006;
Westerlund et al,, 2008; Zimprich et al,, 2004). It is also known that LRRK2
expression is much higher in the spleen, lung, kidney, and testis than in
other organs, including the brain (Biskup et al., 2007; Larsen and Madsen,
2009; Maekawa et al.,, 2010; Westerlund et al,, 2008). In particular, we
have recently reported that B cells are the major LRRK2-expressing cell
population in mouse spleen (Maekawa et al,, 2010). Macrophages express
LRRK2 weakly, but T cells show no expression. These results suggest a
possibly novel function of LRRK2 in the immune system, especially in B
cells.

B cells are the effectors of humoral immunity, and are classified into
two subsets, B-1 B cells and B-2 B cells (or simply B-1 cells and B-2 cells,
respectively) according to differences in developmental lineage and
function (Berland and Wortis, 2002). B-1 cells develop primarily during
the fetal stage as well as in the perinatal phase, whereas B-2 cells are
produced from bone marrow during postnatal life (Hardy and.
Hayakawa, 2001; Herzenberg, 2000). B-1 cells are defined by their
expression of the pan-T cell surface glycoprotein CD5, and have aCD43 ™,
CD23~, CD45R', immunoglobulin (Ig) MM, and IgD'® immunophenotype
(Berland and Wortis, 2002; Hardy and Hayakawa, 2001 ). They constitute
a substantial fraction of B cells in the peritoneal and pleural cavities, and

- 5-10% of those in the spleen, but are absent from lymph nodes
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