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Primary Meige syndrome is an idiopathic movement disorder that manifests as craniofacial and often
cervical dystonias. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) has emerged as
a powerful surgical option in the treatment of primary generalized or segmental dystonia. However, the
experience with GPi-DBS in Meige syndrome is limited. We followed 5 patients with disabling Meige
syndrome treated by bilateral GPi-DBS for 49 + 43.7 (mean #+ SD) months. All patients were assessed
before surgery and at the last follow-up after surgery using the Burke-Fahn-Marsden Dystonia Rating
Scale (BFMDRS) which includes both the movement and disability scales. Bilateral GPi-DBS produced
a sustained and long-lasting improvement in dystonia symptoms associated with Meige syndrome.
At the last follow-up, the mean scores of BFMDRS movement and disability scales improved significantly
by 84 + 6.8% (range, 75—94%) and 89 + 8.1% (range, 80—100%), respectively. Bilateral pallidal stimulation
is a beneficial therapeutic option for long-term relief of the disabling dystonia symptoms in Meige

Keywords:

Meige syndrome

Deep brain stimulation
Globus pallidus internus
Dystonia

syndrome.
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1. Introduction

Primary Meige syndrome is an idiopathic dystonia that involves
craniofacial and often cervical muscles. This adult-onset movement
disorder manifests as blepharospasm and oromandibular dystonia,
but dystonia may also occur in the upper extremities, trunk, and
neck [1,2]. Meige syndrome can be disabling despite the best
medical therapy. Botulinum toxin injections constitute the stan-
dard treatment for Meige syndrome, but its effectiveness often
diminishes over time. Deep brain stimulation (DBS) of the globus
pallidus internus (GPi) has emerged as a powerful surgical option in
the treatment of primary generalized and segmental dystonias [3],
and interest in the use of GPi-DBS for refractory dystonia symptoms
in Meige syndrome is increasing [4—7]. However, the beneficial
effects of GPi-DBS in patients with Meige syndrome remain to be
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established, because the data currently available is based on a small
series of patients with short-term follow-up. To further elucidate
the therapeutic efficacy of pallidal stimulation, we assessed surgical
outcome in 5 patients suffering from disabling Meige syndrome
who underwent bilateral GPi-DBS.

2. Methods
2.1. Subjects

The clinical characteristics of the patients included in this study are summarized
in Table 1. None of the patients had a family history of dystonia or prior exposure to
neuroleptics, and their preoperative brain magnetic resonance images appeared
normal. Before surgery, written informed consents were obtained from all patients
and their families. At the time of surgery, the mean age of the patients was 65 + 7.2
(mean =+ SD) years (range, 54—72 years) and the mean disease duration was 12 £ 4.2
years (range, 7—18 years).

2.2. Assessment instruments

All patients were assessed before surgery and at the latest follow-up after
surgery using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), which
includes both the BFMDRS-I (Movement Scale) and BFMDRS-II (Disability Scale) [8].
The mean follow-up period was 49 + 43.7 months. Statistical analyses were per-
formed using the Mann—Whitney U test. A p value < 0.05 was considered statisti-
cally significant.
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Table 1
Characteristics of patients with Meige syndrome who underwent bilateral pallidal stimulation.
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Mean =+ S.D.
Age (yr)/Sex 54/M 67[F 61/F 72/M 69/M 654+ 7.2
Age at onset (yr) 44 53 43 65 53 52 + 8.9
Duration of disease (yr) 10 14 18 7 13 12+ 4.2
Follow-up after surgery (months) 30 40 124 43 10 49 + 43.7
Total number of hospital visits 17 25 122 21 6 38+ 474
Electrode
Right 2(-)C(+) 0(=)1(=)C(+) 1(=)3(+) 0(=)1(=)C(+) 0(=)C(+)
Left 1(=)C(+) 0(=)1(=)C(+) 1(=)3(+) O(=)1(=)C(+) O(=)C(+)
Amplitude (V)
Right/Left 1.7/1.7 1.0/1.0 3.9/3.6 2.9/2.8 3.5/3.5 26+ 1.1
Pulse width (pS) 450 450 450 210 400 392 £+ 98.1
Frequency (Hz) 90 130 60 80 60 84+ 272
BFMDRS-1 (Movement Scale) (max = 120)
Preoperatively 8 10 35 27 31 22+ 124
Postoperatively 2 1.5 5 5 2 3417
Percent improvement (%) 75 85 86 81 . 94 84+ 6.8
BFMDRS-II (Disability Scale) (max = 30) .
Preoperatively 3 5 23 13 12 11+79
Postoperatively 0 1 4 1 1 1+£15
Percent improvement (%) 100 | 80 83 92 92 89 + 8.1

BFMDRS, Burk-Fahn-Marsden dystonia rating scale; PW, pulse width (uS); freq, frequency (Hz); M, male: F, female; yr, years.

