Figure 3. IL-10 signaling defect in MoDCs leads to the defective generation of tolerogenic DCs and iT_{reg} cells. (A) Representative histograms showing the levels of PD-L1, PD-L2, ILT-3, ILT-4, and ICOS-L produced by untreated immature MoDCs (-) and IL-10-DCs (IL-10) from a control subject and a *STAT3* patient are shown at the top. Dashed lines indicate staining with isotype-matched control mAbs. Summary data showing Δ MFI, 240 defect to the level of control IL-10–DCs in the presence of TGF-β1 (Fig. 3 F, eighth dataset vs. seventh dataset). To further clarify, we evaluated TGF-β1 and IL-10 production from MoDCs from control subjects and *STAT3* patients (Fig. S6). These results indicate that the production of these inhibitory cytokines from MoDCs is not impaired in *STAT3* patients. ## PD-L1, ILT-4, and TGF-β1 in response to IL-10-DCs and STAT3 in DCs play a major role in FOXP3 up-regulation A recent study in mice demonstrated that PD-L1 plays an important role in inducing FOXP3⁺ iT_{reg} cells (Keir et al., 2008; Francisco et al., 2009). We investigated whether defective PD-L1 expression in IL-10–DCs from *STAT3* patients played a crucial role in the defective generation of FOXP3⁺ iT_{reg} cells by adding a peptide neutralizing PD-L1 to the coculture of IL-10–DCs and naive CD4⁺ T cells. The addition of this PD-L1 peptide significantly decreased the levels of *FOXP3* mRNA in the naive CD4⁺ T cells co-cultured with control IL-10–DCs (Fig. 4 A). The addition of the neutralizing peptide had no detectable effect on co-cultures with MoDCs from *STAT3* patients. We next investigated whether defective ILT-4 expression in IL-10–DCs from *STAT3* patients played an important role in the defective generation of FOXP3⁺ iT_{reg} cells with a neutralizing mAb to the co-culture of IL-10–DCs and naive CD4⁺ T cells. The addition of anti–ILT-4 mAb significantly down-regulated the levels of *FOXP3* mRNA in the naive CD4⁺ T cells co-cultured with control IL-10–DCs compared with a control mAb (Fig. 4 B). The addition of the anti–ILT-4 mAb had no significant effect on the co-culture of the naive CD4⁺ T cells with patient IL-10–DCs. Thus, in addition to PD-L1, ILT-4 up-regulation in response to IL-10 plays an important role in the generation of FOXP3⁺ iT_{reg} cells. We further investigated the contribution of TGF- $\beta 1$ in the up-regulation of FOXP3 by IL-10–DCs because endogenous TGF- $\beta 1$ may be supplied by the DCs or from the culture medium. The addition of anti–TGF- $\beta 1$ mAb significantly down-regulated the levels of FOXP3 mRNA in the naive CD4⁺T cells co-cultured with control IL-10–DCs compared with a control mAb (Fig. 4 C). The addition of anti–TGF- β 1 mAb had no significant effect on the co-culture of naive CD4⁺ T cells with patient IL-10–DCs. Thus, TGF- β 1 is required for the formation of FOXP3⁺ iT_{reg} cells in response to control IL-10–DCs. We also investigated whether DN-STAT3 expression in naive CD4⁺T cells plays a significant role in the generation of iT_{reg} cells by evaluating the up-regulation of *FOXP3* mRNA levels in naive CD4⁺T cells from *STAT3* patients. The up-regulation of *FOXP3* mRNA levels in response to IL-10–DCs from *STAT3* patients was impaired, but naive CD4⁺T cells from control subjects and *STAT3* patients up-regulated *FOXP3* mRNA levels in response to control IL-10–DCs (Fig. 4 D). Thus, DN-STAT3 expression in MoDCs plays a major role in the impairment of *FOXP3* mRNA up-regulation, and DN-STAT3 expression in T cells plays, at most, a minor role in *STAT3* patients. ## Primary DCs from STAT3 patients are defective in IL-10 signaling and up-regulation of PD-L1 and ILT-4 We next investigated the development and function of primary DCs. Two DC subsets were identified in human peripheral blood on the basis of the expression of surface molecules, including CD11c and CD304 (BDCA-4). Lineage marker (Lin) negative HLA-DR+CD11c+CD304- cells are conventional DCs (cDCs), whereas Lin⁻HLA-DR⁺CD11c⁻CD304⁺ cells are plasmacytoid DCs (pDCs). The number of PBMCs obtained from the peripheral blood and the percentages of cDCs and pDCs were indistinguishable