Intravital Imaging of IL-1p Production in Skin
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IL-1 is a prototypic inflammatory cytokine that has pathogenic roles in various skin disorders. Although
Langerhans cells (LCs) have been reported to express 1L-13 mRNA upon application of contact sensitizers, it
remains unclear whether other cell types produce IL-1§ in skin. Thus, we sought to directly identify IL-1p-
producing cells in living animals by construction of transgenic mice expressing DsRed fluorescence protein
gene under the control of IL-1B promoter. Little DsRed fluorescence signal was detected in skin under steady-
state conditions. Striking increases in DsRed signal were observed after topical application of a contact
sensitizer, oxazolone, which also induced markedly elevated IL-1f mRNA and protein expression. DsRed signal
was expressed primarily by CD457/CD11b ™ myeloid leukocytes in both epidermal and dermal compartments
and was detected only in small fractions of epidermal LCs. Interestingly, DsRed ™ cells emerged preferentially as
clusters around hair follicles. Intravital confocal imaging experiments revealed highly motile potentials of
DsRed " cells—they constantly crawled around hair follicles via amoeba-like movements with a mean velocity of
1.0 04ummin™ (epidermis} or 2.7+ 1.4pmmin™ (dermis). The newly developed in vivo imaging system

represents a useful tool for studying spatial regulation of IL-1B production in skin.
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INTRODUCTION

Cytokines of the IL-1 family function as potent mediators and
regulators of host inflammatory responses to infection and
tissue injury. Of the 11 members of this family, 1L-1B is the
best-studied cytokine, with diverse phenotypes reported for
JL-1B-deficient mice (Dinaretlo, 2009). On exposure to
pathological stimuli, IL-18 is produced by activated leuko-
cytes such as neutrophils, monocytes, macrophages, and
dendritic cells (DCs) (O'Neill, 2008), leading to induction
and enhancement of inflammatory responses. Bioactive IL-1J
(18 kDay is generated by caspase-1-dependent cleavage of an
inactive precursor (31kDa), pro-IL-1§ (Cerretti et al., 1992;
Thornberry et al., 1992). Recent studies have revealed that
the inflammasome, the intracellular caspase-1-activating
complex, serves as a key intracellular compartment for
processing and secretion of bioactive IL-1§ (Dinarello,
2009; Marlinon el al., 2009). Under inflammatory conditions,
activation of the P2X7 receptor with extracellular ATP triggers
the assembly of inflammasome components, resulting in the
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formation of active caspase-1 from procaspase-1. It should
be stated, however, that pro-IL-1B may be processed in a
caspase-1-independent manner by several proteases, such as
neutrophil proteinase-3, elastase, matrix metalloprotease 9,
and granzyme A, illustrating highly complex regulatory
mechanisms (Fantuzzi et al, 1997; Coeshotit et al, 1999;
Sugawara et al., 2001).

As an outermost lissue, the skin is constantly exposed to a
variety of environmental insults, such as harmful chemicals,
physical stimuli, and infectious microbes. It is well known
that IL-1 functions as a key regulator of local host responses to
such pathological stimuli. As early as in the early 1980s, an
IL-1-like activity, termed the “epidermal cell-derived thymo-
cyte-activating factor,” was found to be produced in the skin
(Luger et al, 1982; Kupper et al, 1986; Kupper, 1990).
Primary cultures and cell lines derived from keratinocytes
and Langerhans cells (LCs) in the epidermis, as well as from
fibroblasts, endothelial cells, and DCs in the dermis, have
been reported to produce IL-1x and/or IL-1 upon in vitro
exposure to various stimuli (Enk and Katz, 1992; Takashima
and Bergstresser, 1996). With regard to biological activities of
IL-1 in skin, IL-1p-deficient mice were reported to manifest
impaired contacl hypersensitivity responses to trinitrochlor-
obenzene, which was applied topically for sensitization and
injected into the footpad for elicitation (Shornick et al., 1996;
Nazkae et al, 2001; Nambu et al, 2006). In a standard
contact hypersensitivity model (in which trinitrochloroben-
zene was applied topically for both sensilization and
elicitation), however, reduced ear swelling responses were
observed in IL-1a-deficient mice, bul not in IL-1B-deficient
mice (Shomick et al., 1996; Nakae et al., 2001; Nambu et al.,
2006). Conversely, the same group subsequently reported
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significantly impaired delayed-type hypersensitivily res-
ponses 1o foreign protein antigens in I1L-1B-deficient mice
iShornick el al, 1996; Nakae et al,, 2001; Nambu et al.,
2006). Interestingly, severely attenuated contact hypersensi-
tivity responses were also observed in caspase-1-deficient
mice {Antonopoulos et al., 2001; Watanabe et al., 2007) and
in wild-type (WT) mice after adminisiration of neutralizing
antibodies against 1L-1B, but not against IL-1a (Enk et al,
1993). Although relative conlributions between IL-12 and
IL-1B remain somewhat controversial, it is reasonable to
state that IL-1 being produced in the skin serves as an
indispensable proinflammatory mediator. Nevertheless, litlle
information has been available with regard to spatiotemporal
regulation of IL-1 production in living animals.