2.3. Surgical procedure

Bilateral GPi-DBS surgery was carried out as we previously reported [9]. Under
general anesthesia with propofol, quadripolar DBS electrodes (Model 3387; Med-
tronic Inc., Minneapolis, MN) were implanted into the bilateral GPi. Using intra-
operative microelectrode recordings, the ventral edges of the most ventral contacts
(contact 0) were located at the ventral margin of the GPi. As stimulation tests over
the course of 3 or 4 days confirmed the beneficial effects of pallidal stimulation, the
DBS electrodes were connected to programmable pulse generators (Soletra, Med-
tronic) implanted subcutaneously in the subclavicular region. Outcomes were
assessed at follow-up visits every 1 or 2 months after discharge.

3. Results
3.1. Stimulation settings

For all patients, optimal results were obtained at the final
stimulator settings with the mean amplitude of 2.6 + 1.1 V (range,
1.0—-3.9 V), mean frequency of 84 - 27.2 Hz (range, 60—130 Hz), and
pulse width of 392 + 98.1 ps (range, 210—450 ps) (see Table 1). We
applied a continuous monopolar mode using 1 or 2 active contacts
in all patients except patient 3, for whom a bipolar mode with
contacts 1 (cathode) and 3 (anode) was used.

Table 2

3.2. Assessment with BEMDRS

As shown in Table 1, the mean follow-up period was 49 + 43.7
months (range, 10—124 months); 4 of the 5 patients were followed
for more than 30 months. At the latest follow-up, dystonia symp-
toms had improved markedly in all patients. The mean scores for
BFMDRS movement and disability scales improved significantly by
84 £ 6.8% (range, 75—94%) (p = 0.009) and 89 + 8.1% (range,
80—100%) (p = 0.015), respectively (Table 1). All BFMDRS move-
ment (Table 2) and disability (Table 3) subscales significantly
improved after pallidal stimulation except for subscales of “upper
limbs” and “feeding”. As in primary generalized and segmental
dystonias [3], phasic (mobile) orofacial dystonia and blepharo-
spasm improved earlier and to a greater degree than fixed cervical
dystonia. The time required for response of blepharospasm to
GPi-DBS varied from a few seconds to days. Speech disturbance
caused by spasmodic dysphonia and/or oromandibular dystonia
also responded well to pallidal stimulation in all the patients
(Table 3). Postoperative adverse effects of chronic stimulation could
be reversed by adjusting the stimulus parameters. No permanent
morbidity occurred because of the operation or stimulation.

BFMDRS movement subscales in patients with Meige syndrome who underwent bilateral pallidal stimulation.

Movement scale

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Mean Range
Before surgery (range)
Eyes (0—8) 2 6 8 6 8 6 2-8
Mouth (0-8) 3 2 8 6 6 5 2-8
Speech and swallowing (0—16) 3 2 12 9 9 7 2-12
Neck and trunk (0—24) 0 0 6 6 8 6.7 6-8
Upper limbs (0-32) 0 0 1 0 0 1 1
Total 8 10 35 27 31 222 8-35
After surgery p value
Eyes (0-8) 1 1 1 0.5 0 0.7 0-1 0.008
Mouth (0-8) 1 0.5 1 0.5 0 0.6 0-1 0.008
Speech and swallowing (0-16) 0 0 2 2 0 0.8 0-2 0.013
Neck and trunk (0—24) 0 0 1 2 2 1.7 1-2 0.043
Upper limbs (0-32) 0 0 0 0 0 0 0
Total 2 1.5 5 5 2 3.1 1.5-5 0.009

Statistical analyses were performed using the Mann~Whitney U test.
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Table 3

BFMDRS disability subscales in patients with Meige syndrome who underwent bilateral pallidal stimulation.

