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Postoperative wound healing is one of the major
issues considered by surgeons before deciding on sur-
gical management in the case of patients with WS. In
our patient, despite the patient’s present condition and
the history of refractory skin ulcers in the extremities,
the lung cancer was successfully resected, without any
skin-related problems. The skin and soft tissue of the
extremities tend to be atrophic and comified in WS,
whereas the skin of the trunk is normal.®® In addition,
subcutaneous fat tissue in the extremities of WS
patients was reported to be lipoatrophic, whereas tissue
of the trunk was normal. Moreover, there are possible
systemic metabolic effects of regional adiposity in a
patient with WS.2¢ It has also been reported that not
only lung cancer, but also meningiomas®* and pancre-
atic cancer® can be successfully operated on without
any skin-related problems. Therefore, there might be no
difference in the wound-healing ability of the skin of the
trunk between patients with WS and the normal popu-
lation of the same age group. It appears that skin ulcer-
ation might not be a potential problem of surgical
treatment of the trunk, as in our case and previous
reports.

In summary, we report a case of WS associated with
primary lung cancer that was successfully resected. As
the life expectancy of patients with WS is increasing,
we need to pay attention not only to rare non-epithelial
malignancies, but also to epithelial cancer. Further-
more, the shorter life expectancy of patients with WS
than the general population, as well as the possibility of
skin-related problems after surgery, should not be a
deciding factor when considering whether to carry out
surgery in the case of malignancy.
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We aimed at elucidating the roles of transforming growth factor (TGF)-B and Smad3 signaling in adipo-
cyte differentiation (adipogenesis) and in the pathogenesis of obesity. TGF-B/Smad3 signaling in white
adipose tissue (WAT) was determined in genetically obese (ob/ob) mice. The effect of TGF-B on adipogen-
esis was evaluated in mouse embryonic fibroblasts (MEF) isolated both from WT controls and Smad3 KO

Keywords: mice by Oil red-O staining and gene expression analysis. Phenotypic analyses of high-fat diet (HFD)-
TGF-p induced obesity in Smad3 KO mice compared to WT controls were performed. TGF-B/Smad3 signaling
/S\Iéli;izenesis was elevated in WAT from ob/ob mice compared to the controls. TGF-8 significantly inhibited adipogen-
Obesity esis in MEF, but the inhibitory effects of TGF-$ on adipogenesis were partially abolished in MEF from

Smad3 KO mice. TGF- inhibited adipogenesis independent from the Wnt and B-catenin pathway. Smad3
KO mice were protected against HFD-induced insulin resistance. The size of adipocytes from Smad3 KO
mice on the HFD was significantly smaller compared to the controls. In conclusion, the TGF-B/Smad3 sig-
naling pathway plays key roles not only in adipogenesis but also in development of insulin resistance.

Insulin resistance

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Obesity, defined as an excess amount of body fat, is associated
with metabolic disorders, such as type 2 diabetes, dyslipidemia,
and hypertension [1], which eventually increase morbidity and
mortality all over the world. Previously, the adipose tissue was
considered as a storage organ for excessive energy; however, re-
cent scientific progress has shed light on the crucial roles of adipo-
cytes in not only whole body insulin sensitivity but also energy
homeostasis [2].

White adipose tissue (WAT), a predominant type of fat distrib-
uted throughout the body, secretes a number of molecules that are
now defined as adipokines [3]. In obesity, adipocytes undergo
hypertrophy, which leads to dysregulation of WAT-mediated glu-
cose and lipid disposal and an imbalanced secretion of adipokines,
contributing to the development of hyperglycemia, insulin resis-
tance, and dyslipidemia.

Adipocyte differentiation is controlled by a complex network of
transcriptional factors, including members of the CCAAT/enhancer-
binding protein (C/EBPs) and peroxisome proliferator-activated
receptor vy (PPAR vy) family [4]. Indeed, elucidating the molecular
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mechanisms underlying adipogenesis is crucial for the develop-
ment of more effective therapies for obesity in order to prevent
metabolic diseases.

The transforming growth factor beta (TGF-B) plays important
roles in the progression of a variety of diseases such as diabetic
complications [5,6], atherosclerosis [7], and cancer [8]. TGF-B ex-
erts its biological functions mainly through its downstream signal-
ing molecules, the Smads [9]. It has been reported that TGF-B has a
broad spectrum of biological functions and actions in a variety of
cell types, but its role in the process of adipogenesis has not been
fully elucidated.

In the present study, we aimed to investigate the pathophysio-
logical roles of TGF-B/Smad3 signaling in adipocyte differentiation.
For this purpose, we first examined the expression of TGF- signal-
ing in adipose tissue of genetically obese mice (ob/ob mice). We
then investigated the role of TGF-B in adipogenesis both in vitro
and in vivo using Smad3 knockout (KO) mice.

