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Newborn Screening for Lysosomal
Storage Disorders

KIMITOSHI NAKAMURA, * KIYOKO HATTORI, ano FUMIO ENDO

Lysosomes are intracellular organelles containing acid hydrolases that degrade biological macromolecules.
Lysosomal storage disorders (LSDs) are caused by absent activity of one or more of these enzymes due to
mutations of genes encoding lysosomal hydrolases or enzymes that process, target, and transport these enzymes.
The specific signs and symptoms of each LSD derive from the type of material accumulated within the lysosome,
the site (organ) of accumulation and the response of the body (sometimes in the form of an inflammatory or
immune response) to the accumulated material. Interest for inclusion of these disorders in newborn screening
programs derives from the availability of effective therapy in the form of enzyme replacement or substrate
reduction therapy and bone marrow transplant that may improve long-term outcome especially if started prior to
irreversible organ darnage. Based on the availability of therapy and suitable screening methods, Gaucher disease,
Fabry disease, Pompe disease, mucopolysaccharidosis | and Il, Niemann—Pick disease, and Krabbe disease are
candidates for newborn screening. Pilot newborn screening projects have been performed for some of these
conditions that indicate the feasibility of this approach. This review will provide insight into these screening

strategies and discuss their advantages and limitations.
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INTRODUCTION

A lysosome is an intracellular organelle
containing acid hydrolases that degrade
proteins, glycoproteins, proteoglycans,
lipids, and other complex macromole-
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cules from phagocytosis, endocytosis,
and autophagy [Futerman and van Meer,
2004; Fletcher, 2006; Eckhardt, 2010].
These macromolecules are degraded to
smaller molecules through the action of
various acid hydrolases. The resulting
small molecules are then catabolized or
recycled by the cell after export to the
cytoplasm by passive diffusion or
through the use of transporters. For
some pathways, these recycled metabo-
lites play a major role in the synthesis
pathway, For example, ahmost 90%
of sphingolipids are synthesized in
this recycled pathway in many cells
[Fredman, 1998; Gillard et al., 1998|.
Lysosomal hydrolases are transported
from the endoplasmic reticulum to the
lysosome by a vesicular transporter, This
vectorial transport is dependent on the
presence of mannose 6-phosphate resi-
dues on their oligosaccharide chains
attached to the lysosomal enzyme by
a  Golgi-localized phosphotransferase
complex [Kollmann et al, 2010}
Mannose-G-phosphate  receptors cap-
ture these processed enzymes into trans-
port vesicles of the frans-Golgi network

and deliver them to the lysosome. These
enzymes can be endocytosed again by
neighboring cells and delivered to the
lysosome. This latter pathway plays a key
role in allowing enzyme replacement
therapy (ERT) to reach the lysosome of
target cells.

More than 40 LSD are known and
have a total estimated incidence of
1:7,000—1:9,000 [Meikle et al., 1999;
Fletcher, 2006]. Symptom severity and
disease onset of most LSD vary. This
heterogeneity can be explained to some
extent by the difference in organs
affected and, in part, by the type of
mutation. In general, mutations leaving
very low residual enzyme activity causc
the most severe early onset forms of the
diseases. higher residual
cnzyme activity delays discase onset
[Kolter and Sandhoff, 1999]. Discase
severity and onset are remarkably differ-
ent in the late-onset forms of LSD and
can vary cven between siblings with
identical mutations [Clarke et al., 1989;
Wenger et al., 2000; Zhao and Grabow-
ski, 2002]. The major lysosomal storage
disorders (LSDss) for which a therapy is

In contrast,
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Move than 40 LSD are
known and have a total
estimated incidence of
1:7,000~1:9,000. Symptom
severity and disease onset of
most LSD vary. This
heterogeneity can be
explained to some extent by
the difference in organs affected
and, in part, by the type of
mutation. In general,
mutations leaving very low
vesidual enzyme activity cause
the most severe early onset
forms of the diseases.

available and newborn screening is at
different stages of development will be
briefly described.