between control subjects and STAT3 patients (Fig. 5 A). We next investigated IL-10 signal transduction in primary cDCs and pDCs. The transcriptional up-regulation of SOCS3 and VCAN (CSPG2) was impaired in both subsets of primary DCs from STAT3 patients, as demonstrated by comparison with control subjects (Fig. 5, B and C). We evaluated the effect of prior treatment with IL-10 on the phenotypic maturation of primary cDCs. IL-10 was added to the culture 1 d before LPS treatment, which inhibited the LPS-induced maturation by inhibiting the up-regulation of CD83 and CD86 in control subjects. IL-10-treated minus untreated, of PD-L1, PD-L2, ILT-3, ILT-4, and ICOS-L (n = 8 each) are at the bottom. (B) Q-PCR analysis of FOXP3 mRNA levels after the co-culture of third-party allogeneic naive CD4+ T cells from a control subject with untreated immature MoDCs (-) or IL-10-DCs (IL-10) from a control subject and a STAT3 patient. Cultures in the absence of naive CD4+ T cells (DC only) and MoDCs (T only) were used as negative controls. Representative data are on the left, and summary data (n = 8 each) showing fold increase are on the right. (C) Flow cytometric analysis of cytoplasmic FOXP3 protein levels in naive CD4+ T cells co-cultured with untreated immature MoDCs (-) and IL-10-DCs (IL-10) from a control subject and a STAT3 patient. Staining with isotype-matched control mAbs is indicated by dashed lines. Representative data are on the left, and summary data (n = 8 each)showing percent increase are on the right. (D) CFSE-labeled CD4+CD25⁻⁻ responder T cells were cultured alone in the absence (—) or presence of anti-CD3 and anti-CD28 mAbs or with iT_{reg} cells generated by co-culture with control or STAT3 patient immature DCs (iDCs) or IL-10-DCs. After 5 d, the proliferation of CFSE-labeled responder T cells was assessed by flow cytometry. Representative histograms are on the left, and summary data (n = 8)each) showing the percent increase in nonproliferating cells, numbers in magenta minus numbers in blue, are on the right. (E) Cytokine levels in the supernatants of co-cultures of responder T cells and iT_{reg} cells, as indicated. Representative data are on the left, and summary data (n = 8 each) showing percent increase are on the right. Data are representative of at least two independent experiments. (F) Q-PCR analysis of FOXP3 mRNA expression after the co-culture of third-party allogeneic naive CD4+ T cells from a control subject with untreated immature MoDCs (-) or IL-10-DCs from a control subject and a STAT3 patient in the absence or presence of exogenous TGF- β 1. We show summary data showing relative FOXP3 expression (n = 8 each) performed in triplicate. Data are representative of at least two independent experiments. (B and E) Graphs show mean ± SD. (A-F) Horizontal bars indicate mean values. **, P < 0.01; ***, P < 0.001. JEM VOL. 208, February 14, 2011 241 In contrast, the maturation of primary cDCs derived from *STAT3* patients was almost intact by prior treatment with IL-10 (Fig. 5 D). We did not detect inhibitory effects of IL-10 on CD80 up-regulation in control subjects and *STAT3* patients. Furthermore, control primary cDCs up-regulated the expression of inhibitory molecules, including PD-L1, PD-L2, ILT-3 (unpublished data), and ILT-4 by IL-10 treatment. The up-regulation of these inhibitory molecules was impaired in the primary cDCs of *STAT3* patients (Fig. 5 E). These results demonstrate that IL-10 signaling is defective not only in MoDCs but also in primary DCs, resulting in the defective up-regulation of surface inhibitory molecules in *STAT3* patients. ## TYK2-deficient MoDCs are also defective in the generation of tolerogenic DCs and iT_{reg} cells We studied MoDCs from a patient with TYK2 deficiency to confirm that the IL-10 signaling defect was responsible for the defective generation of tolerogenic DCs and iT_{reg} cells. The absolute numbers of cDCs and pDCs in PBMCs were similar in the TYK2-deficient patient and a control subject, and no significant difference in the differentiation of MoDCs was observed on evaluations of forward and side light