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New and emerging indications of botulinum toxin therapy

Ryuji Kaji*

Department of Neurology, Tokushima University Graduate School of Medicine, Kuramotocho 2-50-1, Tokushima, Japan

ABSTRACT

Keywords: Botulinum neurotoxin (BoNT) is composed of the heavy chain with the receptor-binding site and the
Botulinum toxin translocation domain and the light chain with endopeptidase activity that cleaves the SNARE (soluble
}?empy N-ethylmaleimide-sensitive factor attachment protein receptor) complex, an essential molecule for
A2 membrane fusion. Its extraordinarily high toxicity depends on the affinity of the receptor-binding site to
Pain the receptor located inside the synaptosome. The membrane fusion mechanism is important not only in
Epilepsy neurotransmitter release at the nerve terminals but also in the expression of pain receptors on the cell
Spasticity surface. Based on these mechanisms, BoNT is increasingly used for varieties of conditions including

cosmetic uses, muscle hyperactivity, hyperhydrosis, pain, overactive bladder and epilepsy. It will become
a major arm of neuromodulating treatments for neurological diseases. A part of this toxin, such as the
heavy chain, may become a novel drug-delivery system for neurodegenerative diseases.

© 2011 Published by Elsevier Ltd.

1. Advances in botulinum toxin research

Botulinum neurotoxins (BoNTs) are produced by anaerobic
bacteria of the Clostridium group and are the most potent toxins
known to date [1]. There are seven serotypes of BoNTs, indicated by
letters from A to G. Each toxin is composed of a heavy (H, 100 kDa)
and a light chain (L, 50 kDa) linked by a disulphide bond and non-
covalent interactions. The carboxy terminus of the heavy chain (HC)
binds with extraordinary specificity to nerve terminals. Following
receptor-mediated endocytosis and acidification of the endosome,
the amino-terminal portion of the heavy chain (HN) translocates
the L chain across the vesicular membrane into the cytosol. The
L chain acts as a Zn**-dependent endopeptidase to cleave essential
protein components of the neurotransmitter release machinery, the
SNARE (soluble N-ethylmaleimide-sensitive factor attachment
protein receptor) proteins. This disrupts Ca*-triggered fusion of
synaptic vesicles (SVs) with the plasma membrane [2].

The receptors of BoNTs have been clarified recently: serotype B
BoNT binds to synaptotagmin II> and serotype A to SV2 [4], both of
which are located on the inner surface of the synaptosome. BoNT
also recognises the ganglioside moiety (trisialoganglioside, GT1b) on
the surface of the cell membrane, which determines the target
selectivity [3]. These findings explain the activity-dependent action
of the toxin: BoNTs affect the synapses most active in releasing

* Tel.; +81 88 633 7206; fax: +81 88 633 7208.
E-mail addresses: kajkyoto@mbox.kyoto-inet.or.jp, rkaji@clin.med.tokushima-u.
acjp.

1353-8020/$ — see front matter ® 2011 Published by Elsevier Ltd.
doi:10.1016/j.parkreldis.2011.06.017

the neurotransmitters because they can access the synapses or
neuromuscular junctions with the receptors inside the vesicle. It has
been known that the action of BoNTs is optimised when the muscles
are activated immediately following the injection [5]. This action is in
contrast with the neurolytic therapies, such as phenol injections,
which affect all the nerve endings irrespective of the activities,
resulting in unwanted weakness of the injected muscles. By contrast,
BoNTs abolish only twitching muscles in case of hemifacial spasms.
This is relevant with other involuntary movements or spasticity,
where active engagement in the affected movement or posture is
encouraged after injections, to attain the maximum benefit of BoNTs.

The potency of the toxin is mostly due to its very high affinity to
the receptors. The receptor-binding capability of the heavy chain is
now being explored for development of the drug-delivery system to
neurons after replacing the L chain with other moieties [6]. Such an
attempt may be fruitful for the development of drugs for amyo-
trophic lateral sclerosis, if the L chain is substituted by neurotrophic
factors.

Types A, B and F toxins have been used for clinical settings in the
past [7]. Currently, types A and B are marketed. Among type A
toxins, four subtypes (A1—A4) exist, and all the marketed toxins are
from subtype A1l. Recently, type A2 toxin has been used in animals
[8] and showed greater potency in producing weakness and less
spreading into uninjected muscles than conventional A1 toxin. It
was also shown that type A toxins affects central synapses, and
subtype A2 has less central actions than A1l because of the less
retrograde transport of the toxin to the spinal cord [9].These find-
ings may lead to a BoNT preparation used for larger muscles, such
as those in the lower extremities in patients with spasticity.
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2. Clinical indications

Indications of BoNTs have been constantly expanded in the past
decade.