SELECTED LYSOSOMAL
STORAGE DISORDERS

Fabry Disease

Fabry disease is an X-linked LSD
that was initially described in 1898
[Anderson, 1898; Fabry, 1898]. Women
can also have symptoms, but onset is
generally later than for men and life
expectancy is reported better. Fabry
disease is caused by o-galactosidase A
(Gal A) deficiency [Desnick etal., 2001].
The enzymatic defect leads to progres-
sive accumulation of glycosphingolipids
such as globotriaosylceramide (GL-3),
especially in the brain, heart, kidney, eye,
and skin. The classic disease phenotype
consists of angiokeratomas, acropares-
thesias, hypohidrosis, and corneal opac-
ities during childhood. Accumulation of
GL-3 in the vascular endothelium leads
to renal and cardiac failure and cerebro-
vascular disease. Late~onset cardiac and
renal variants with residual Gal A
activity have been identified in individ-
uals lacking some or all of the eary
classic manifestations mentioned above.

Patients with the cardiac variant present
with left ventricular hypertrophy (LVH),
arthythmia, and/or cardiomyopathy
[Nakao et al., 1995], whercas patients
with the renal variant develop protei-
nuria  and  end-stage  renal  disease
(ESRD} [Kotanko et al, 2004] after
50 years of age. In addition, some
patients with acute strokes after adoles-
cence were found to have previously
undiagnosed Fabry disease, 30% of
whom had, retrospectively, classic man-
ifestations. Fabry disease is diagnosed by
measuring enzyme activity in white cells
or plasma in males. Females can have
normal enzyme activity and DNA test-
ing is necessary to confirm or exclude
the diagnosis in them.

ERT for Fabry disease was approved
in Bng et al. [2001] and clinical trials are
ongoing for pharmacologic enzyme
enhancement therapy [Desnick and
Schuchman, 2002]. The estimated inci-
dence of classic Fabry disease is 1 in
50,000 males. Screening of males in
hemodialysis, cardiac, and stroke clinics
by deternunation of plasma Gal A
activities detected previously undiag-
nosed Fabry disease in 0.25—1% of males
undergoing hemodialysis, in 3—4% of
males with LVH or hypertrophic car-
diomyopathy, and in 5% of males with
acute cryptogenic strokes [Brouns et al,,
2010].

Newborn screening using a fluoro-
metric enzyme assay in 37,104 males in
Italy with follow-up mutation analysis
identified 1 in 3,100 patients with Fabry
disease. The mutations identified in this
cohort predicted later-onset rather than
classic Fabry discase with an 11:1 ratio
{Spada etal., 2006]. In Japan, a newborn
screening pilot program for Fabry dis-
ease has been carried out by Nakamura
et al. (submitted for publication) using
the fluorometric enzyme assay and
subsequent mutation analysis. The inci-
dence of the disease was approximately 1
in 4,700 males, with 88% of mutations
being associated with a later-onset
phenotype. In [Sands and
Davidson, 2006], a newborn screening
pilot program for Fabry disease using the
fluorometric enzyme assay found an
incidence of approximately 1 in 1,250
males {Hwu etal., 2009; Lin etal., 2009].

Taitwan

All these studies suggest that Fabry
disease may be underdiagnosed, espe-
cially the late-onset variants.

Mucopolysaccharidoses

Mucopolysaccharidoses (MPS) are LSDs
that are characterized by the accumu-
lation of glycosaminoglycans (GAGs)
in urine, plasma, and various tissues.
Primary treatment options for MPS
include hematopoietic stem cell trans-
plantation (HSCT) and ERT. ERT is
now available for MPS [, MPS I1, and
MPS VI [Kollmann et al., 2010]. ERT
reduces GAG accumulation, improves
the clinical status and quality of life.
Clinical trials of ERT for other types of
MPS are underway.

Newborn screening for these con-
ditions can be accomplished by measur-
ing wurinary GAG or directly by
measuring enzyme activity in blood
spots. Methods have been proposed for
the quantification and qualitative evalu-
ation of GAGs in urine by LC-MS/MS.
This method can screen for MPS I, 11,
and VI by quantifying dermatan sulfate
(DS) and heparan sulfate (HS) in urine.