scatter, CD1a expression, and the expression of CD80, CD83, and CD86 of DCs before and after LPS-induced maturation (Fig. S7, A-D). No inhibition of the up-regulation of CD80, CD83, and CD86 by prior treatment with IL-10 was detectable in cells from the TYK2-deficient patient (Fig. 6 A). The up-regulation of PD-L1, PD-L2, ILT-3, and ILT-4 on MoDCs was also defective in the TYK2-deficient patient, as shown by comparisons with control subjects (Fig. 6 B). An increase in FOXP3 mRNA and protein levels was detectable in co-cultures of allogeneic naive CD4+T cells with control IL-10-DCs but not in co-cultures with TYK2-deficient IL-10-DCs (Fig. 6, C and D). Consistent with these observations, no suppression of naive CD4+ T cell proliferation and cytokine production (including IFN-7, IL-5, and IL-13) was detected when TYK2-deficient IL-10-DCs were used Figure 4. PD-L1, ILT-4, and TGF- β 1 in response to IL-10-DCs and STAT3 in DCs play a major role in FOXP3 up-regulation. (A-C) Q-PCR analysis of *FOXP3* mRNA levels in third-party allogeneic naive CD4+ T cells from control (Cont) subjects co-cultured with untreated immature MoDCs (—) and IL-10-DCs (IL-10) from eight control subjects and eight STAT3 patients. A neutralizing PD-L1 peptide or a control peptide (A), control or ILT-4-neutralizing mAb (B), or control or TGF- β -neutralizing mAb (C) was added where indicated. (D) Q-PCR analysis of *FOXP3* mRNA levels in third-party allogeneic naive CD4+ T cells from control subjects and STAT3 patients co-cultured with untreated immature DCs (—) or IL-10-DCs (IL-10) from control subjects and STAT3 patients. Summary data show relative *FOXP3* mRNA expression (n = 8
each) and were performed in triplicate. Data are representative of at least two independent experiments. (A-D) Horizontal bars indicate mean values. *, P < 0.05; ***, P < 0.01; ****, P < 0.001. 242 (Fig. 6, E and F). MoDCs from the TYK2-deficient patient produced an equivalent amount of TGF- $\beta1$ and reduced amount of IL-10 compared with a control subject, which might be associated with the fact that the type I IFN signal is impaired in the TYK2-deficient patient but not in STAT3 patients. (Fig. S7, E and F). Thus, the IL-10 signaling defect in HIES patients, STAT3 patients, and the TYK2-deficient patient results in the impaired generation of tolerogenic DCs and iT_{reg} cells. #### DISCUSSION We found that the Th1 and Th2 differentiation of naive CD4 $^+$ T cells and the suppressive activity of T_{reg} cells were normal in STAT3 patients. Recent data have shown that Ig isotype switching in B cells is normal in STAT3 patients (Avery et al., 2010). Thus, it is not likely that T cell– and B cell–intrinsic mechanisms are responsible for the allergic manifestations in HIES patients. We then investigated DCs, which can regulate the immune response and tolerance. IL–10 signal transduction was defective in the primary DCs and MoDCs of patients, despite the intact TGF- β 1 signal transduction in these cells. This defect resulted in impairment of the suppression of cytokine production and T cell proliferation by IL–10–DCs. The generation and suppressive activity of FOXP3+ iT_{reg} cells cultured with IL–10–DCs was impaired in HIES patients. The defective generation of tolerogenic DCs and iT_{reg} cells in response to IL–10 was also observed in the other type of HIES, TYK2 deficiency. These results suggest that IL–10 signaling in DCs may be crucial for the generation of tolerogenic DCs and iT_{reg} cells to maintain an appropriate Th1–Th2–T_{reg} cell balance in HIES patients. Figure 5. Primary DCs are defective in IL-10 signal and up-regulation of PD-L1 and ILT-4. (A) Dot blots are gated on Lin-negative HLA-DR-positive cells from a control subject and a *STAT3* patient. cDCs are CD11c+CD304- (BDCA-4), and pDCs are CD11c+CD304+. Representative dot plots from a control subject and a *STAT3* patient are shown at the top, and pooled data (n = 8 each) showing percentages of cDCs and pDCs are at the bottom. (B and C) Primary cDCs (B) and pDCs (C) from a control subject and a *STAT3* patient were stimulated with IL-10 for 2 h, and the amounts