BoNTs' most popular use is for cosmetic purposes. It is widely
accepted that wrinkles on the face go away almost indefinitely after
the injection, but the exact mechanism is still elusive.

2.1. Muscle hyperactivity

By far the most important use in neurological diseases is for
muscle hyperactivity, including dystonia and spasticity. Focal dys-
tonias, such as blepharospasm and cervical dystonia, are the best
indications among dystonias. Task-specific dystonias including
writer’s or musician’s cramp are less optimal [10] because of the
unwanted weakness for the tasks. Larger doses are required for
treating truncal or lower-extremity dystonias, and new prepara-
tions, such as the A2 subtype, might be relevant. Generalised or
segmental dystonias are treated more efficaciously by surgical
manoeuvres, such as deep-brain stimulation of bilateral GPi.

Hemifacial spasms are also good indication of BoNTs, and
decompression surgeries are becoming obsolete as the first-line
treatment. The dose required is usually less than that in blepha-
rospasm, and the injection interval is longer.

Spasmodic dysphonia, a dystonia involving vocal-cord muscles,
is also a superb indication of BoNT. A special injection technique for
this is needed.

Spasticity is probably one of the most prevalent and important
health problems in developed nations. Up to 65% of the patients who
survived stroke suffer from it. Cost of care for those patients far
exceeds 2,000,000,000,000 yen or 20 billion US dollars per year in
Japan. Until 2004, a few randomised controlled trials have reported
some promising results in support of reduced muscle tone following
BoNT injections [11]. Further research incorporating larger sample
sizes, rigorous methodology, measurement of upper-limb function
and functional outcomes was essential. Since then, there have been
several large-scale clinical trials for upper-limb spasticity showing
functional improvements [12]. A recent study in the post-stroke
lower-limb spasticity also reported markedly significant improve-
ments in the modified Ashworth scale [13]. Functional improve-
ments were only attained by repeated injections. By now, uses in
spasticity in upper and lower-limbs have been approved in UK,
France, Germany and Japan, and use for upper-limb was approved
by the Food and Drug Administration (FDA) in USA.

Interestingly, patients with upper-limb spasticity often improve
their motor disturbance after BoNT injection and rehabilitation
almost permanently, without the need for further injections. This is
unlike those with hand dystonia, who need repeated injections to
maintain the benefit. It is argued that BoNT may enhance spinal
synaptic reorganisation directly by its central action or indirectly
through alteration of muscle afferents [14]. Another possibility is
that release of the affected hand into active movements may
reverse anomalous interhemispheric inhibition from the unaffected
cortex to the affected.

Because the sudomotor sympathetic fibres are also cholinergic,
BoNTs have been used for controlling hyperhydrosis, which can
occur either after skin incisures or without any known causes.

2.2, Pain

A breakthrough in the clinical application of BoNT is its use for
controlling pain and migraine. BoNT was shown to decrease the
expression of pain-sensitive vanilloid receptors (e.g., transient
receptor potential cation channel subfamily V member 1, TRPV1),
which are up-regulated in sensitised sensory neurons [15]. This is

because those receptors are expressed to the cell membrane
through the fusion mechanism mediated by the SNARE complex,
the substrate of BoNTs.

It was accidentally found that BoNT injection into corrugator
muscle for removing skin furrows brought about a decrease in the
number of migraine attacks. Since then, a number of clinical trials
with a small number of cases and modest doses have resulted in
equivocal results for migraine. Recently, clinical trials with larger
number of cases and doses of BoNT have successfully reduced the
number of attacks [16—18], followed by its approval in UK and USA.

Intractable pain or complex regional pain syndrome is another
important indication recently added. Patients with these conditions
present with oedematous, painful and immobile limb with skin
areas with allodynia, or abnormally induced pain after light touch.
Repeated injections into these areas subcutaneously result in
gradual improvement of allodynia and pain, followed by decreased
oedema and increased mobility. It was also found that post-stroke
pain including thalamic pain also responds to subcutaneous BoNT
injections made into areas with allodynia [19].