2. Materials and methods
2.1. Reagents, animals and tissue preparation

Reagents used are described in the expanded Materials and
Methods section.
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2.2. Real-time quantitative PCR and reverse transcription PCR

Real-Time quantitative PCR (real-time PCR) and reverse tran-
scription PCR (RT-PCR) were performed as described previously
[10]. See expanded Materials and Methods section for details.

2.3. Immunohistochemistry and immunocytochemistry
See the expanded Materials and Methods section.
2.4. Nuclear extraction and immunoblotting

See expanded Materials and Methods section for details.

2.5. Cell culture

Mouse embryonic fibroblasts (MEF) cells were established from
E13.5 embryos. See expanded Materials and Methods section for
details. '

2.6. Measurement of triglyceride (TG) contents in MEF

The TG content of MEF was measured with a Triglyceride Quan-
tification kit (BioVision, USA) according to the manufacturer’s
instructions.

2.7. Retroviral infection

Immortalized white pre-adipocyte HW cells were kindly pro-
vided by Prof. Masayuki Saito (Tenshi College, Sapporo, Japan)
and differentiated into mature adipocytes as described previously
[11]. See expanded Materials and Methods section for details.

2.8. Insulin tolerance test (ITT)

Eight-week-old male Smad3 KO and littermate controls were
placed on a HFD for 8 weeks. An intraperitoneal ITT using 5 units
of insulin/kg was performed in mice fasted for 16 h. Blood samples
were collected at 0, 15, 30, 60, 90, and 120 min after insulin
injection.

2.9. Statistical analysis

Results were presented as mean * SEM. Statistical analyses used
a 2-tailed unpaired Student t-test.

3. Results

3.1. TGF-p/Smad3 signaling pathway is activated in the WAT from ob/
ob mice

In order to investigate the roles of TGF-p signaling in obesity
and adipogenesis, we initiated our study by analyzing the expres-
sion of TGF-B in WAT from genetically obese mice (ob/ob mice).
Epididymal fat pad were dissected from 12-week-old ob/ob mice
and WT control mice and subjected to real-time PCR and immuno-
histochemisty. As shown in Fig. 1A, the expression of TGF- mRNA
was 2.3-fold higher in ob/ob mice than in the WT controls. We
could also localize the TGF- protein to the crown-like structure
seen in ob/ob mice but not in WT controls, as confirmed by immu-
nohistochemistry (Fig. 1B). On the other hand, there was no signif-
icant difference in the mRNA expression of TGF-B type 1 receptor
(Alk-5) and type 2 receptor in WAT between ob/ob mice and con-
trols (Fig. 1C). Next, we examined the phosphorylation of Smad3
(p-Smad3) in order to evaluate the activation of TGF-p signaling

in WAT. The nuclear fractions of WAT were extracted and sub-
jected to immunoblotting using a specific antibody against p-
Smad3 protein. As shown in Fig. 1D, p-Smad3 was 8-fold higher
in WAT of ob/ob mice compared to WT controls. These results indi-
cated that activation of TGF-B/Smad3 signaling might play a role in
the pathogenesis of obesity and/or adipogenesis.

3.2. TGF-B/Smad3 signaling inhibits adipogenesis in vitro

Next, we examined the effects of TGF-B signaling on adipogen-
esis. For this purpose, we isolated MEF both from WT and Smad3
KO mice. Adipocyte differentiation was then induced in these cells
by a hormonal stimulus in the presence or absence of 1 ng/mL TGF-
B. Eight days after hormonal stimulation, the adipocyte differenti-
ation was evaluated by Oil Red-O staining. As shown in Fig. 2A,
TGF-p completely inhibited the accumulation of lipids in MEF from
WT, whereas the inhibitory effects of TGF-g on lipid accumulation
were attenuated by the lack of Smad3 in MEF. Consistent with this
observation, TGF-B profoundly decreased the amounts of TG con-
tents in MEF from WT after the induction of adipocyte differentia-
tion; however, the inhibitory effects of TGF-p on the accumulation
of TG in MEF was significantly abolished by the lack of Smad3 as
shown in Fig. 2B. These results indicated that TGF-B inhibited adi-
pogenesis partially through the Smad3-dependent pathway. Next,
we examined the expression of transcriptional factors that have
been reported to regulate adipogenesis, such as C/EBPa, C/EBPB,
C/EBP3, PPARY and aP2 by RT-PCR. C/EBPB and C/EBPS are ex-
pressed in earlier phases of adipogenesis and cooperate in inducing
expression of C/EBPa, PPARY, and aP2, which are known to be in-
volved in terminal differentiation. As shown in Fig. 2C, the expres-
sion of C/EBPa, PPARY and aP2 were significantly suppressed in the
presence of TGF-p in WT controls, while the expression of neither
C/EBP B nor C/EBP § was changed (data not shown). In the Smad3
KO MEF, the inhibitory effects of TGF-B on the expression of C/
EBPa, PPARY, and aP2 were attenuated significantly.