Disability scale

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Mean Range
Before surgery (range)
Speech (0—4) 3 2 4 1 1 2.2 1-4
Writing (0—4) 0 1 3 1 1 15 1-3
Feeding (0—4) 0 0 3 2 1 2 1-3
Eating and swallowing (0—4) 0 0 3 2 3 2.7 2-3
Hygiene (0—4) 0 1 3 2 2 2 1-3
Dressing (0—4) 0 1 3 2 2 2 2-3
Walking (0—6) 0 0 4 3 2 3 2—4
Total 3 5 23 13 12 11.2 3-23
After surgery (range) p value
Speech (0—4) 0 1 1 0 0 04 0-1 0.022
Writing (0—4) 0 0 1 0 0 0.3 0-1 0.04
Feeding (0—4) 0 0 0 1 0 0.3 0-1 0.072
Eating and swallowing (0—4) 0 0 0 0 0 0 0 0.034
Hygiene (0—4) 0 0 0 0 0 0 0 0.013
Dressing (0—4) 0 0 1 0 0 0.3 0-1 0.025
Walking (0—6) 0 0 1 0 1 0.7 0-1 0.046
Total 0 1 4 1 1 14 0-4 0.015

Statistical analyses were performed using the Mann—Whitney U test.

4. Discussion

Clinical studies in patients with primary generalized or
segmental dystonia have shown the beneficial effects of bilateral
GPi-DBS for both motor symptoms and disability caused by dys-
tonia [3]. However, experience with GPi-DBS in other forms of
dystonia such as Meige syndrome is limited. Moreover, long-term
outcome of patients with Meige syndrome treated with GPi-DBS
remain to be elucidated. In this study, we showed that bilateral
pallidal stimulation produced a long-lasting suppression of dysto-
nia in 5 patients with primary Meige syndrome. The mean
improvement (over 80%) in motor symptoms was comparable, with
respect to scores of both BFMDRS motor and disability scales (Table
2), to the results obtained in patients with primary generalized or
segmental dystonia [10], and in patients with tardive dystonia [11].
Our results also showed that speech difficulties caused by spas-
modic. dysphonia and/or oromandibular dystonia in Meige
syndrome responded well to pallidal stimulation.

Dystonia is a complex clinical syndrome due to a wide range of
etiologies. The pathogenesis of primary Meige syndrome remains
unknown. However, it has been suggested that the basal ganglia
interconnecting the cortico-striato-pallido-thalamic circuits are
involved in models of the pathophysiology of Meige syndrome [5].
The present study provides clinical evidence that dystonia symp-
toms in primary Meige syndrome could be markedly alleviated by
electrostimulation of the GPi, one of the output nuclei of the basal
ganglia, and suggests that this movement disorder may result from
the basal ganglia dysfunction. Multimodal medical treatments that
include botulinum toxin injections are used to treat Meige
syndrome, but their therapeutic efficacy has been found to vary
across patients and often decreases over time. As reported here, we
observed continuous bilateral GPi-DBS to be a safe surgical therapy
for producing a sustained and long-term improvement in the
dystonia symptoms and functional disabilities of patients with
primary Meige syndrome. Recently, an important observation was
made that while disease duration can be a good predictor of the
outcome of pallidal stimulation in patients with primary dystonias,
no particular predictive value should be assigned to age at onset,
age at surgery, severity of disease, DYT1 status or the presence of
phasic or tonic involuntary movements [12]. The mean duration of

disease in our patients with Meige syndrome was greater than 10
years, and a better general outcome of pallidal stimulation might be
expected in patients with a shorter duration of this disease. In
conclusion, we suggest that patients with disabling dystonia
symptoms associated with primary Meige syndrome can be good
candidates for treatment with bilateral pallidal stimulation.
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Botulinum neurotoxin (BoNT) is composed of the heavy chain with the receptor-binding site and the
translocation domain and the light chain with endopeptidase activity that cleaves the SNARE (soluble
N-ethylmaleimide-sensitive factor attachment protein receptor) complex, an essential molecule for
membrane fusion. Its extraordinarily high toxicity depends on the affinity of the receptor-binding site to
the receptor located inside the synaptosome. The membrane fusion mechanism is important not only in
neurotransmitter release at the nerve terminals but also in the expression of pain receptors on the cell
surface. Based on these mechanisms, BoNT is increasingly used for varieties of conditions including

cosmetic uses, muscle hyperactivity, hyperhydrosis, pain, overactive bladder and epilepsy. It will become
a major arm of neuromodulating treatments for neurological diseases. A part of this toxin, such as the
heavy chain, may become a novel drug-delivery system for neurodegenerative diseases.

© 2011 Published by Elsevier Ltd.