2.3. Overactive bladder (OAB)

Urinary problems are very common in the elderly. Many people
are affected by urinary urgency, which can be highly bothersome.
Urgency is the cornerstone symptom of overactive bladder (OAB),
commonly occurring in conjunction with urinary frequency and
nocturia. Once other medical causes of similar symptoms have been
excluded, first-line OAB management comprises fluid-intake advice
and bladder training, supplemented by antimuscarinic drugs, if
necessary. BoNTs are currently explored as an alternative therapy
[20,21]. The injection into the inner surface of the bladder was
shown to down-regulate the expression of TRPV1 and muscarinic
Ach receptors, which trigger destrusors. Despite the technical
difficulties, this technique will be widely used for these patients in
the near future.

2.4. Epilepsy

Experimental pieces of evidence suggest that BoNT suppresses
glutamate release in the central nervous system (CNS). Because of
its activity-dependent action, BoNT may be used for managing
intractable epilepsies [22,23]. Abnormal excitation at the epileptic
foci is associated with large glutamate-induced excitatory post-
synaptic potentials (EPSPs) that drive cortical neurons for lateral
spread. BoNT would selectively suppress these active neurons,
leaving the rest of the neurons unaffected. It would therefore be
expected that BoNT suppresses neurons at the foci, while the rest of
the neurons function normally. This method may become a substi-
tute for surgical resections of the affected brain tissue. The largest
problem would be the drug-delivery, and stereotactic device and
cerebrospinal fluid (CSF) injections are now being contemplated.

In conclusion, BoNT is increasingly used for varieties of condi-
tions including cosmetic uses, muscle hyperactivity, hyperhydrosis,
pain, OAB and epilepsy. It will become a major arm of neuro-
modulating treatment for neurological diseases.
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Although there are some newly developed options to treat dystonia, its medical treat-
ment is not always satisfactory. Zolpidem, an imidazopyridine agonist with a high affinity
on benzodiazepine subtype receptor BZ1 (w1), was found to improve clinical symptoms
of dystonia in a limited number of case reports. To investigate what subtype of dystonia
is responsive to the therapy, we conducted an open label study to assess the efficacy
of zolpidem (5-20 mq) in 34 patients suffering from miscellaneous types of dystonia using
the Burke~-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Patients were entered into the
study if they had been refractory to other medications as evaluated by BFMDRS (no change
in the previous two successive visits). After zolpidem therapy, the scores in the patients
as a whole were decreased from 72479 to 5.54+5.0 (P =0.042). Patients with general-
ized dystonia, Meige syndrome/blepharospasm, and hand dystonia improved in the scale by
278,178, and 31.0%, respectively, whereas no improvement was found in cervical dystonia
patients. Overall response rate among patients were comparable to that of trihexyphenidyl.
Zolpidem may be a therapeutic option for generalized dystonia, Meige syndrome, and hand
dystonia including musician’s. Drowsiness was the dose-limiting factor.

Keywords: generalized dystonia, Meige syndrome, hand dystonia, zolpidem

HETRODUCTION
Dystonia is a syndrome of sustained muscle contractions causing
twisting and repetitive movements or abnormal postures (¥zkir:
341). Although there are several options to treat dystonia,
its medical treatment is notoriously difficult and often unsuccess-
ful. Zolpidem, an imidazopyridine agonist w1th a hlgh afﬁmty to
benzodiazepine subtype receptor BZ1 (w1; Hai 30,
is reported to 1mprove basal ganglia dlsease mcludmg Parklnson s

disease
do :

o i

Despite these case reports, zolpidem has not been tested ina Iarge
number of patients with various subtypes of dystonia. Here we
report two dystonia patients who improved remarkably by oral
zolpidem therapy, and assessed treatment outcome of zolpidem
in 34 medically intractable patients suffering from miscellaneous
types of dystonia, in order to determine what subtypes of dystonia
are good candidates for zolpidem trial.
MATEMIALE AND METHOUS
PATIENTS
Dystonia patients were selected, not in randomized, nor con-
trolled design, from those seen at Tokushima University Hos-
pital and Takeda General Hospital, Japan. The diagnosis of pr1—
mary dystonia was made according to standard criteria (4}
3i4): Major exclusion criteria were the presence of
brain lesion in basal ganglia detected by 1.5T magnetic reso-
nance image and the past history of antipsychotics administra-
tion. We enrolled 34 patients with dystonia, who were treated