We recently found rapid and profound 1L-18 promoter
activation in DCs upon in vilro exposure to a variety of
chemical and biological agents. In those studies, we used a
4.1kb 5'-flanking fragment isolated from the murine 1L-18
gene to drive the expression of the yellow fluorescence
protein gene in a stably transduced DC clone. The resulting
DC biosensor clone has enabled us to perform unbiased
screening of a wide variety of natural and synthetic
compounds for their potential to trigger IL-1p production
{Mizumoto et al., 2005). 1n this study, we sought to construct
an in vivo reporter system by using the same IL-1 promoter
to drive the expression of a fluorescence marker gene. The
resulting transgenic mice, in combination with advanced
intravital optical imaging technologies, have indeed allowed
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us o directly visualize IL-1B promoter activation in living
animals. In this study, we reporl spatial regulation of IL-1p
promoler activation, as well as the cellular identities and
motile activities of IL-1B-producing cells in inflamed skin in
an animal model.

RESULTS AND DISCUSSION

Detection of IL-1p promoter activation in hapten-painted skin
We generated a transgenic mouse line expressing the red
fluorescent protein DsRed gene under the control of the
4.1kb mouse IL-1B promoter. The plL1-DsRed transgenic
mice showed no apparent developmental abnormality.
Topical application of a skin sensitizer, oxazolone (OX), a
standard protocol widely used to trigger IL-1-dependent
activation of epidermal-resident LCs (Cumberbatch et al.,
1997), triggered time-dependent 1L-1f mRNA expression in
the pIL1-DsRed transgenic mice (Figure 1a). The magnitude
of IL-18 mRNA induction in these mice was comparable to
that observed in WT mice (Figure 1b). Tissue extracts
prepared from OX-painted ear skin showed large amounts
of 1L-1B proteins as measured by ELISA (Figure 1c). Time-
course experiments showed rapid (6 hours) and robust 1L-18
protein production in OX-painted skin with peak responses
observed at 24 hours. Once again, piL1-DsRed transgenic
mice were indistinguishable from WT mice in the magnitude
or kinetics of OX-induced 1L-18 protein expression. No 1L-1B
MRNA or protein induction was detected after topical
application of vehicle alone.
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Figure 1. Correlation between DsRed fluorescence signals and 1L-1 production. (a; piL1-DsRed transgenic mice were trealed by topical application of
OX iclosed symbols; or vehicle alone topen symbols). At the indicated time points, the ear skin samples were examined for IL-13 mRNA expression by
real-time PCR. {b; Ear skin samples were isolated from WT mice or piL1-DsRed transgenic mice & hours afler topical application of OX or vehicle alone.
The samples were then examined for IL-18 mRNA expression by real-time PCR. ic) WT mice itriangles) or plL1-DsRed transgenic mice icircles) received
topical application of OX iclosed symbols; or vehicle alone iopen symbols). At the indicated time points, the ear skin samples were examined for (L-15
protein levels by ELISA. id} The same ear exiract samples analyzed in panel b were tested for DsRed fluorescence signals by spectrophotometric analyses.
ie; BM-DCs propagated from plL1-DsRed transgenic mire were pulsed with 1LPS (ircles; or vehicle alone tiriangles) for 1 hour. Afier extensive washing,

the cells were cultured for the indicated periods in the absence of LPS to measure 1118 release into the culture supernatanis by ELISA iclosed symbols) and
DsRed expression imean fluorescence intensity, open symbolst by flow cytometry. Data shown are the means £ SD from three mice per group i**F<0.01%
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To determine whether OX treatment also triggered IL-1p
promoter-driven DsRed expression, we measured DsRed
fluorescence signals in the same ear skin extracts by a
spectrophotometer {Figure 1d). Minimal fluorescence signals
were detected in ear skin samples treated with vehicle alone.
OX  treatment markedly increased DsRed signals in
12-24hours, with peak responses observed at 48 hours. No
significant increase in DsRed signals was detected in WT mice
even after OX application, indicating specificity. Although the
time kinetics for DsRed induction in skin showed a lag time of
6-12 hours behind 1L-1f protein expression, which presumably
represents the interval required for polymerization of newly
synthesized DsRed proteins, our findings validated the
subsequent use of the newly generated transgenic mice for
studying IL-1B promoter activation in living animals.