of *SOCS3* and *VCAN* (*CSPG2*) mRNAs were analyzed by Q-PCR. Representative data are shown at the top, normalized to *HPRT* levels, with the level of unstimulated control cells defined as 1.0. Summary data (n = 8 each) showing fold increase are at the bottom. Data are representative of at least two independent experiments performed in triplicate. Graphs show mean \pm SD. (D) Representative histograms of CD80, CD83, and CD86 expression on control and *STAT3* cDCs stimulated with LPS alone or LPS after IL-10 treatment. Dashed lines indicate staining with isotype-matched control mAbs. Summary data showing Δ MFI, LPS stimulated minus LPS-stimulated IL-10-DCs, (n = 8 each) are at the bottom. (E) Representative histograms of PD-L1, PD-L2, and ILT-4 expression of primary cDCs (—) and IL-10-treated (IL-10) primary cDCs from a control subject and a *STAT3* patient are shown at the top. Summary data (n = 8 each) showing Δ MFI, IL-10 treated minus untreated, of PD-L1, PD-L2, and ILT-4 are shown at the bottom. Data are representative of at least two independent experiments. (A–E) Horizontal bars indicate mean values. **, P < 0.001; ****, P < 0.001. JEM VOL. 208, February 14, 2011 243 The exposure of the skin to allergens induces allergenspecific unresponsiveness, possibly because of the production of IL-10 by keratinocytes (Enk and Katz, 1992; Enk et al., 1993). Langerhans cells and dermal DCs receive IL-10 signal and induce allergen-specific tolerance. This defect in IL-10-mediated tolerance to innocuous environmental antigens may be one of the mechanisms underlying the allergic signs in Figure 6. TYK2-deficient MoDCs display defective generation of tolerogenic DCs and iT_{reg} cells. (A) Flow cytometric analysis of the CD80, CD83, and CD86 expression on IL-10-DCs (IL-10) and LPS-matured MoDCs after prior treatment with IL-10 (IL-10 \rightarrow LPS), with cells obtained from a control subject and a patient with TYK2 deficiency. We show representative histograms from three independent experiments. (B) Flow cytometric analysis of the levels of PD-L1, PD-L2, ILT-3, and ILT-4 in untreated immature MoDCs (-) and IL-10-DCs (IL-10) from a control subject and a TYK2 deficiency. We show representative histograms from three independent experiments. (C) Q-PCR analysis of FOXP3 mRNA levels after the co-culture of third-party allogeneic naive CD4 T cells from a control subject with untreated immature MoDCs (-) or IL-10-DCs (IL-10) from a control subject and a TYK2-deficient patient. We show representative data from three independent experiments. (D) Flow cytometric analysis of cytoplasmic FOXP3 protein levels in untreated immature MoDCs (-) and IL-10-DCs (IL-10) from a control subject and a TYK2-deficient patient. Isotype-matched control (isotype) antibody staining is indicated by a dashed line. We show representative histograms from three independent experiments. (E) Third-party allogeneic naive CD4+ T cells from control subjects were co-cultured with immature MoDCs (-), LPS-matured MoDCs (LPS), or LPS-matured MoDCs after prior treatment with IL-10 (IL-10 \rightarrow LPS). The cells were obtained from a control subject and a TYK2-deficient patient. After 5 d, proliferation was evaluated by pulsing the cells with 1 µCi (37 kBq) [3H]thymidine for the final 18 h of culture. All samples were evaluated in triplicate. We show representative data from three independent experiments. (F) Cells were cultured as in E, and cytokine levels were evaluated as indicated. All samples were evaluated in triplicate. We show representative data from at least three independent experiments. (C, E, and F) Graphs show mean \pm SD. *, P < 0.05; **, P < 0.01. HIES patients. In humans, we are not certain about the nT_{reg} cell/ iT_{reg} cell ratio in the peripheral blood under resting conditions. Our data suggest that most of the T_{reg} cells in the peripheral blood are nT_{reg} cells, which are derived from the thymus and are independent of the IL-10 signal. iT_{reg} cells in the peripheral blood may be a minor population under resting conditions but may play a crucial role in the regulation of antigen-specific