In blood spots, eight lysosomal
enzymes (¢-L-iduronidase, iduronate
sulfatase, arylsulfatase B, B-p-glucu-
ronidase, B-p-galactosidase,  @-p-
mannosidase, o-i-fucosidase, and B-
hexosaminidase},  including  those
involved in selected MPSs, can be
assayed. This can screen for MPS I,
MPS I, MPS VI, MPS VII, GMI
gangliosidosis, galactosialidosis, MPS
IV B, a-mannosidosts, fucosidosis,
Sandhoff disease, and mucolipidosis 11
and HI [Chamoles et al., 2001a,b, 2004].
Unfortunately, there are still no methods
deseribed for multiplexing these assays.

More recently, specific substrates
have been developed to allow the use of
MS/MS [Duftey et al., 2010a,b]. The
advantage of this approach is that it
allows multiplexing with simultaneous
assays for MPS I, MPS 11, MPS IIIA, and
MPS VI

Pompe Disease

Pompe disease, also known as glycogen
storage disease type I, 1s an autosomal
recessive disorder caused by deficiency
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of the enzyme o-glucosidase (GAA),
resulting in the accumulation of lysoso-
mal glycogen in the skeletal muscles and
heart [Kishnani et al, 2006]. This
disorder causes a steady accumulation
of glycogen substrate that leads to
progressive muscle damage and organ
failure. The rates of substrate accumu-
lation and tissue damage are variable and
reflect the residual enzyme activity and
mmune response to the accumulated
material. In 2006, alglucosidase alfa was
approved as the ERT for Pompe discase.
A pilot program for Pompe disease
newborn started  in
Tatwan in 2005 that measures GAA
activity using a fluorometric  assay
[Chien et al., 2009]. A thorough exami-
nation was performed to screen positive
newborns. A diagnosis of Pompe disease
was made clinically after the onset of
symptoms. Screening revealed five
severely affected infants with an inci-
dence of approximately 1 in 41,000
screened newborns. ERT for Pompe
disease was started in the five severely
affected infants. In unscreened infants,
the clinical diagnosis of Pompe discase
was made later, at an average of 4 months
of age. Initiation of earlier treatment of
infants after newborn screening resulted
in normal cardiac function and growth
and acquisition of age appropriate mile-
stones.

screening  was

Krabbe Disease

Krabbe disease (globoid cell leukodys-
trophy) is an autosomal recessive disor-
der caused by deficiency of the lysosomal
enzyme galactosylceramide P-galactosi-
dase (GALC). This results in the accu-
mulation of galactosylceramide and
psychosine that in most cases cause
abnormalities of the brain white matter.
Most patients present early in life withan
early infantile or “classic” phenotype.
Symnptoms  usually appear before
6 months of age and death occurs before
2 years of age. Other patients can present
later in life with an attenuated pheno-
type. HSCT is the only available treat-
ment for infants with early infantile
Krabbe diseasc and must be performed
prior to neuredegencration. Newborn
screening has been performed for

Krabbe disease [Duffner et al., 2009].
Newborns treated with HSCT can have
progressive central myelination and con-
tinued gains in developmental skills and
cognitive function, wheteas children
transplantation  after
symptoin onset experience minimal
neurologic improvement., Transplanta-
tion is not effective in all cases of Krabbe
discase and some transplanted patients

who undergo

have experienced developmental delays.
GALC  activity
detection by a fluorescent assay and
subsequent DINA  mutation analysis.
Molecular analysis of the GALC gene
is used for diagnostic confirmation.

Screening  involves

THERAPEUTIC ADVANCES
FOR LYSOSOMAL STORAGE
DISORDERS

Hematopoietic Stem Cell
Transplantation

Allogenic HSCT was one of the first
therapies attempted in  LSDs to
introduce metabolic cross-correction.
Therapy may also be useful for neuro-
degenerative LSDs because microgha
cells are derived from hematopoietic
stem cells [Asheuer et al., 2004; Boelens,
2006]. Clinical trials of HSCT have
suggested that cells migrate across the
blood—brain barrier. In animal models,
it has been shown that donor cells
produce the defective enzyme and that
donor macrophages replace microglial
cells in the brain [Kennedy and Abko-
witz, 1997; Malatack et al, 2003].
Repopulation of transplanted cells in
the brain is relatively slow because of the
long lifespan of microghia [Kennedy and
Abkowitz, 1997].