The discordance of time kinetics observed between 1L-18
protein production and DsRed expression might prevent us
from studying the resolution phase of inflammatory res-
ponses. To test this, we compared time kinetics of IL-1p
protein production versus DsRed signals in bone marrow—
derived DCs (BM-DCs) propagated from plL1-DsRed trans-
genic mice (Figure 1e). Short-term pulsing with LPS induced
rapid IL-1P protein production within 3 hours; 1L-1p levels
reached a peak at 624 hours and then declined sharply at
48 hours, with a relatively short half-life of 24 hours. By
contrast, DsRed signals became detectable only at 6hours,
reached a plateau at 12-24 hours, and then declined more
slowly, with an estimated half-life of 24-48hours. These
observations imply a major limitation of our experimental
system; i.e., one can assess IL-1f protein production by
measuring DsRed fluorescence signals only in the induction
phase of inflammation.

Surface phenotypes of DsRed ~ cells emerging in inflammatory
skin lesions

Enk and Katz {1992) reported almost two decades ago that
topical application of contact sensitizers triggered rapid and
abundant IL-1B mRNA expression in the epidermal compart-
ment and that IL-1§ mRNA was expressed predominantly by
an MHC class H-positive epidermal cell fraction, i.e., LCs.
The latter observation was made by measuring IL-18 mRNA
expression by semiquantitative RT-PCR in epidermal cell
suspensions afler complement-mediated deletion of MHC
class ll-positive cells. To directly examine cell-surface
phenotypes of cells expressing DsRed fluorescence signals,
we harvested ear skin samples at different time points after
OX painting, separated the epidermis from underlying dermis
by enzymatic treatment, and then prepared single-cell
suspensions from the two compariments independently. Flow
cylometric analyses of the resulting epidermal cell suspen-
sions revealed a time-dependent increase in the number of
DsRed ™ cells, with a sharp peak observed at 48 hours after
OX treatment {Figure 2a). Most (> 85%) of the DsRed ™ cells
isolated from the epidermis were found to express a common
leukocyle marker, CD45, although a small fraction of CD45™
epidermal cells (i.e., keratinocytes) showed DsRed signals at
maodest levels (Figure 2b). The CD45 ™ cells recovered before
OX treatment, which represent two epidermal resident
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leukocyte populations (LCs and epidermal y8 T cells),
expressed no detectable DsRed signals constitutively. The
number of CD45° cells markedly increased after OX
trealment, perhaps reflecting immigration of inflammatory
leukocytes into the epidermal compartment. Importantly,
DsRed signals were clearly delected in large fractions
(53-61%) of the CD45 ™ cells recovered after OX painting.
Virtually all DsRed “/CD45 ™ cells expressed CD11b, which
is displayed by many leukocyte subsets of the myeloid
lineage (Figure 2c). More than 75% of the DsRed ' /CD45 ~
cells also displayed high levels of Gr-1, a conventional
marker of neutrophils. Although the overall phenotype of the
CD457/CD11b*/Gr-1"8" cells instantaneously suggested
their identity as granulocytes, some of them may represent
“myeloid suppressors” {which inhibit DC-induced T-cell
activation) (Gabrilovich and Nagaraj, 20091 and/or ““inflam-
matory monocytes’ {which give rise to DCs} (Auffray et al.,
2009). The remaining DsRed */CD45 * /Gr-1 " cells prob-
ably included monocytes/macrophages and certain DC
subsets. In fact, F4/80 and MHC class 11 molecules were
detected on relatively small fractions of the CD45 " /DsRed
cells (Figure 2¢). These results implied that DsRed signals
were produced by selected subsets of myeloid inflammatory
leukocytes infiltrating the epidermis after OX painting,