3.3. TGF-p inhibits adipogenesis independent from Wnt and p-catenin
signaling

Among several pathways known to inhibit adipogenesis, we
examined the functional relationship between the Wnt/B-catenin
pathway and TGF- signaling, since the cross-talk between TGF-
B/Smad3 and Wnt/B-catenin signaling pathways had been reported
during chondrocyte development [12]. Wnts are a family of pro-
teins that affect cell fate and differentiation, including myogenesis,
neurogenesis, and mammary development [13]. When Wnt signal-
ing is activated, the kinase activity of glycogen synthase kinase 3
(GSK3) is inhibited, which allows cytosolic B-catenin to accumulate
and translocate to the nucleus and activate transcription of Wnt
target genes.

At first, we evaluated the effects of TGF-p on the translocation of
B-catenin in MEF. As shown in Fig. 3A and B, the cytoplasmic 8-
catenin translocated into the nucleus in the presence of 1 ng/mL
TGF-B in MEF from WT controls but not from the Smad3 KO mice.
Next, we examined the effects of TGF-B on adipocyte differentia-
tion in the presence of Chibby, which has been reported to inhibit
B-catenin-mediated transcriptional activation [14]. Over-expres-
sion of Chibby in HW cells was confirmed by RT-PCR (Fig. 3C).
Next, Chibby-infected HW cells were induced to differentiate in
the presence or absence of TGF-B, and the adipocyte differentiation
was evaluated by Oil Red-O staining. TGF-B significantly inhibited
HW cell differentiation regardless of the presence of Chibby
(Fig. 3D). These results indicated that the TGF-B/Smad3 pathway
might physically interact with B-catenin in the course of its trans-
location into the nucleus; however, TGF-B inhibited adipocyte dif-
ferentiation independent from the Wnt/p-catenin pathway.
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Fig. 1. TGF-B/Smad3 signaling is increased in WAT from ob/ob mice. Epididymal fat fad were dissected from 12-week-old ob/ob mice and control mice and subjected to gene
expression analysis (A and C) and immunochistochemistry using an anti-TGF-B-specific antibody (B). The nuclear fractions of WAT were extracted and subjected to
immunoblotting using a specific antibody against phospho-Smad3 (D). Anti TATA box binding protein (Tbp) was used as a control for estimating sample loading. Bars,

200 pM. *p < 0.01, **p < 0.05.

3.4. Smad3 KO mice improve insulin sensitivity on HED and show
smaller-size adipocytes compared to WT

Finally, in order to investigate the roles of TGF-B/Smad3 signal-
ing in obesity and adipogenesis in vivo, 8-week-old WT and Smad3
KO mice were placed on a HFD for 8 weeks. Body weight and the
amounts of food intake were measured every week. Smad3 KO mice
were smaller in size than the littermate controls. As shown in
Fig. 4A, the net body weight gain was significantly increased in
Smad3 KO mice and caught up to the same body weights compared
to the controls after 8-week-HFD, while there was no difference in
the amounts of food intake between the 2 groups (data not shown).

We evaluated insulin sensitivity with an ITT and found that
insulin sensitivity, especially at 30 min, was significantly better
in Smad3 KO mice than in the controls (Fig. 4B). In order to inves-
tigate how Smad3 KO mice improved insulin sensitivity on HFD,
we dissected WAT out from both Smad3 KO and controls, analyzed
it histologically, and examined gene expression by RT-PCR. The
weighs of WAT were similar in Smad3 KO and WT (data not
shown). Histological analysis revealed that adipocytes from Smad3
KO mice were significantly smaller in size compared to the controls
(Fig. 4C and D). However, mRNA expression of adipocyte markers
related to differentiation was not changed significantly in the 2
groups (data not shown).

4. Discussion

In the present study, we showed that the expression of
p-Smad3 was increased in WAT from obj/ob mice. TGF-8

inhibited adipogenesis partially through the Smad3-dependent
pathway and independent from the Wnt/B-catenin pathway. Fur-
ther, we showed that Smad3 KO mice were protected against
HFD-induced insulin resistance and the adipocytes from Smad3
KO mice were smaller than the WT controls when they were
fed HFD in vivo. ) :

TGF-B is a multi-functional growth factor. We have previously
reported the important roles of TGF-B/Smad3 signaling in the
development of atherosclerosis [7] and diabetic nephropathy
[5,6]. In this report, we further analyzed the roles of TGF-B/Smad3
signaling in adipogenesis. The expression of TGF-B mRNA and pro-
tein were significantly increased in WAT from ob/ob mice. More-
over, we showed that p-Smad3 was significantly elevated in WAT
from obese mice, confirming that the elevated expression of TGF-
B functionally activated Smad3 within the obese fat tissues.