HSCT has shown efficacy in pre-
symptomatic or mildly affected patients
with some LSDs. It has been used in
patients with MPS I, 11, and VI; Gaucher
disease; Wolman disease; metachramatic
leukodystrophy; and Krabbe discase.
Each LSD responds differently to HSCT,
and transplantation timing relative to
symptom onset seems critical  for
some disorders. HSCT is not effective
for the patients with Fabry disease
because secreted o-galactosidase lacks
mannose-6-phosphate residues and the

enzyme is seldom taken up by cells with
the enzyme defect. Complications after
HSCT are common and limit the
usefulness of this treatment. These
include graft versus host disease, toxicity
of the conditioning regimen, and graft
failure.

In addition to HSCT, transplanta-
tion of neural stem cells to the brain has
been performed in an animal model for
LSDs. This was first demonstrated in an
MPS VII mouse model by injection
of neural stem cells overexpressing
B-glucuronidase into the ventricles of
newborn mice [Snyder et al., 1995].
Clinical improvement has been observed
after neural stem cell transplantation in
animal models [Lee et al., 2007; Strazza
et al., 2009}, There are no human data
for this type of therapy.

Enzyme Replacement Therapy

Marked progress has been made in the
treatment of LSDs over the past few
decades [Brady et al., 1974; Achord
etal,, 1978; Brady, 2006]. Recombinant
DNA techniques have allowed produc-
tion of lysosomal enzymes in vitro.
The recombinant enzymies are trans-
ported via the mannose-6 receptor
pathway in Fabry disease, MPS I, II,
and VI; and Pompe disease. In contrast,

Marked progress has been
made in the treatment of LSDs
over the past few decades.
Recombinant DNA techniques
have allowed production of
lysosomal enzymes in vitro.
The recombinant enzymes are
transported via the mannose-6
receptor pathway in Fabry
disease, MPS I, I, and VI;
and Pompe disease. In contrast,
they ave transported by
macrophage mannose receptors
in Gaucher disease.
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they are tansported by macrophage
mannose receptors in Gaucher disease.
The exogenous enzymes are internal-
ized by somatic cells and transferred to
the lysosome where they degrade accu-
mulated substrate and diminish the
burden of the disease. ERT has been
approved by regulatory agencics for
Gaucher, Fabry, and Pompe disease in
addition to MPS 1, II, and V1. Before the
introduction of ERT, no specific therapy
was available for LSDD patients, and
supportive care and treatment were used
only to manage complications. BRT
consists in the regular administration of
recombinant enzyme intravenously and
since its success in patients with Gaucher
disease, was extended to other LSDs.
Clinical trials have demonstrated the
clinical benefit of ERT in Fabry disease
[Eng et al., 2001]; MPS I [Kakkis et al.,
2001, II [Muenzer et al., 2006}, and VI
{Harmatz et al., 2005]; and in Pompe
disease [Amalfitano et al., 2001].

The usefulness of ERT is limited
because the enzyme is not always
effective for all clinical symptoms. Clin-
ical studies have shown that many
symptoms of LSDs are irreversible in
advanced cases despite the use of long-
term ERT. Therefore, early diagnosis
and treatment is important. In addition,
recombinant proteins cannot cross the
blood—brain barrier, and ERT has little
or no effect on central nervous system
(CNS) manifestations. Current clinical
trials are assessing the effect of intrathecal
enzyme replacenient in MPS Tand 11,