#t alb,

with trihexyphenidyl (4-12 mg/day), clonazepam (0.5-3 mg/day),
baclofen (15-60 mg/day), and others (9 generalized dystonia; 10
Meige syndrome/blepharospasm; 7 cervical dystonia; 8 hand dys-
tonia). All patients were refractory to further dose increases of oral
medications other than zolpidem. Their doses were unchanged if
continued in the zolpidem trial. Of all, 23 patients were resistant
to botulinum toxin type A (OnabotulinumtoxinA: 50-200 IU, 0.5—
8 ml) injections. The refractoriness was evidenced by the lack of
improvement in the Burke-Fahn—Marsden Dystonia Rating Scale
(BEMDRS) in the last two visits. All focal dystonia patients (Meige
syndrome/blepharospasm, cervical dystonia, and hand dystonia)
did not spread to multiple body parts during 1year follow up.
One patient underwent palidal stimulation before entry. Their
clinical characteristics are summarized in Table 1. Their mean age
was 48.8 £ 15.8 years; mean disease duration was 5.2 & 5.1 years.
Zolpidem was started at 10 mg/day (once a day in the evening),
later increased or decreased in dosage (5-20 mg/day: once or twice
a day in the morning and evening) depending on the tolerability
and the benefit. The mean dosage of zolpidem was 11.2 + 5.12 mg.

ASSESSMENTS
All patients were assessed before and 1month after zolpidem
administration using BEMDRS, including the Dystoma Movement
Scale (Part I) and Disability Scale (Part II; s} . IBEE),
We defined the global i 1mprovement as follows; more than 40%
improvement in BEMDRS as “remarkable improvement,” less than
40% improvement as “mild improvement,” and no change in the
scale as “ no improvement.”
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Table 1| Patients’ summary.

Generalized dystonia Meige/blepharospasm Cervical dystonia Hand dystonia Total

(n=9) (n=10) (n=7) (n=8) (n=234)
Gender (male/female)  3M/6F 6M/4F 7M/OF 5M/3F 21M/13F
Age 38.3+19.4 60.6+9.6 45.7+£14.4 4844101 48.8+£15.8
Duration (years) 46+68 3.6+3.2 6.0+4.9 74+5.2 52+5.1
BFMDRS: before 16.8+10.0 6.2+5.4 24+11 29+2.0 72+79
BFMDRS: after 11.4+5.7 5.1+3.0 24411 2.0+0.9 *5545.0
Zolpidem (mg/day) 12.2+6.2 12.0+4.8 10+£0 8.8+5.1 10.9+4.8
BTX 6 10 6 1 26

*P=0.041 vs before administration (t-test).

Standard protocol approvals, registrations, and patient consents
This study was approved by JSPS Grants-in-Aid for Scientific
Research (No. 21390269), and informed consent was obtained
from all patients.

Data analysis
Statistical analyses were made using ¢-test, results were considered
significant at a level of P < 0.05.

REBULTS

CASE REPORTS

Case 1

A 36-years-old man, who was a clarinet player, had 1-year his-
tory of cramps during the performance. His physical condition
and mental condition was normal, and there were no neurologic
abnormalities. At the age 35, he noticed an abnormal cramp on
the left little finger during clarinet performance. The symptoms
gradually worsened over time, finally he became no longer able to
play the clarinet in the concert. He had been on medications with
trihexyphenidyl up to 12 mg/day and clonazepam (1-3 mg/day)
with no benefits.

At the age of 36-years-old, we tried zolpidem on him, which
improved his symptoms dramatically to the extent that he had
no problems in the performance. He took 10 mg of zolpidem
before playing the clarinet, and found the beneficial effect within
30 min, its durations of action being about 3 h. One year later, he
was still using zolpidem 10 mg once or twice a day for occasional
concert.

Case2

A-20-years-old woman, who was a softball player, had 1-year his-
tory for lower limbs dystonia. Her physical condition and mental
condition was normal, and there were no neurologic abnormalities
except for dystonic symptoms on the bilateral lower limbs. At the
age 19, she noticed an abnormal inversion of the left ankle during
walking. The symptoms gradually worsened, and she developed
difficulty in walking because of her lower limbs muscle hyperactiv-
ity. Her dystonic symptoms did not change with or without shoes.
She was tried medication with trihexyphenidyl (up to 12 mg/day),
baclofen (up to 30 mg/day), and gabapentin, with no effect. At age
20, she became unable to walk, or to bend her knees and ankles.
She was referred to us with a diagnosis of lower limb dystonia
(Figure 1).