Dermal cell suspensions prepared in parallel also showed
time-dependent increases in the number of DsRed™ cells
with a sharp peak at 48 hours (Figure 3a). Virtually all of the
DsRed™ cells recovered from the dermal compartment also
expressed CD45 (Figure 3b). Moreover, the CD45 " /DsRed
cells uniformly displayed CD11b, indicating their myeloid
origin (Figure 3¢). Interestingly, only small fractions (18-20%)
of the DsRed T/CD45 ~ cells expressed Gr-1 at high levels, in
contrast to our ohservations of the epidermal cell suspen-
sions. Instead, Gr-1 was detected at low levels in a majority
65-75%) of the DsRed " /CD45 * cells. Similarly, F4/80 and
MHC class 1l were detected in 36-46% and 10-12% of the
DsRed " /CD45 © cells, respectively. Thus, it seems that
DsRed signals were expressed by relatively heterogeneous
leukocyle subsets of myeloid origin ii.e., granulocytes,
monocytes/macrophages, and DCs) in the dermal compart-
ment after OX painting.

Detection of DsRed ™ cells in fixed skin samples

In the next set of experiments, we sought to directly visualize
the cells expressing DsRed fluorescence signals in the tissue.
For this purpose, we harvested ear skin at different time poinis
after OX application, fixed the samples with paraformalde-
hyde, and then examined the whole-ear specimens under a
macro-zoom fluorescence microscope. Consistent with our
findings from spectrophotometric and flow cylometric
analyses, very few DsRed ™ cells were found in skin samples
harvested before OX painting from plL1-DsRed transgenic
mice. DsRed ¥ cells became clearly detectable 12 hours after
OX treatment (Figure 4a). Interestingly, most DsRed ™ cells
emerged as clusters around hair follicles. The number of
DsRed™ cells increased thereafter, reaching a peak at
48 hours. Consistent with our observations in spectrophoto-
metry and flow cytometry analyses, the DsRed signals
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Figure 2. Surface phenotype of DsRed” cells emerging in the epidermal compariment. (a} Epidermal cell suspensions were prepared from the ear skin

of plL1-DsRed transgenic mice al the indicated lime points after lopical application of OX and examined for DsRed expression. (b Epidermal cell suspensions
from WT mice or piL1-DsRed transgenic mice were also stained with anti-CD45 mAb or isotype-matched control IgG and then examined for expression of
CDA45 [y axis} and DsRed (x axisk. (¢} The CD457 populations in the above experiments were examined for the expression of the indicated surface markers
(y axis; and DsRed ix axis}.

declined sharply at 72hours. No DsRed™ cells were were also observed afler topical application of a second
observed in WT mice even after OX painting, again contact sensitizer, 2, 4-dinitrofluorobenzene (Figure 4c).
indicating specificity (Figure 4b). Clusters of DsRed ™ cells  Moreover, inflammatory skin lesions induced by application
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Figure 3. Surface phenotype of DsRed” cells emerging in the dermal compartment. @ Dermal cell suspensions were prepared from the ear skin of pIL1-DsRed
transgenic mice al the indicated lime points after topical application of OX and examined for DsRed expression. ib Dermal cell suspensions from WT mice or

pIL1-DsRed transgenic mice were also slained with anti-CD45 mAb or isotype-matched control IgG and then examined for expression of CD435 1y axis; and DsRed
ix axis. 1€ The CD45 7 populations in the above experimenis were examined for the expression of the indicated surface markers (y-axis: and for DsRed ix axis!.

of a skin irritant, lactic acid, or by repeated tape stripping To record images of DsRed ™ cells with higher resolution
were also characterized by the emergence of large numbers  and to determine their z-axis locations, we next examined
of DsRed™ cells. paraformaldehyde-fixed ear specimens under a confocal
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Figure 4. Emergence and distribution of DsRed™ cells in skin under inflammatory conditions. (a} Al the indicated time points after OX treatment of pIL1-DsRed
transgenic mice, ear skin samples were harvested. Data shown are images acquired with a macro-zoom fluorescence microscope. tb) WT mice were treated
with OX, and the car skin samples harvested at 24 hours were examined under a macro-zoom fluorescence microscope. (¢} -[IsRed transgenic mice
were trealed with topical application of 2,4-dinitrofluorobenzene or lactic acid, or with repealed tape stripping. The ear skin samples harvested at 24 hours
were examined under a macro-zoom fluorescence microscope. Bar ia~ci = 1,000 pm. d} At 24 hours after OX treatment of pll.1-DsRed transgenic mice, the ear
skin samples were harvested, lixed with 2% paraformaldehyde, and then examined under a confocal microscope. Data shown are compiled x— plane images
of DsRed ™ celis in the indicated 5 pm z-axis depth range from the skin surface. (e} Hematoxylin and eosin histology of ear skin samples harvested 24 hours
after OX painting. Asterisks indicate hair follicles. Bar=100um.
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microscope (Figure 4d). Sequential x+ plane images scanned
at different z-axis levels revealed that some keratinocytes
showed DsRed fluorescence signals at marginal levels,
producing cobblestone-like patterns in the epidermal com-
partment {up to ~20pm in depth from the skin surface).
Within the epidermis, DsRed™ signals appeared as small
aggregates associated with hair shafts, which were readily
identifiable with autofluorescence signals. Interestingly, a
small number of dendritic-shaped epidermal cells character-
ized by extension of several elongated processes exhibited
strong DsRed signals. In the dermal compartment, most
DsRed * cells were preferentially found around hair follicles
at the z-axis depth range from ~ 20 to ~ 50 um. Hematoxylin
and eosin staining of vertical sections revealed multiple
foci of dense infiltration by mononuclear and polymorpho-
nuclear leukocytes around hair follicles in OX-treated ear
skin (Figure 4e).