allergic reactions. Human peripheral blood T_{reg} cells suppressed proliferation and Th2 cytokine production by responder T cells stimulated with allergens (Bellinghausen et al., 2003; Grindebacke et al., 2004; Ling et al., 2004). CD4 $^+$ T cells cultured with IL-10–DCs have antigen-specific iT $_{\rm reg}$ cell activity (Steinbrink et al., 2002). In vitro experiments suggested that the suppression is dependent on cell to cell contact between iT $_{\rm reg}$ cells and responder T cells and is not mediated by soluble factors. In this study, we found that the generation of FOXP3 $^+$ iT $_{\rm reg}$ cells by 244 Impaired iT_{reg} cell genesis in hyper-IgE syndrome | Saito et al. IL-10–DCs was impaired in HIES patients. Evidence is accumulating to suggest that interactions between tolerogenic DCs and $T_{\rm reg}$ cells play an important role in the maintenance of immune tolerance against self-antigens and innocuous environmental antigens (Yamazaki et al., 2006a; Hubert et al., 2007). CD4+CD25+ $T_{\rm reg}$ cell populations can expand in the presence of DCs with intact suppressive activity in vitro and in vivo (Yamazaki et al., 2006b). In addition to the IL-10 signal provided by the cells sensing innocuous environmental antigens, the IL-10–mediated positive feedback loop between tolerogenic DCs and $iT_{\rm reg}$ cells is probably impaired in HIES patients, and this may also constitute one of the mechanisms underlying the atopic signs in HIES patients. A large number of clinical studies have demonstrated that IL-10 is involved in the molecular pathogenesis of atopic disorders in humans. The frequency of allergen-specific, IL-10-secreting T cells is significantly higher in nonatopic individuals than in atopic patients (Akdis et al., 2004). IL-10 levels are inversely correlated with the severity of human allergic diseases (Borish et al., 1996; Lim et al., 1998). Furthermore, allergen-specific immunotherapies increase IL-10 synthesis by T cells (Francis et al., 2003; Vissers et al., 2004). All of these findings suggest that IL-10 plays a key role in the control of atopic diseases in humans. In contrast, mice lacking IL-10 or the IL-10 receptor develop spontaneous inflammation in the large intestine (Kühn et al., 1993; Davidson et al., 1996; Spencer et al., 1998). Mice with a T_{reg} cell-specific IL-10 deficiency also display inflammation of surfaces in contact with the environment such as the colon, lungs, and skin (Rubtsov et al., 2008). In humans, mutations in the genes encoding IL-10 receptor subunits have been found in patients with early-onset enterocolitis (Glocker et al., 2009). Thus, a lack of IL-10 signaling results in enterocolitis in both humans and mice. Interestingly, in patients with HIES, immune responses to innocuous environmental antigens are limited to the skin, with no marked increase in the frequency of enterocolitis. One possible reason for this discrepancy is the existence of a partial, as opposed to complete, IL-10 signaling deficiency in STAT3 patients, creating a situation resembling T_{reg} cell–specific IL-10 deficiency. An alternative nonmutually exclusive explanation is that, in addition to the IL-10 signaling defect, STAT3 patients have defective Th17 cell development (de Beaucoudrey et al., 2008; Ma et al., 2008; Milner et al., 2008; Renner et
al., 2008; Minegishi et al., 2009). The combination of Th17 cell deficiency and IL-10 signaling may result in allergic signs but prevent the development of enterocolitis (Brand, 2009). T_{reg} cells mediate peripheral tolerance and play a central role in determining several immunopathologies, including autoimmunity, chronic infections, tumor development, and allergies (Hawrylowicz and O'Garra, 2005). FOXP3⁺T_{reg} cells are involved in protecting humans against allergic diseases, as patients with IPEX syndrome suffer from allergic symptoms (Bennett et al., 2001; Wildin et al., 2001). PBMCs from atopic patients proliferate more extensively and produce more Th2 cytokines in response to allergens than do PBMCs from nonatopic healthy individuals (Taams et al., 2002; Ling et al., 2004). However, patients