Substrate Reduction Therapy

Substrate reduction therapy partially
inhibits the biosynthesis of the accumu-
lated product to reduce substrate influx
into the catabolically compromised
lysosome. A small-molecule oral sub-
strate reduction therapy, miglustat, is
available for Gaucher disease. The effi-
cacy of substrate reduction therapy was
cvaluated in patients with Gaucher
disease [Cox etal., 2000]. Adult Gaucher
patients not treated with ERT were
treated with N-butyldeoxynojirimycin
for 12 months. Mean liver and spleen
volumes were significantly decreased,
and hematological parameters showed

slight improvement. The most frequent
adverse effect was diarrhea. In the
extension study, statistically significant
improvement was achieved in all major
cfficacy end points, indicating that treat-
ment with N-butyldeoxynojirimycin
was increasingly effective with time
[Elstein et al,, 2004]. The use of
N-butyldeoxynojirimycin, known as
miglustat (Zavesca), has been approved
for Gaucher disease and is considered
safe for adult patients, with mild or
moderate symptoms, who are unwilling
or unable to receive or to continue ERT
or for patients with persistent signs of
disabling disease activity despite max-
imal enzyme dosing. The drug may be
applied in combinaton with ERT in
these patients.

N-Butyldeoxynojirimycin 1s also
considered an option for patients with
Sandhofl disease, Tay—Sachs disease, or
Niemann—Pick disease type C (NPC)
because the drug is a small enough to
cross the blood—brain barrier [Lach-
mann et al,, 2004]. The drug is usually
given at higher doses than in Gaucher
disease to allow increased entry into the
brain. A randomized clinical trial in
patients with NPC demonstrated that
miglustat improves or stabilizes horizon-
tal saccadic eye movement velocity, a
clinically relevant markers of NPC, with
improvement in swallowing capacity,
stable auditory acuity, and a slower
deterioration in ambulatory index [Pat-
terson et al., 2007; Wraith et al., 2010].
An open-label extension confirmed the
persistence of clinical benefit that is
more marked in patients with milder
forms of the disease A lower dose of
this drug was not effective in late-
onsct Tay Sachs [Shapiro et al., 2009].
Nevertheless, further developments
in this area have the potential of devel-
oping effective an treatment for this
condition.

Chemical Chaperons

Chemical chaperones can enhance the
residual activity of the detective lysoso-
mal enzyme. Imino sugars, such as
deoxynojirimycin can act as both
enzyme inhibitors and chaperones,
which control the quality of newly

synthesized proteins [Sawkar ct al,
2002; Fan, 2008]. Under physiological
conditions, chaperones help restore the
native conformation of misfolded pro-
teins. Chaperone therapy by using small
molecules to stabilize and target a
misfolded enzyme to the lysosome is in
clinical trial for Gaucher, Fabry, and
Pompe diseases caused by mutated but
catalytically active enzymes. In animal
models, these small molecules cross
the blood—brain barrier and may be
effective  for CNS  manifestations
of LSDs. N-{n-nonyljdeoxynojirumycin
for Gaucher disease and 1-deoxygalac-
tonojirimycin for Fabry disease are good
examples of chemical chaperones that
show satisfactory response in vitro
[Sawkar et al., 2002; Yam et al., 2005].
A similar effect was observed in fibro-
blasts from adult patients with Tay-—
Sachs disease and Sandhoff disease
[Tropak et al., 2004]. Chemical chaper-
ones may be therapeutically useful for
treatment of various LSDs, although
they arc currently experimental and
none is approved for the treatment of
any LSD.

Gene Therapy

Many LSDs respond to HSCT and are
excellent candidates for gene transfer
therapy [Sands and Davidson, 2006},
since they are generally well-character-
ized single gene disorders, the enzymes
defective arc usually not subject to
complex regulation mechanisms, and
enzyme activity even only a little higher
than normal should be clinically suffi-
cient. In vivo and ex vivo gene therapy
techniques have been developed to
administer the gene to defective organs
in LSD animal models via the blood-
strearn or directly to the brain. Gene
therapy wusing adenoassociated  viral
(AAV} or lentiviral vectors has been
tested in small animal models of LSDs
and resulted in normalized enzyme
activity [Cachon-Gonzalez et al., 2006;
Broekman et al., 2007]. However, gene
therapy was initiated before the appear-
ance of clinical symptoms in these
studies. Testing in large animal models
of LSDs is under current study [Haskins,
2009]. After intracercbral mjection of
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AAV-cncoding human arylsulfatase A
(ASA) into  nonhuman  primates,
ASA  expression could be detected
[Colle et al., 2010]. The wide distribi-~
tion of enzyme expression appears to
be mediated by transport
and secretion by transduced neurons.
At present, gene therapy in humans with
their much larger brains has yet to be
initiated.