Real-time visualization of motile behaviors of DsRed ™ cells in
living animals

To visualize IL-1B-producing cells in living tissue, we
anesthetized pIL1-DsRed transgenic mice and recorded static
3D images of DsRed ™ cells in the OX-painted ear skin under a
confocal microscope. Once again, compiled x- plane images
showed clusters of DsRed™ cells preferentially around hair
follicles {Figure 5aj, and z-axis scanning and 360" rotation of
the images further revealed that most of the DsRed ™ cells were
located in the dermal compartment (see Supplementary Movies
S1-53 online). Once again, relatively small numbers of
DsRed * cells showing a characteristic morphology of LCs
were observed in the epidermal compartment (Supplementary
Movie 52). Thus, we concluded that inflammatory leukocyles
account for a majority of DsRed”™ cells emerging in the
inflamed skin of living animals.

A key question was whether the observed clusters of
DsRed ™ cells around hair follicles might be caused simply by
particularly “leaky” blood vessels in those anatomical sites.
To test this, we intravenously injected FITC-dextran {DX) into

1 4

Figure 5. Location and movement of DsRed * cells emerging in
inflanumatory skin lesions. ia} At 24 hours after OX treatment, pil.1-DsRed
transgenic mice were anesthelized and examined under a confocal
microscope. Data shown are compiled x- plane images of DsRed* cells in
the indicated 5pm z-axis depth range from the skin surface. Bar = 100 um.
{b; At 24 hours afier topical application of OX or vehicle alone, FITC-DX was
intravenously injected inio piL1-DsRed transgenic mice to visualize blood
vessels. The images were recorded 5 minutes after FITC-DX injection.

Bar = 100 pm. (¢} Al 24 hours after 30-minute-long confocal imaging sessions
or OX treatment, ear skin extracts were examined for [L-1p protein and DsRed
signals. Data shown are the means % 5D from three mice per group

=P <0.01. id Al 24 hours after OX treatment, plL1-DsRed transgenic mice
were anesthetized to record confocal fluorescence images every 2 minutes for
6O minutes. The images represeni the locations of DsRed ™ cells at the
indicated time points ileft and right panels; with migratory paths of individual
DsRed * cells imiddle panel:. Bar = 100 um. e} The velocity of cach DsRed”
cell was calculated from the above tracking experiments. Velocity values
were then compared between the epidermal compartment {up to 18 pm from
the skin surface} and the dermal compartment (1835 pm from the skin
surfacel. Bars indicate mean velocity values (**P<0.011.
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plL1-DsRed transgenic mice 24 hours after OX painting on
the ear. As shown in Figure 5b, significantly dilated blood
vessels were readily observed in OX-treated skin, whereas
leakage of FITC-DX was noticed only occasionally. Another
concern was whether the experimental procedures used for
confocal imaging (i.e., laser excitation, tissue handling, and
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administration of anesthetics) would deliver pathogenic
signals to the imaging site, thereby causing artificial
inflammatory responses. To test this possibility, we recorded
3D images in the ear of a plL1-DsRed transgenic mouse and
determined whether such procedures would cause immedi-
ate or delayed skin inflammation. In the absence of OX
application or other proinflammatory stimuli, very few motile
DsRed ™ cells were ohserved at the end of continuous time-
lapse imaging up to 60 minutes {data not shown). Moreover,
we failed to detect significant 1L-18 protein production or
DsRed expression even 24 hours after 30-minute imaging
sessions (Figure 5c). These observations imply that our
confocal imaging protocol enables intravital visualization of
IL-1pB production under relatively physiological conditions.