1. Advances in botulinum toxin research

Botulinum neurotoxins (BoNTs) are produced by anaerobic
bacteria of the Clostridium group and are the most potent toxins
known to date [1]. There are seven serotypes of BoNTs, indicated by
letters from A to G. Each toxin is composed of a heavy (H, 100 kDa)
and a light chain (L, 50 kDa) linked by a disulphide bond and non-
covalent interactions. The carboxy terminus of the heavy chain (HC)
binds with extraordinary specificity to nerve terminals. Following
receptor-mediated endocytosis and acidification of the endosome,
the amino-terminal portion of the heavy chain (HN) translocates
the L chain across the vesicular membrane into the cytosol. The
L chain acts as a Zn**-dependent endopeptidase to cleave essential
protein components of the neurotransmitter release machinery, the
SNARE (soluble N-ethylmaleimide-sensitive factor attachment
protein receptor) proteins. This disrupts Ca®*-triggered fusion of
synaptic vesicles (SVs) with the plasma membrane [2].

The receptors of BoNTs have been clarified recently: serotype B
BoNT binds to synaptotagmin II> and serotype A to SV2 [4], both of
which are located on the inner surface of the synaptosome. BoNT
also recognises the ganglioside moiety (trisialoganglioside, GT1b) on
the surface of the cell membrane, which determines the target
selectivity [3]. These findings explain the activity-dependent action
of the toxin: BoNTs affect the synapses most active in releasing

* Tel.: +81 88 633 7206; fax: +81 88 633 7208.
E-mail addresses: kajkyoto@mbox.kyoto-inet.or.jp, rkaji@clin.med.tokushima-u.
acjp.
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the neurotransmitters because they can access the synapses or
neuromuscular junctions with the receptors inside the vesicle. It has
been known that the action of BoNTs is optimised when the muscles
are activated immediately following the injection [5]. This action is in
contrast with the neurolytic therapies, such as phenol injections,
which affect all the nerve endings irrespective of the activities,
resulting in unwanted weakness of the injected muscles. By contrast,
BoNTs abolish only twitching muscles in case of hemifacial spasms.
This is relevant with other involuntary movements or spasticity,
where active engagement in the affected movement or posture is
encouraged after injections, to attain the maximum benefit of BoNTs.

The potency of the toxin is mostly due to its very high affinity to
the receptors. The receptor-binding capability of the heavy chain is
now being explored for development of the drug-delivery system to
neurons after replacing the L chain with other moieties [6]. Such an
attempt may be fruitful for the development of drugs for amyo-
trophic lateral sclerosis, if the L chain is substituted by neurotrophic
factors.

Types A, B and F toxins have been used for clinical settings in the
past [7]. Currently, types A and B are marketed. Among type A
toxins, four subtypes (A1—A4) exist, and all the marketed toxins are
from subtype Al. Recently, type A2 toxin has been used in animals
[8] and showed greater potency in producing weakness and less
spreading into uninjected muscles than conventional A1 toxin. It
was also shown that type A toxins affects central synapses, and
subtype A2 has less central actions than A1 because of the less
retrograde transport of the toxin to the spinal cord [9].These find-
ings may lead to a BoNT preparation used for larger muscles, such
as those in the lower extremities in patients with spasticity.
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2. Clinical indications

Indications of BoNTs have been constantly expanded in the past
decade.

BoNTs’ most popular use is for cosmetic purposes. It is widely
accepted that wrinkles on the face go away almost indefinitely after
the injection, but the exact mechanism is still elusive.

2.1. Muscle hyperactivity

By far the most important use in neurological diseases is for
muscle hyperactivity, including dystonia and spasticity. Focal dys-
tonias, such as blepharospasm and cervical dystonia, are the best
indications among dystonias. Task-specific dystonias including
writer's or musician’s cramp are less optimal [10] because of the
unwanted weakness for the tasks. Larger doses are required for
treating truncal or lower-extremity dystonias, and new prepara-
tions, such as the A2 subtype, might be relevant. Generalised or
segmental dystonias are treated more efficaciously by surgical
manoeuvres, such as deep-brain stimulation of bilateral GPi.

Hemifacial spasms are also good indication of BoNTs, and
decompression surgeries are becoming obsolete as the first-line
treatment. The dose required is usually less than that in blepha-
rospasm, and the injection interval is longer.

Spasmodic dysphonia, a dystonia involving vocal-cord muscles,
is also a superb indication of BoNT. A special injection technique for
this is needed.