axonal

SCREENING FOR DISEASES

Newborn Screening

Newborn screening for metabolic dis-
orders started with TRobert Guthrie’s
study of phenylketonuria (PKU) in the
early 1960s. After demonstration that
early diagnosis and therapy could pre-
vent mental retardation in PKU, neo-
natal screening has become routine
practice in developed countries as part
of a public health program [Guthric and
Susi, 1963; Scriver and Kaufinan, 2001},
Newborn screening identifies a high-
risk group of patients from normal
infants and then thoroughly investigate
this group. Initial tests screened for one
disorder at a time. The introduction of
screcning by tandem mass spectrometry
permits the measurement of multiple
analytes at the same time, allowing the
detection of multiple classes of metabolic
disorders.

The potential use of MS/MS for
newborn screening was first suggested in
1990 [Millington et al., 1990}, and early
studies soon demonstrated its practicality
[Chacc etal., 1993; Rashed et al., 1995;
Ziadeh et al, 1995]. MS/MS could
simultaneously detect a number of dis-
orders, making it possible to screen for
some disorders that might otherwise
have seened too rare. Many compounds
are initially separated by mass to charge
ratio in MS/MS. Each compound is then
fragmented for identification. The proc-
ess requires roughly 2min per sample
and can detect 30 or more inborn
errors of metabolism just screening for
amino acids and acylcarnitines. At the
present time, expanded screening is used
to detect disorders of amino acid,
organic acid, and fatty acid metabolism.

However, the technology can be applied
to a much wider range of compounds,
and the field appears ready to cxpand.
Table I summarizes the enzymes defec-
tive in several LSIDs and those for which
newborn screening assays have been

developed.

Advances in Newborn Screening
Technologies for LSD

Enzymatic assays.  The initial system to
diagnose LSI) was the measurement of
enzyme activity using a fluorescent
artificial substrate [Meikle et al., 2006].
Diagnosis of MPS T is performed on
leukocyte or cultured fibroblast homo-
genates to assay «-L-iduronidase activity
by using 4-methyhylumbeliferyl-t-
iduronide. For newborn screening, the
standard method was adapted to measure
a-L-iduronidase activity in dried blood
spotted on filter paper [Chamoles et al.,
2001a}. A 3-mm-~diameter punchout of
a blood spot on filter paper s added to
elution buffer containing 4-methyhy-
lumbeliferyl~c-L-iduronide as the sub-
strate.  Fluorescence of the enzyme
product 4-methylumbelliferone is then
measured. Methods for detection of
other LSD, including MPS I, Pompe,
Fabry, Sandhoff, Gaucher, Niemann~—
Pick (type A/B, not C), and Tay—Sachs
diseases have been reported using the
revised enzymatic assay of dried blood
spot samples [Chamoles et al., 2001b,
2004]. The limitation of these ap-
proaches is that each assay uses 4-
methylumbelliferone as an indicator of
enzyme activity, In these assays, multi-
plexing is not possibie because all assays
(for MPS I, MPS 11, Pompe, Fabry,
Sandhoff, Gaucher, Niemann~Pick,
and Tay—Sachs discases) yield the same
product (4-methylumbelliferone) as the
fluorescent product of the enzyme
reaction.

A variation of this approach
includes the use of antibodies to enrich
for the enzyme to be tested. In the case of
Pompe disease, antibodies against GAA
are used to coat microtiter plates. The
endogenous GAA from the dried
blood spots is eluted, attaches to the
antibodies and is assayed for enzyme

activity using  fluorescent  substrate

[Umapathysivam et al., 2000}. Hypo-
thetically, microtiter plates could be
coated with several different primary
antibodies to capture different endoge-
nous enzymes. However, if all of the
substrates produce the same fluorescent
enzyme product (4-methylumbellifer-
one), then multiplexing is not possible.
These limitations would work against
practical newborn screening using this
method.