Adipogenesis is a complex process dependent on the interplay
between extracellular signals and transcriptional cascades. Some
factors act promoting adipogenesis, while the others act anti-adi-
pogenic. We showed that TGF-p inhibited adipogenesis partially
through the Smad3-dependent pathway. It has been reported that
Smad3, which is activated by TGF-B, binds to C/EBPB and C/EBPS,
inhibits their transcriptional activity. This in turn leads to de-
creased transcription of PPARY, a master regulator of adipogenesis,
and resulting in inhibition of the process of adipogenesis [15,16].
Since TGF-$ was still able to inhibit adipogenesis in Smad3 KO
MEF, we assumed that another pathway was involved in the inhi-
bition of adipogenesis independent from the physical interaction of
Smad3 and C/EBPs. TGF-B activates not only Smad3 but also
Smad2; however, it has already been confirmed that TGF-$ inhib-
ited adipogenesis independent from Smad2 [16].
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Many transcriptional factors have been reported to repress adi-
pogenesis, including GATA2, ETO/MTGS, GLIZ, DIPA, CHOP10, KLF2,
and FOXO1 [4]. There are also extracellular signalings, such as Wnt
[17] and sonic hedgehog [18], which inhibit adipogenesis. In hu-
man mesenchymal stem cells, TGF-p induces nuclear translocation
of B-catenin, a major downstream molecule of canonical Wnt sig-
naling, in a Smad3-dependent manner [19]. Thus, we examined
the involvement of the Wnt/B-catenin pathway in TGF-B/Smad3
signaling-dependent anti-adipogenesis. In the presence of Chibby,
TGF-B was still able to inhibit adipogenesis completely. This result
indicated that the Wnt/B-catenin pathway was not involved in
anti-adipogenic effects induced by the TGF-B/Smad3. It has been
reported that retinoic acid, which is known as a strong inhibitory
factor of adipocyte differentiation, also acts in cooperation with
Smad3 in adipocytes [20]. Furthermore, a Smad3-independent
TGF-B signaling pathway has also been reported [21]. Therefore,
TGF-B may be able to inhibit adipogenesis independent from
Smad3.

Increased expression of TGF-B in obese mice suggested that the
TGF-B/Smad3 signaling contributes to insulin resistance in obesity.
Therefore, we investigated the roles of TGF-B/Smad3 signaling in
adipogenesis and insulin resistance in vivo using Smad3 KO mice.
It has been reported that fasting blood glucose levels do not differ
between Smad3 KO and WT [5]. However, under HFD conditions,
the Smad3 KO mice tended to gain more body weight showing bet-
ter insulin sensitivity compared to the controls. Histological analy-
sis revealed that the size of the adipocytes was smaller than the
control. Consistent with previous reports, small-size adipocytes
are more insulin-sensitive than large-size adipocytes [22]. More-
over, it is known that administration of pioglitazone, a PPARY li-
gand, improves insulin sensitivity and weight gain in humans
and rodents. It is reasonable to speculate that the lack of inhibitory
cue, TGF-B/Smad3, made adipocytes differentiate further and im-

proved insulin sensitivity. Surprisingly, while the Smad3 KO mice
showed higher insulin sensitivity and smaller adipocytes, there
was no significant difference in adipocyte markers between the
Smad3 KO and control. Because even with the lack of Smad3 some
adipocytes showed inhibited differentiation in the presence of
TGF-B, the HFD-induced WAT from Smad3 might be heteroge-
neous. This might make it difficult to detect a difference in adipo-
cyte markers when we analyzed whole adipose tissues. It has also
been reported that C/EBPB and C/EBPa double KO mice exhibited
impairment of fat tissue development, whereas there were no
changes in the differentiated adipocyte markers [23]. Therefore,
there might be a discrepancy between the adipocyte morphology
and its marker expressions. It has been reported that TGF-8 in-
creased the pre-adipocyte proliferation in many species [24,25].
However, we were not able to detect proliferation marker expres-
sion (Ki-67) in neither Smad3 KO nor WT controls under the HFD
conditions (data not shown).

There are some limitations to the present study. First, we still do
not know whether the elevated TGF-B signaling in obese mice
causes obesity and insulin resistance as a primary or a secondary
effect. Second, we do not completely understand the molecular
mechanism by which TGF-8/Smad3 signaling inhibited
adipogenesis.

Nonetheless, we showed that Smad3 KO mice exhibited
improvement of HDF-induced insulin sensitivity when they were
fed HFD in vivo. Taken together with the in vitro data, the inhibition
of TGF-B/Smad3 might be a new drug target to prevent obesity and
improve insulin resistance.
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