To assess motile activities of 1L-1B-producing cells, we
next recorded 3D images of DsRed ™ cells every 2 minutes for
60 minutes. Time-lapse videos generated from these data sets
showed that DsRed® cells constantly displaced the cell
bodies via amoeba-like motile behavior (Supplementary
Movie 54). By tracking x-y locations of individual DsRed
cells, we followed the migratory paths of DsRed  cells
within the 60-minute period (Figure 5d). Interestingly,
DsRed ™ cells seemed to be more motile in the dermis than
in the epidermis (Supplementary Movies S5 and $6). In fact,
the mean velocity among DsRed™ cells was significantly
higher in the dermal compartment (2.7 £ 1.4pmmin™", n= 60)
than in the epidermal compartment (1.0£0.4ummin ',
n=25) (Figure 5e). Our intravital time-lapse imaging experi-
ments have demonstrated that myeloid leukocytes, which
presumably produce 1L-18, crawl through the extracellular
matrix around hair follicles in inflamed skin.

Concluding remarks
In this study, we developed a simple experimental system (o
directly visualize IL-1B promoter activation in living animals.
Abundant production of I1L-1p mRNA and prolein, as well as
robust DsRed expression, became delectable in the skin after
~ topical application of contact sensitizers. Flow cytometric
and confocal imaging experiments revealed that DsRed
fluorescence signals were mostly associated with CD45 "/
CD11b " myeloid leukocytes crawling around hair follicles.
Our findings may first seem to be contradictory to the
previous report that an MHC class ll-positive epidermal cell
fraction (i.e., LCs) accounted for a majority of IL-18 mRNA
detected by RT-PCR after application of contact sensitizers
{Enk and Katz, 1992). It should be stated here that they
examined IL-1B mRNA expression only in the epidermal
compartment. Moreover, we also observed that some
DsRed™ epidermal cells exhibited the characteristic pheno-
type and morphology of LCs. Thus, it seems reasonable to
conclude that LCs represent one, but not the only, IL-1p-
producing epidermal cell population in inflamed skin.
Somewhat unexpected was our finding of profound entry
of DsRed ~/CD11b ~/Gr-1"8" leukocytes into both epidermal
and dermal compartments. In this regard, Peters et al. (2008),

using lransgenic mice expressing the enhanced green

fluorescence protein gene under the control of the lysozyme
M promoter, recently demonstrated a rapid and sustained

2

accumulation of CD11b " /Gr-1"8" neutrophils (expressing
no detectable MHC class 11 or F4/80) at the bite sites of
Leishmania-infected sand flies. We now show that DsRed '/
CD11b ™ /Gr-1"#" leukocytes emerge and crawl around hair
follicles in inflamed skin. It remains to be determined whether
those leukocytes are derived from progenitors residing in
hair follicles, which serve as a reservoir for various stem cell
populations (Moore and Lemischka, 2006; Fuchs, 20073, or
whether they simply exit the circulation preferentially through
hair follicle-associated blood vessels. Nevertheless, this study
now provides an important piece of information with regard to
leukocyte trafficking to and within inflamed skin.

It is equally important to point out the major weaknesses
of our study. First, cells expressing DsRed fluorescence
signals do not necessarily represent cells producing biologi-
cally active 18kDa IL-1B protein, because 31 kDa pro-IL-18
protein requires caspase-1-dependent cleavage. In  this
regard, our approach resembles the recent use of human
IL-1B promoter for driving luciferase gene expression
{Li et al, 2008). The resulting transgenic mice were then
monitored for luciferase expression by intravital biolumines-
cenl imaging in a zymosan-induced arthritis model, an
LPS-induced acute peritonitis model, and an OX-induced
contact dermatitis model. Although their experimental system
enabled real-time monitoring of luciferase activities in affected
organs, its spatial resolution was far below the level that we
achieved with confocal microscopy. Second, IL-18 mRNA
and protein expression was readily detected within 6 hours
after OX application, whereas DsRed fluorescent signals
became detectable 12-24 hours after the same treatment. This
apparent time lag probably represents the time interval
required for tetramerization of newly synthesized DsRed
molecules. One should be able to overcome this technical
limitation by using different fluorescence proteins that emit
fluorescence signals in monomeric forms. Likewise, DsRed
signals remained at measurable levels even after IL-1p protein
became almost undetectable—this discordance in time
kinetics, which probably reflects the 24-48 hour difference
observed in the half-life between IL-1B and DsRed, represents
a limitation of our assay system, especially for studying IL-16-
producing cells in the resolution phase of skin inflammation.