with atopic dermatitis have normal numbers of $T_{\rm reg}$ cells in the periphery with normal suppressive activity (Ou et al., 2004). These results suggest that $iT_{\rm reg}$ cells may be more important than $nT_{\rm reg}$ cells in controlling atopic dermatitis. Consistent with this hypothesis, a recent study using two mouse strains, one capable of generating $iT_{\rm reg}$ cells but incapable of generating $nT_{\rm reg}$ cells and the other unable to generate either $iT_{\rm reg}$ or $nT_{\rm reg}$ cells, suggested that $iT_{\rm reg}$ cells controlled allergic inflammation against innocuous environmental allergens, whereas $nT_{\rm reg}$ cells did not (Curotto de Lafaille et al., 2008). TGF- $\beta 1$ is the other crucial inhibitory cytokine regulating lymphocyte homeostasis, inhibiting Th1 and Th2 cell responses and promoting the differentiation of iT_{reg} cells (Li et al., 2006). One previous study suggested that STAT3 might be involved in transduction of the TGF- $\beta 1$ signal (Ohkawara et al., 2004), but we detected no impairment of TGF- $\beta 1$ signaling in DCs from STAT3 patients. Unexpectedly, we found that TGF- $\beta 1$ and IL-10–DCs operated synergistically to up-regulate FOXP3 expression in naive CD4+T cells. This suggests that the defective generation of IL-10–DCs may have a far-reaching impact on the induction of iT_{reg} cells in HIES patients. We provide in this study the first demonstration that an IL-10 signaling defect leads to the impairment of tolerogenic DC and iT $_{\rm reg}$ cell production in the HIES. These results suggest that the defect in tolerogenic DC and iT $_{\rm reg}$ cell production, even in the presence of normal nT $_{\rm reg}$ cells, may contribute to the development of complex clinical manifestations, including allergic inflammation in HIES patients. Furthermore, a unique combination of defective Th17 differentiation and iT $_{\rm reg}$ cell generation may culminate in the development of atopic dermatitis but not enterocolitis in HIES patients. #### MATERIALS AND METHODS Patients. All STAT3 patients enrolled in this study had typical clinical findings associated with HIES and a National Institutes of Health score >40 points (Table I; Grimbacher et al., 1999). The diagnosis was confirmed by the identification of mutations in the STAT3 gene. The patient with TYK2 deficiency has been described elsewhere (Minegishi et al., 2006). The study was approved by the Tokyo Medical and Dental University Ethics Committee, and written informed consent was obtained from all patients. Control individuals were nonatopic, age-matched, and equivalent in sex distribution to HIES patients. All of the patients and control subjects were in a healthy state when their blood samples were collected. Antibodies, cytokines, and peptides. We used mAbs against CD4 (RPA-T4), CD14 (M5E2), CD11c (B-ly6), CD123 (9F5), HLA-DR (TU36), CD25 (M-A251), CD62L (Dreg 56), CD1a, (HI149), CD80 (L307.4), CD86 (2331), CD83 (HB15e), PD-L1 (MIH1), PD-L2 (MIH18), FOXP3 (259D/C7), and CTLA-4 (CD152; BNI3), a Lin cocktail (antibodies against CD3 [SK7], CD14 [MΦP9], CD16 [3G8], CD19 [SJ25C1], CD20 [L27], and CD56 [NCAM16.2]), and mAbs against IFN-γ (4S.B3) and IL-4 (8D4-8), neutralizing mAbs against IFN-γ (B27), IL-4 (MP4-25D2), and isotype-matched control mAbs, all of which were purchased from BD. We obtained antibodies against ILT-3 (CD85K; 293623), ILT-4 (CD85d; 287219), LAP (latency-associated peptide; TGF-β1; 27235), and GITR (TNFR.SF18; 110416) from R&D Systems. Anti–ICOS-L antibody (MIH12) was obtained from eBioscience. Anti–CD304 (BDCA-4) antibody (AD5-17F6) was obtained JEM VOL. 208, February 14, 2011 245 **Table I.** Characteristics of HIES patients | Patient | Age | Sex | Mutation | Domain | Highest IgE | | | | | | | | | NIH scor | re | | | | | | | | |---------|------|-----|-------------|----------------|-------------|--------------|-----------------|-----------|------------------|-----------------|--------|-----|-------------|----------------------|---------------------|------|----------------|-------------------|-----------|----------|------------------------|----------------| | | | | | | | Total points | Skin