We treated her with zolpidem oral monotherapy with a dose
up to 20 mg/day. Three days after the therapy, she found it easy to
bend her right knee and could stand without any help. She could
walk on day 7, and finally she could climb up and down stairs on
day 14. One year later, she was still on zolpidem, with continued
benefit.

Effects of zolpidem in miscellaneous types of dystonia

Table 1 depicts summary of the patients. BEMDRS in total dysto-
nia patients were significantly decreased from 7.2+ 7.9t05.5+ 5.0
(P=0.041).

As for subtypes of dystonia, the scale decreased on the aver-
age in generalized, Meige syndrome/blepharospasm, and hand
dystonia (Table 1). After zolpidem, 3 of 9 generalized dystonia
(33%), 2 of 10 Meige syndrome/blepharospasm (20%), and 3 of
8 hand dystonia patients (38%) improved in the motor subscale
of BEMDRS (generalized dystonia; 29-75% improvement, Meige
syndrome/blepharospasm; 33—39% improvement, hand dystonia;
33-67% improvement), whereas cervical dystonia patients did not.
Overall, the present study showed that 8 of 34 dystonia patients
(24%) responded to zolpidem.

Adverse effects associated with zolpidem were drowsiness,
amnesia, and abnormal behavior (somnambulism). Moderate or
severe drowsiness occurred in eight patients (three cases of respon-
ders and five non-responders), and transient amnesia occurred in
four patients (two responders and two non-responders).

DIBCUSEION
Here we described the outcome of zolpidem trial in patients with
miscellaneous types of dystonia, whose symptoms had been refrac-
tory to other medications. In all dystonia patients, 24% of the
patients responded to zolpidem, and remarkable improvements
were found particularly in generalized and hand dystonias. No
improvement was found in cervical dystonia. Despite the differ-
ent outcome measures and clinical protocols, the present data
are comparable to the efficacy of trihexyphenidyl in a previous
study reporting improvements in 44% for generalized dystonia
patients, 63% for Meige syndrome/blepharospasm, and 28% for
focal dystonia patients (Jabbmri ot :
Our result has a limitation that the design was not a ran-
domized controlled trial. Indeed this is a pivotal study so that
the conclusion regarding efficacy of zolpidem should be cau-
tious and other studies are needed to replicate our results, It is
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FIGURE 1 | (A) It is before treatment. She could not walk without help
because of left dominant lower limbs dystonic spasm. (B) We started

zolpidem 20 mg/day monotherapy, and at the day 14, she could walk without
any support, despite the persisting inversion of the left ankle.

however unlikely that the beneficial effects are entirely placebo-
based, because the patients had been equally tried on other med-
ications with no benefit before enrollment. Moreover, improve-
ment in the scale of the whole patients was significant. We
therefore consider that zolpidem is a useful option for treating
dystonia.

It was reported that some of adult onset primary focal dystonia
patients spread proximally or contralaterally or become general-
ized within several years of symptom onset (%+ei al., 2006).
For that reason, we assessed all patients using BFMDRS, one of
the major clinical dystonia scales for generalized dystonia, in this
study. It would be desirable to evaluate on the scale suitable for
each types of dystonia in future trials, with divided subtypes, being
randomized, blinded, and placebo-controlled.

For the patients with generalized dystonia, Meige syn-
drome/blepharospasm, and hand dystonia, mild to remark-
able improvements (29-75% improvement in BFMDRS) were

4

observed, whereas no significant changes were found for cervi-
cal dystonia after zolpidem (Figure 2). Despite the small number
of cases, blepharospasm was also refractory. Even within the same
subtype, responsiveness to zolpidem considerably varied among
patients.

We used zolpidem 5-20 mg/day for the patients with dystonia,
and drowsiness was tolerated for most of the subjects. Eight out
of 34 subjects complained relatively persistent drowsiness (3 cases
of responders and 5 of non-responders). No correlation between
drowsiness and effects to dystonia syndrome was found. It is how-
ever possible that doses used in this study may not be large enough
to obtain the maximal benefit, because the previous studies used
the doses up to 50-70 mg/day (Zayse
2008),

Focal hand dystonia (writer’s cramp and other occupational
cramps) is a primary dystonia produced by the excessive co-
contraction of antagonistic muscles of the hand and forearm

ot gt b, 2004 ‘/{\ygigc} e al,

R E s
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FIGURE 2 | Before and 1 month after zolpidem administration,

improvement in the motor subscale of Burke-Fahn-Marsden

? &

o} {10}

patients with patients with generalized dystonia, Meige syndrome/
blepharospasm, cervical dystonia, and hand dystonia experienced

Dystonia Rating Scale (BFMDRS). *Case 1; **Case 2; [9][10],
blepharospasm.