Functional Detection of Enzymatic
Products by Using MS/MS

The in LSD
screening technology involves analyzing
the activity of endogenous lysosomal

sccond  advancement

enzymes with electrospray ionization-
MS/MS [Gerber et al., 2001; Li et al,,
2004]. This method, modified from the
one for cell lysates for use with dried
blood spots, was used in Krabbe disease
to detect galactocerebroside P-galacto-
sidase (GALC) activity, The substrate f-
Gal-C8-Cer is broken down by GALC
to C8-Cer by the enzyme cluted from
the dried blood spots. Both C8-Cer and
C10-Cer, which is used as an internal
standard, are quantified using MS/MS to
detect GALC activity. The GALC
enzyme on the dried blood spots is
stable, allowing for sample transporta-
tion. A pilot program for Krabbe disease
screening using MS/MS was started in
2006 [Omsini et al,, 2009]. Out of
555,000 newborus, 10 were identified
at risk for Krabbe disease. MS/MS has
the advantage of being able to detect
products of different mass to change ratio
enabling the analysis of the results of
different enzyme reactions. In theory,
multiplexed assays can be developed for
multiple diseases, including Pompe,
Fabry, Gaucher, Niemann—Pick types
A/B (NP A/B), Krabbe disease, and
MPS-I [Zhang et al., 2008] and for five
of them a multiplex assay has been
proposed [Gelb et al., 2006]. In reality,
the amount of activity measurable in a
single blood spot is still limited. The
assay for Pompe, Fabry and MPS-I can
already be performed on the same blood
spot [Duffey ct al., 2010a]. MS/MS
assays for blood spots have also been
reported for MPS-VI [Duffey et al,
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TABLE 1. Lysosomal Storage Disorders Amenable to Newborn Screening
Availability of screcning Chromosomal
Disease Protein defect strategies localization OMIM
Defects in glycosaminoglycan degradation {mucopolysaccharidoses)
MPS I (Hurler, Scheie) o-Iduronidase Fluorometric, immunc- 4pl6.3 607015
quantification, multiplex
MPS 11 (Hunter) Iduronate sulfatase Fluorometric, anmune- Xq28 309900
quantification, multiplex
MPS [{IA (Sanflippo A) Heparan N-sulfatase Immune-~quantification, 17425.3 252900
multiplex
MPS HIB (Sanflippo B) N-Acetylglucosaminidase None 17q21 252910
MPS HIC (Sanfflippo C) Aceryl-CoA transferase None 8pltl.d 252930
MPS TIID (Sanfflippo D) N-Acetvlglucosamine-6-sulfatase None 12ql4 252940
MPS IVA (Morquio A) N-Acctylgalactosamine-6-sulfatase ~ None 16q24.3 253000
MPS VB (Morquio B9) B-Galactosidase None 3p21.33 230500
MPS Vi (Maroteaux—Lamy) N-Acetylgalactosamine-4-sulfatase  Fluorometric, MS/MS, 5qi1-13 253200
immunc-quantification,
multiplex
MPS IX Hyaluronidase None 3p21.3 601492
Defects in glycoprotein degradation (oligosaccharidoses)
a-Mannosidosis a-Mannosidase None 19q12 248500
B-Mannosidosis B-Mannosidase None 4q22 248510
o~Fucosidosis a-Fucosidase None 1934 230000
Sialidosis o-Sialidase None 6p21.3 608272
Galactosialidosis Cathepsin A None 20q13.1 256540
Aspartylglucosaminuria Aspartylglucosaminidase None 4932 208400
Schindler discase, Kanzaki discase  a-Acetylglucosaminidase None 22q13.1 104170
Others
GM1-gangliosidosis B-Galactosidase None 3p21.33 230500
GM2-gangliosidosis (Tay—Sachs)  2-Subunit of B-hexosaminidase Fluorometric 15q23 606869
GM2-gangliosidosis (Sandhoff) B-Subunit of B-hexosaminidase Fluorometric 5q13 606873
GM2-gangliosidosis (variant AB)  GM2 activator protein None 5q31 272750
Gaucher disease B-Glucocerebrosidase Fluorometric, MS/MS, 1921 606463
mmune-quantification,
multiplex
Fabry discase a-Galactosidase Fluorometric, MS/MS, Xq22.1 301500
immune-quantification,
multiplex
Pompe disease Acid o-glucosidase Fluorometric, MS/MS, 17925.2—-q25.3 232300
mmune-quantification,
multiplex
Niemann—Pick type A and B Sphingomyelinase Fluorometric, MS/MS, 1ipl5.2 607808
immune-quantification,
multiplex
Krabbe disease Galactosylcetamidase Fluoromerric, MS/MS, 14q31 245200
mmmunc-quantification,
multiplex
2010b] and Gaucher disease [Legini  screening for Fabry disease have late-  SUMMARY