abscess | Pneumonia | Eosino
philia | Newborn
rash | Eczema | URI | Candidiasis | Serious
infection | Lung
abnormality | Face | Nasal
width | Retained
teeth | Scoliosis | Fracture | Hyperex
tensibility | High
palate | | | yr . | | | | IU/mI | | | | | | | | | | | | | | | | | - | | STAT3-1 | 23 | F | ΔV463 | DNA
binding | 17,500 | 58 | 2 | 8 | 0 | 4 | 2 | 0 | 0 | 0 | 8 | 5 | 3 | 8 | 4 | 0 | 4 | 0 | | STAT3-2 | 11 | F | R382W | DNA
binding | 97,900 | 66 | 8 | 8 | 6 | 4 | 4 | 2 | 1 | 0 | 8 | 2 | 1 | 8 | 0 | 0 | 4 | 0 | | STAT3-3 | 24 | M | ΔV463 | DNA
binding | 62,000 | 56 | 8 | 0 | 6 | 4 | 4 | 0 | 4 | 4 | 8 | 5 | 1 | 0 | 0 | 0 | 0 | 2 | | STAT3-4 | 13 | М | R382Q | DNA
binding | 11,600 | 41 | 8 | 8 | 0 | 4 | 4 | 0 | 0 | 4 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | | STAT3-5 | 16 | F | H437Y | DNA
binding | 50,600 | 44 | 8 | 4 | 6 | 4 | 4 | 0 | 0 | 0 | 0 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | | STAT3-6 | 23 | F | S636F | SH2 | 25,400 | 68 | 8 | 8 | 0 | 4 | 2 | 2 | 4 | 0 | 6 | 5 | 3 | 8 | 0 | 4 | 4 | 0 | | STAT3-7 | 49 | F | G618D | SH2 | 21,300 | 53 | 8 | 8 | 0 | 4 | 4 | 0 | 0 | 4 | 8 | 2 | 1 | 0 | 0 | 4 | 0 | 0 | | STAT3-8 | 34 | M | Δ371-380 | DNA
binding | 12,300 | 53 | 8 | 0 | 0 | 4 | 4 | 0 | 4 | 4 | 0 | 5 | 3 | 1 | 0 | 4 | 4 | 2 | | TYK2-1 | 23 | М | Frame shift | NA | 2,100 | 48 | 8 | 8 | 3 | 4 | 4 | 2 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA, not applicable. Possible HIES patients are evaluated by the National Institutes of Health (NIH) scoring system. If the total points of NIH score are >40 points, the patient is considered as HIES clinically. NIH score is defined as follows. If the highest serum IgE level is >2,000 IU/ml, the patient scores 10 points. Skin abscess: 8 points indicate more than four, and 2 points indicate one or two episodes of skin abscess in lifetime. Pneumonia: 8 points indicate more than three, and 4 points indicate two episodes of pneumonia in lifetime. Eosinophilia: 6 points indicate >800 eosinophils/µl, and 3 points indicate 700–800 eosinophils/µl of blood (700/µl = 1 SD and 800/µl = 2 SD above the mean value from normal individuals). Newborn rash: 4 points indicate newborn rash is present. Eczema: 4 points indicate eczema is severe, and 2 points indicate eczema is moderate in worst stage. Upper respiratory infections (URI): 2 points indicate the patient sufferers from upper respiratory infections six to four times, 1 point indicates three times per year. Candidiasis: 4 points indicate the patient has systemic candidiasis, and 1 point indicates oral candidiasis. Serious infections: 8 points indicate the patient has episodes of fatal and serious infection, and 4 points indicate the patient has points indicate the patient has points indicate the patient has bronchiectasis. Face: 5 points indicate the patient has typical characteristic facial appearance, and 2 points indicate the patient has neal width of >2 SD, and 1 point indicates nasal width with 1–2 SD. Retained teeth: 8 points indicate the patient has more than three retained primary teeth, and 1 point indicates the patient has one or two episodes of fracture with minor trauma. Hyperextensibility: 4 points indicate the patient has hyperextensible joints. High palate: 2 points indicate the patient has a high palate. In all items, 0 points indicate the finding is absent. None of the patients have lymphoma or midline anomaly. from Miltenyi Biotec. Recombinant human (rh) GM-CSF, IL-4, IFN- γ , IL-10, and TGF- β 1 were purchased from PeproTech. Neutralizing PD-L1 peptide was obtained from Abcam, and an irrelevant peptide was used as a negative control. PBMCs and naive CD4⁺ T cell culture. PBMCs were isolated by Ficoll density gradient centrifugation (Histopaque–1077; Sigma–Aldrich). PBMCs were cultured in 96-well plates in RPMI 1640 medium supplemented with 10% fetal bovine serum, 200 mM L-glutamine, 100 mM sodium pyruvate, nonessential amino acids, minimal essential medium vitamins (all from Invitrogen), 50 U/50 μg/ml penicillin/streptomycin (Nacalai Tesque), and 50 μM mercaptoethanol. Cultures were