3k 1, 1%82). In our study, 38% of the hand dys-
tonia patients improved after zolpidem. In past study, botulinum
toxin treatment of hand dystonia showed less favorable benefits
than cervical dystonia or blepharospasm (¥arg ¢t i, 19%4). Musi-

cians’ cramp or dystonia of other highly skilled performance are
even more difficult to obtain the satisfactory outcome. Zolpidem
is worth being tried on such patients as Case 1 in our study.
Zolpidem is an imidazopyridine agonist with a high affinity on
the benzodlazeplne site of GABAA receptors containingal subunlt

of Z‘;A, A

1), equivalent to w1l subtypes, present in
interneurons in all brain areas including the hlppocampus, the
cortex, and the cerebellar Purkinje cells (& ; i
1%%g). Recently a high dens1ty of zolpidem binding sites was found
in the thalamus ( 2O

»#) and the subthalamic nucleus
#37), and poss1bly the globus pallidus (i L

B 14). After binding to these sites, zolpldem
could enhance 1nh1b1tory pathways in the basal ganglia motor loop,

Lack of responsiveness in cervical dystonia is unexplained in
the present study. Intriguingly, the clinical improvement in cervi-
cal dystonia after globus pallidus internus deep brain stimulation
(GPi-DBS) was reported to be less satisfactory than other sub-
types (Siary ¢ al. 2047). It might be possible that
GPi-DBS and zolpidem could have similar mechanisms of action.

In conclusion, zolpidem may be a useful option for treating gen-
eralized/hand dystonias, and Meige syndrome who do not respond
to botulinum toxin or oral medications.
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accounting for the clinical improvement in dystonia.
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Type Al but Not Type A2 Botulinum Toxin Decreases the Grip Strength
of the Contralateral Foreleg Through Axonal Transport
From the Toxin-Treated Foreleg of Rats
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Abstract, The adverse effects of botulinum LL toxin and neurotoxin produced by subtype A1
(AILL and AINTX) are becoming issues, as the toxins could diffuse from the toxin-treated

(ipsilateral) to contralateral muscles. We have attempted to produce neurotoxin from subtype A2
(A2NTX) with an amino acid sequence different from that of neurotoxin subtype Al. We measured
the grip strength on the contralateral foreleg as an indicator of toxin spread from the ipsilateral to
contralateral muscles. Doses of 0.30 log U or above of AILL and AINTX reduced the contralateral
grip strength, whereas a dose of 0.78 log U of A2NTX was required to do so. We investigated the
route of toxin spread using denervated, colchicine-treated, and antitoxin-treated rats, A1LL was
transported via axons at doses higher than 0.30 log U and via both axons and body fluid at about
0.80 log U or a higher dose. Interestingly, A2NTX was transported via body fluid at about 0.80
log U or a higher dose, but not via axons to the contralateral side. It was concluded that AILL and
AINTX decreased the grip strength of the toxin-untreated foreleg via both axonal transport and

~ body fluids, while A2NTX was only transported via the body fluid.

Keywords: botulinum toxin, grip strength (rat), neurotomy, colchicine, axonal transport

Introduction

are protein complexes containing a 150-kDa neurotoxin
(NTX) and nontoxic components. Type A protein com-

Botulinum toxins have been researched and developed
for use as important therapeutic agents for neurological
disorders such as blepharospasm, hemifacial spasm, vari-
ous dystonias, and overactive bladder (1 — 3). The toxins
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plexes, called progenitor toxins, have molecular weights
of 900 (LL toxin), 500 (L toxin), or 300 (M toxin) kDa
(4). LL and L toxins have nontoxic components exhibit-
ing hemagglutinin (HA) activity, whereas the nontoxic

“components of M toxin have no HA activity. The NTX

component consists of heavy (100 kDa) and light (50
kDa) chain components held together by a disulfide bond
(5). The heavy chain contains the translocation (N-termi-