In conclusion, the experimentlal system developed in this
study has allowed us to directly monitor the number,
phenotype, location, and movement of IL-1B-producing cells
in inflamed skin in living animals with relatively high spatial
resolution. Recent advances in confocal microscopy, multi-
photon laser scanning microscopy, and green fluorescence
protein lransgenic and knock-in animals have made it
possible to visualize the motile behavior of different
leukocyte subsets in lymphoid and epithelial tissues (Germain
et al., 2006). Our approach now adds another dimension to
such intravital imaging studies by providing key information
on cellular function.

MATERIALS AND METHODS

Construction of plL1-DsRed transgenic mice

A 1.2kb rabbit f-globin gene containing a noncoding intran/exon
was obtained by digesting the pSG-1 expression vecter with BamH|



and Xhol (Toyonaga et al, 1994; Mivazaki et af, 20011 The
fragment was subcloned into the BamHI/Xhol site of pBK-CMV
(Stratagene, La Jolla, CA} to produce the plasmid pBK-CMV-SG.
To generate a red fluorescent protein-expressing vector, a PCR
fragment was amplified from pDsRed-Express-DR plasmid (Clon-
tech, Palo Alto, CAl using the primer set 5-GGGAATTCCGG
TCGCCACCATGGCCTC-3 and 5'-GGAGATCTACACATTGATCC
TAGCAGAAG-3" and was subsequently ligated into a TA-cloning
vector, pCRA-TOPO {Invitrogen, Carlsbad, CAl, and then subcloned
between the £coRl and the Bglll sites of pBK-CMV-SG. The resulting
vector, pBK-CMV-SG-Red, carried a CMV immediate early promoter
upstream of the P-globin intron/exon-RFP fusion gene. The CMY
promoter region was removed by digestion with Vspl and Nhel,
followed by blunting of both ends with Klenow fragment and
self-ligation. The 4,138-bp BamHl fragment of the murine IL-10
promoter was inserted into the BamHl site to generate the
plasmid pBK-SG-iL-1B-Red (Godambe et al, 1995). Plasmid
pBK-SG-IL-1B-Red was digested with Sall and Nott to clear the
vector sequences, and the transgene fragment was purified by
Elutip-D  (Schleicher and Schuell, Keene, NHi. The resulting
DNA was microinjected into fertilized eggs of C57BL/6 mice.
Transgene expression was determined by genomic PCR for DNA
isolated from tail biopsies with specific primers, 5-TGCTGG
TTGTTGTGCTGTCTCATC-3' and 5-CACGTACACCTTGGAGCCG
TACTG-3". The screening results were subsequently confirmed at the
protein level by testing the expression of OsRed fluorescence signals
by peripheral blood mononuclear cells after in vitro stimulation with
LPS. Transgene-positive mice were bred with WT C57BL/6 mice,
and heterozygous offspring were used in this study.

Measurement of IL-1 mRNA and protein expression in skin
samples

To measure IL-1p mRNA expression, total RNA was isolated from
freshly procured ear skin samples using TRIzol reagent {Invitrogeni
and the RNeasy Plus Mini Kit (Qiagen, Valencia, CAl. Correspond-
ing ¢DNA was prepared using the SuperScript Il First-Strand
System Kit nvitrogen), and real-time PCR was performed using
a LightCycler instrument (Roche Applied Science, Indianapolis, IN}
with QuantiTect SYBR Green PCR Master Mix (Qiagen) and
specific primers for IL-1f (SA Biosciences, Frederick, MD). The
amount of IL-1f mRNA was determined relative to glyceraldehyde-
3-phosphate dehydrogenase mRNA using the comparative cycle
threshold numbers method. Tissue extracts were prepared from
ear skin samples using the T-PER Tissue Protein Extraction
Reagent supplemented with Halt Protease Inhihitor Cocktail
(Thermo Rockiord, INi. Protein concentration was
determined using the BCA assay kit (Thermo Scientific). [L-18
protein levels were examined using an ELISA kit (R&D Systems,
Minneapolis, MN), and DsRed fluorescence intensities were
measured using the FLUOstar Omega microplate reader (BMG
Labtech, Chicago, L.
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Skin inflammation models

