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FIG. 3. Brain. regions showing reduced glucose metabolism in PD subgroups compared with the normal control group. a: Total PD group showed
reduced metabolism bilaterally in the medial prefrontal cortex, dorsolateral prefrontal cortex (DLPFC), medial occipital cortex, and lateral parieto-
temporo-occipital area. b: Hyposmic PD group demonstrated additional, broader occipital hypometabolism. ¢: Normosmic PD group showed meta-
bolic reductions only in the bilateral DLPFC. d: Nondemented PD group showed no apparent metabolic changes. e: Nondemented PD+SH group
showed metabolic reductions in the medial occipital cortex (P <.001 uncorrected with an extent threshold of 100 voxels).

seems to reflect the distribution of the pathological pro-
cess that alters neuropils and causes functional deficits
of the synaptic activities. Therefore, it is plausible that
functional deficits and metabolic alterations are closely
connected to each other. Compared with the normal

control group, the total PD group showed mild meta-
bolic reduction in the mPFC, DLPFC, medial occipital
cortices, and lateral parieto-temporo-occipital area
(Fig. 3a). These findings are consistent with previous
studies®*”*® and indicate that our participants were
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FIG. 4. Correlation between clinical features and topographic patterns. Two orthogonal topographic patterns derived from glucose metabolic scans
at rest in (a) the total PD group (MMSE > 24) and (b) the nondemented PD group (MMSE > 28). Relationships between topographic patterns and
clinical ratings in (c) the total PD group (MMSE > 24) and (d) the nondemented PD group (MMSE > 28). Coordinates along the x, y, and z axes refer
to Montreal Neurological Institute standard stereotactic space. The bootstrap ratio is the ratio of the voxel salience value to its standard error (esti-
mated from 100 bootstrap samples). It is a measure of the stability of high (red scale) and low (blue scale) metabolic values, which constitute the
topographic pattern. The correlation between a topographic pattern and a clinical rating was not considered significant (n.s.) if the 95% CI crossed

zero, as determined by estimation from 100 bootstrap samples.

metabolically typical, as observed in nonadvanced PD.
Furthermore, the hyposmic PD group showed more
prominent occipital hypometabolism, even in nonde-
mented cases (Fig. 3e). These results suggested that ol-
factory dysfunction is a sensitive marker of brain
hypometabolism in PD.

Next, we performed brain-behavior PLS analysis
and identified 2 significant topographic patterns of
metabolic alteration at rest that correlated with repre-
sentative clinical features in PD, including olfactory
dysfunction (Fig. 4). A topographic pattern of glucose
metabolism at rest is thought to reflect a group of
structural and functional types of damage to the neu-
ropil caused by pathological changes. A recent study
used PLS analysis to demonstrate correlations among
topographic patterns and cognitive and mood func-

tions in moderate to advanced PD.!” Other studies
that used similar spatial covariance analysis confirmed
the existence of a disease-specific metabolic pattern at
rest in PD.?>% In the present study, we demonstrated
that 2 significant topographic patterns could be
detected even in nonadvanced PD (Fig. 4a,b). Further-
more, we found that the expression of topographic
patterns 1a and 1b was positively correlated with ol-
factory and memory performance. Topographic pat-
terns la and 1b were both characterized by altered
metabolism in multiple brain regions, including the
mPFC, DLPFC, piriform cortex, cingulate cortex, lat-
eral parieto-occipito-temporal area, and caudate.
These data suggest that hyposmia and memory impair-
ment are 2 reliable predictors of cortical hypometabo-
lism in PD.
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The finding that olfactory and memory dysfunctions
in PD were correlated with the same metabolic pattern
suggested that these 2 symptoms have a common
pathological etiology. Convergent evidence from path-
ological®™” and imaging studies®'%?! has suggested
that dysfunction of the amygdala and piriform cortex
is responsible for olfactory impairment in PD. Further-
more, a recent study demonstrated that central cholin-
ergic dysfunction in the amygdala and hippocampus
correlated with olfactory and memory impairment in
nondemented PD.>* Our data showed that the per-
formance of olfaction and memory was highly corre-
lated with topographic patterns la and 1b. With
respect to olfaction-related brain regions, patterns la
and 1b both included metabolic changes in the piri-
form cortex, and pattern 1b encompassed metabolic
changes in the amygdala (Fig. 4a,b). Previous studies
have suggested that the link between olfaction and
memory is mediated by the amygdala®® and the piri-
form cortex.>® Taken together, these findings indicate
that dysfunction of these areas, which may be due in
part to cholinergic dysfunction, may be responsible for
the olfactory and memory impairment in nondemented
PD. It was noteworthy that although PLS analysis
demonstrated relative hypometabolism of the piriform
cortex and amygdala in hyposmic PD patients, the
parametric ¢ test implemented in SPMS failed to detect
significant metabolic reductions in these areas (Fig.
3b,e). These results are explained by the finding that
multivariate methods such as PLS are more suitable
for assessing metabolic network abnormalities than is
SPM’s t test,>* but further study is needed to clarify
these points. Interestingly, the correlation between
metabolic changes in the amygdala and olfactory per-
formance was observed only in topographic pattern
1b, which suggested that the hypometabolism in the
amygdala was one of the earliest metabolic alterations
in the PD brain and reached a nadir at later stages.

Recent clinical studies have demonstrated that
higher onset age is the best predictor of PD pro-
gression rate.>>*® In the present study, onset age
showed comparatively close relationships with all
topographic patterns (Fig. 4c,d), which suggested
that a higher onset age might be associated with
broad cortical metabolic reduction. Furthermore,
recent pathological studies indicated that later-onset
PD patients often exhibit early limbic and neocorti-
cal involvement and develop dementia.>”*® Our
data revealed that topographic patterns 2a and 2b
represented metabolic abnormalities in the limbic
and prefrontal cortices, consistent with those patho-
logical studies and also suggested that metabolic
changes in these areas were present even in nonde-
" mented PD patients. Taken together, the present
data suggest that hyposmia, memory impairment,
and later-onset age are associated with brain hypo-
metabolism affecting broad regions and could

r HYPOSMIA AND BRAIN METABOLISM IN PD

potentially predict later development of dementia in
PD. Because atrophy correction was not performed
in this study, there is a possibility that our data
may reflect the combined effect of atrophy and met-
abolic reduction. However, we verified that all par-
ticipants did not exhibit apparent focal brain
atrophies, and previous studies comparing resting
glucose metabolism with and without voxel-based
atrophy correction revealed that regional changes of
glucose metabolism measured by PET are not sim-
ply a reflection of focal brain atrophy.>® Thus, it is
expected that the effect of circumscribed atrophy
on metabolic reduction would be relatively small.
However, further study is needed to confirm this
point.

In conclusion, we investigated the possible relation-
ships among olfactory impairment, representative clin-
ical features, and resting-state brain metabolism in
PD. The results suggested that odor-identification
impairment in PD is closely associated with cognitive
dysfunctions, especially memory impairment. Further
analysis revealed that odor-identification deficit and
memory impairment are closely associated with dis-

_ ease-specific metabolic changes including changes in

the amygdala and piriform cortex. Moreover, we dem-
onstrated that onset age is a highly accurate predictor
of cortical hypometabolism even in nondemented PD
patients. The results of this study shed light on the
complex involvement of the brain in PD and may
facilitate the development of better management pro-
tocols for patients with PD. &
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