Spasticity is probably one of the most prevalent and important
health problems in developed nations. Up to 65% of the patients who
survived stroke suffer from it. Cost of care for those patients far
exceeds 2,000,000,000,000 yen or 20 billion US dollars per year in
Japan. Until 2004, a few randomised controlled trials have reported
some promising results in support of reduced muscle tone following
BoNT injections [11]. Further research incorporating larger sample
sizes, rigorous methodology, measurement of upper-limb function
and functional outcomes was essential. Since then, there have been
several large-scale clinical trials for upper-limb spasticity showing
functional improvements [12]. A recent study in the post-stroke
lower-limb spasticity also reported markedly significant improve-
ments in the modified Ashworth scale [13]. Functional improve-
ments were only attained by repeated injections. By now, uses in
spasticity in upper and lower-limbs have been approved in UK,
France, Germany and Japan, and use for upper-limb was approved
by the Food and Drug Administration (FDA) in USA.

Interestingly, patients with upper-limb spasticity often improve
their motor disturbance after BoNT injection and rehabilitation
almost permanently, without the need for further injections. This is
unlike those with hand dystonia, who need repeated injections to
maintain the benefit. It is argued that BoNT may enhance spinal
synaptic reorganisation directly by its central action or indirectly
through alteration of muscle afferents {14]. Another possibility is
that release of the affected hand into active movements may
reverse anomalous interhemispheric inhibition from the unaffected
cortex to the affected.

Because the sudomotor sympathetic fibres are also cholinergic,
BoNTs have been used for controlling hyperhydrosis, which can
occur either after skin incisures or without any known causes.

2.2. Pain

A breakthrough in the clinical application of BoNT is its use for
controlling pain and migraine. BONT was shown to decrease the
expression of pain-sensitive vanilloid receptors (e.g., transient
receptor potential cation channel subfamily V member 1, TRPV1),
which are up-regulated in sensitised sensory neurons [15]. This is

because those receptors are expressed to the cell membrane
through the fusion mechanism mediated by the SNARE complex,
the substrate of BoNTs.

It was accidentally found that BoNT injection into corrugator
muscle for removing skin furrows brought about a decrease in the
number of migraine attacks. Since then, a number of clinical trials
with a small number of cases and modest doses have resulted in
equivocal results for migraine. Recently, clinical trials with larger
number of cases and doses of BoNT have successfully reduced the
number of attacks [16—18], followed by its approval in UK and USA.

Intractable pain or complex regional pain syndrome is another
important indication recently added. Patients with these conditions
present with oedematous, painful and immobile limb with skin
areas with allodynia, or abnormally induced pain after light touch.
Repeated injections into these areas subcutaneously result in
gradual improvement of allodynia and pain, followed by decreased
oedema and increased mobility. It was also found that post-stroke
pain including thalamic pain also responds to subcutaneous BoNT
injections made into areas with allodynia [19].

2.3. Overactive bladder (OAB)

Urinary problems are very common in the elderly. Many people
are affected by urinary urgency, which can be highly bothersome.
Urgency is the cornerstone symptom of overactive bladder (OAB),
commonly occurring in conjunction with urinary frequency and
nocturia. Once other medical causes of similar symptoms have been
excluded, first-line OAB management comprises fluid-intake advice
and bladder training, supplemented by antimuscarinic drugs, if
necessary. BoNTs are currently explored as an alternative therapy
[20,21]. The injection into the inner surface of the bladder was
shown to down-regulate the expression of TRPV1 and muscarinic
Ach receptors, which trigger destrusors. Despite the technical
difficulties, this technique will be widely used for these patients in
the near future.

2.4. Epilepsy

Experimental pieces of evidence suggest that BoNT suppresses
glutamate release in the central nervous system (CNS). Because of
its activity-dependent action, BoNT may be used for managing
intractable epilepsies [22,23]. Abnormal excitation at the epileptic
foci is associated with large glutamate-induced excitatory post-
synaptic potentials (EPSPs) that drive cortical neurons for lateral
spread. BoNT would selectively suppress these active neurons,
leaving the rest of the neurons unaffected. It would therefore be
expected that BoNT suppresses neurons at the foci, while the rest of
the neurons function normally. This method may become a substi-
tute for surgical resections of the affected brain tissue. The largest
problem would be the drug-delivery, and stereotactic device and
cerebrospinal fluid (CSF) injections are now being contemplated.

In conclusion, BoNT is increasingly used for varieties of condi-
tions including cosmetic uses, muscle hyperactivity, hyperhydrosis,
pain, OAB and epilepsy. It will become a major arm of neuro-
modulating treatment for neurological diseases.
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