et al.,, 2011}, One issue with newborn

onset variants [Spada et al., 2006} and

Newborn screening is a major public
health achicvemnent that has jmproved
the morbidity and mortality of inborn

screening is the identification of patients it is  unclear whether they would
whose phenotype is not clear. For

example, most patients identified by

have had clinical symptoms without
treatment.
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errors of metabolism. The introduction
of newborn screening for LSDs presents
new challenges. The first is to be able to
design a multiplex assay for multiple
enzymes applicable to the limited
amount of enzyme present in blood
spots. These new assays must be validated
in large numbers of newborns to
confirm sensitivity and  specificity.
The second challenge is to have a better
understanding of which forms of these
diseases need treatment. This will allow
us to determine if and when to start
therapeutic interventions. In the absence
of a family history, presymptomatic
detection of an LSD can be achieved
only through a newbomn screening
program. The efficacy and cost of the
currently available therapies and the
derection in newborns of diseases with
later onset, often in adulthood, may raise
ethical issues. The advancement of
therapeutic options for treatment of
LSD, especially in the field of small
molecules, capable of entering he brain
offers new hopes to affected patients in
whom a timely diagnosis will become
even more essential.
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3-OHBA : 3-hydroxybutyric acid E LB - BE R B/ By Bk #hn I harRyFEe e
AcAc : acetoacetic acid MR btk E 3-OHBA/AcAc S, e RO KUTHEEE
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GC/MS : gas chromatography-
mass spectrometry (#2270
M7 —EBRAH

LC/MS ! liquid chromatogra-
phy-mass spectrametry (k7
0% b7 571 -HEBHIF)

FT-ICRMS : Fourier transform
ion cyclotron resonance rmass

spectrometry

NMR : nuclear magnetic res-
ornance

BCAA : branched chain amino
acid

BTR @ BCAA and tyrosine ratio

AAA T arornatic amino acid
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ESI : electro spray lonization

NADH  reduced nicotinamide
adenine dinucleotide (3=
OFLFIRTFIUVRIL
*+F K)

NAD™ ! nicotinamide adenine
dinuclectide

TCA ' tricarboxylic acid
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EERL BB NGEOBEING, MU, A, ey Mmook
W ZAF R S Tw A,

A, FLIRAEE A A N TR E ST RE 2 R D & 0, JECE)
BENE OB D 5 ) A THMHERNH T o7 v 4 ) ¥ r 2o
—~OTH 5.

CHLER/E OV E CERIL (L/P M) MBI NADH/NADTH &2 ML T D

3 bhay FYTOEFEERORFE TIEZ NADH OB L L/P s

LA S,

T REFOGENE, T AMF—RE UTORE LR RO

ﬂ&bf%m%h&
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EIREERE 2 —-1lBU03
BEEFEF 92% (100 4, 3 )
T, 24 MORBHERFERCE T
ZIF BRI BE% TH -
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OTCD : ornithine transcarbarny-
lase deficiency

PA I propionic acidemia
MMA  methylmalonic acidemia

FIC : familial intrahepatic chole-
stasis

CPS ! carbamyl phosphate syn-
thase

Thbs IFEEETIERES
NHME - RED QOL &, Fil
CEMRETT SRRIEE LES
NEDPTHD.

QOL @ quality of life
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