Mice received topical application of 1.25% OX (Sigma-Aldrich,
St Louis, MOj, 0.5% 2,4-dinitrofluorohenzene (MP Biomedicals,
Solon, OHi, or 90% lactic acid (Sigma-Aldrich) on their right
ears using our standard protocol (Nishibu et al,, 20061 The treated
cars showed statistically significant (P<0.01) swelling compared
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with the left ears of the same animals painted with vehicle alone.
Skin inflammation was also induced mechanically by repeated (10
times) tape stripping {Holzmann et al., 20041,

Measurement of IL-1f release and DsRed expression tn BM-DCs
BM-DC cultures were generated from plL1-DsRed transgenic mice in
complete RPMI 1640 supplemented with 10ngml ' murine granu-
locyte-macrophage colony-stimulating factor (Matsushima et al.,
20095, BM-DCs were pulsed for 1 hour with 300 ngml™ LPS, washed
extensively, and then cultured for various periods in the absence of
added LPS. The cells and culture supernatants were examined for
DsRed expression and |L-1f protein, respectively.

Optical imaging of DsRed fluorescence signals

For conventional imaging experiments, freshly procured ear skin
specimens were fixed with 2% paraformaldehyde for 30 minutes
at room temperature and then examined for DsRed fluorescence
signals under an MVX10 MacroView system (Olympus, Melville,
NY) or a TCS SP5 confocal microscope {Leica Microsystems,
Bannockbum, IL). For intravital imaging experiments, the mice
were anesthetized with intraperitoneal injection of an anesthefic
cocktail (ketamine, xylaxine, and acepromazine) and placed on an
imaging stage to mount the tip of the ear, with the ventral side down,
to record images of DsRed™ cells under a TCS SP5 confocal
microscope controlied by LAS AF Lite software (Leica Microsystems)
as described previously (Nishibu er al, 2006). We typically
scanned tissues with x, v, z volumes (387.5 x 387.5x 60 or
775x 775 x 80umi at Tum zsteps to create 3D image sets.
Stratum corneum-associated autofluorescence signals were used
as a marker to define the epidermal compartment, ie., 20um
from the outermost surface of the stratum corneum. Blood vessels
were visualized by intravenous injection of 20mgrl™ of FITC-DX
(70 kDa, Sigma-Aldrichl. In time-lapse imaging experiments,
3D images were recorded every 2 minutes for 60minutes and
then analyzed using Image] (National Institutes of Health)
and Photoshop software (Adobe, San Jose, CA). Tracking of
DsRed™ cells in living animals was performed with MetaMorph
software (Molecular Devices, Sunnyvale, CA). Construction of the
pil1-DeRed transgenic mouse line and its use in imaging experi-
ments were approved by the institational review boards at the
University of Texas Southwestern Medical Center and the University
of Toledo College of Medicine, respectively, and all animal
experiments were conducted according to guidelines of the National
Institutes of Health.

Flow cytometric analyses

Epidermis was separated from ear skin with 0.5% dispase Il
(Roche Diagnostics, Indianapolis, INi for 45minutes at 37 °C.
The epidermis was further freated with 0.3% trypsin (Worthington,
Lakewood, NJi in the presence of 0.1% DNase | (Roche Diagnhos-
ticsi for TOminutes at 37 °C to prepare single cell suspension.
The dermis was minced and incubated for 1h at 37°C with
1,000 Uml™" collagenase XI (Worthington), 1,000Umi™" hyal-
uronidase 1V (Sigma-Aldrich}, and 0.1% DNase I. The chtained
single-cell suspensions were pretreated for 15minutes on ice
with Sugml™" anti-CD16/CD32 (2.4G2) mAb, and subsequently
stained with fluorescence-conjugated mAb for 30 minutes on ice.
In addition to isotype-matched controls, the following mAbs were
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used: CD11h (M1/70), CID45 (30-F111, 1A-IE (2G5), and Gr-1 (RB6-
8C5, all purchased from BD Biosciences, Palo Alto, CA), and F4/80
(BM8; eBioscience, San Diego, CAJ. After the addition of propidium
iodide, samples were analyzed with FACSCalibur (BD Biosciences!.

Statistical analyses .
Differences in measured variables hetween the experimental and the
control groups were assessed with two-tailed Student’s ttest. Data
from time-course experiments were analyzed by analysis of variance
and Dunnett’s test. All experiments were repeated more than twice
to assess reproducibility.
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