stimulated with a 1:100 (vol/vol) dilution of anti–CD3/CD28 mAb–coated beads from Invitrogen. For some experiments, the following mAbs and cytokines were added: 10 ng/ml rhIFN–γ, 10 ng/ml rhIL–4, and neutralizing antibodies against 10 μg/ml IFN–γ and 10 μg/ml IL–4. Treg cell purification and functional assay. Total CD4⁺ T cells were isolated with the CD4⁺ T cell isolation kit (BD). The cells were stained for sorting with antibodies against CD4, CD25, and CD62L. All mAbs were used after dialysis to remove sodium azide (Baecher-Allan et al., 2006). CD4⁺CD25⁻CD62L^{hi} responder T cells and CD4⁺CD25⁺CD62L^{hi} Treg cell populations were isolated by sorting with a cell sorter (Moflo; Beckman Coulter). In the postsort analysis, the resulting cell preparation was found to be to >99% purity. Co-culture was set up as follows: 1.25 × 10⁴ responder T cells and 1.25 × 10³ Treg cells were
co-cultured for 5 d with a 1:100 (vol/vol) dilution of magnetic beads coated with antibodies against CD3/CD28. Responder T cells were used as a negative control. Proliferation was assessed by adding 1 μCi (37 kBq) [³H]thymidine (methyl-[³H]thymidine; ICN Biomedicals) to the culture medium for the final 18 h. **Isolation of primary DCs.** Primary DCs were obtained by the enrichment using a human DC enrichment set (BD) and cell sorting with FACS Aria II (BD): cDCs as Lin⁻HLA-DR⁺ CD11c⁺CD304⁻ cells and pDCs as Lin⁻HLA-DR⁺CD11c⁻CD304⁺ cells. In the postsort analysis, the resulting cell preparation was to >99% purity. In vitro generation of MoDCs. CD14⁺ monocytes were isolated from PBMCs with immunomagnetic beads (BD) at a purity of >98%. Monocytes were cultured in the presence of 50 ng/ml GM-CSF and 10 ng/ml IL-4 for 5 d. For differentiation into mature DCs, immature DCs were stimulated on day 5 with 100 ng/ml LPS (O55:B5; Sigma-Aldrich). For the generation of tolerogenic DCs, 100 ng/ml IL-10 was added to the culture on day 3. Non-adherent DCs on day 7 were used for T cell stimulation. Allogeneic naive CD4+ T cell proliferation assay. Naive CD4+ T cells were negatively selected from PBMCs through the depletion of CD8, CD11b, CD16, CD19, CD36, CD41a, CD45RO, CD56, CD123, $\gamma\delta$ -TCR, and glycophorin A–positive cells, with antibody-coated paramagnetic microbeads (naive CD4+ T cell isolation kit from BD), according to the manufacturer's protocol. The purity of the naive CD4+ T cell preparation exceeded 95%. For proliferation assays, 10^5 naive CD4+ T cells were co-cultured in 96-well round-bottomed plates, in triplicate, with 10^4 allogeneic DCs. After 5 d, the cells were pulsed with 1 μ Ci (37 kBq) per well of $[^3H]$ thymidine for 18 h, and $[^3H]$ thymidine incorporation was evaluated with a β counter (model 1450; PerkinElmer). iT $_{\rm reg}$ cell preparation and functional evaluation. Naive CD4+T cells were obtained from PBMCs with the naive CD4+T cell isolation kit. We obtained CD4+CD25- responder T cells by depleting the CD25+ cells with magnetic beads coated with an antibody against CD25 (BD). The resulting cell preparation was >95% pure. We obtained iT $_{\rm reg}$ cells by setting up cocultures as described for the Allogeneic naive CD4+T cell proliferation assay and purifying CD4+CD25+ cells after 3 d with immunomagnetic beads. CD4+CD25+ iT $_{\rm reg}$ cells were co-cultured with CFSE-labeled autologous CD4⁺CD25⁻ responder T cells in 96-well round-bottomed plates containing a 1:100 (vol/vol) dilution of anti-CD3/CD28 mAb beads. After 5 d, the proliferation of the CFSE-labeled CD4⁺CD25⁻ T cells was assessed by flow cytometry. Flow cytometric analysis. Cells were analyzed on a FACSCalibur or FACSCanto II machine (BD) using CellQuest or FACSDiva software (BD). Mannose receptor–mediated endocytosis. 1 mg/ml FITC–dextran (Sigma–Aldrich) was incubated with 10^5 cells at 37° C or 4° C for 2 h. FITC–dextran uptake was stopped by adding ice–cold PBS, and the cells were then thoroughly washed in a refrigerated centrifuge. Samples were then subjected to flow cytometry. The level of antigen uptake by DCs was assessed as the difference between the test (37° C) and control (4° C) values for each sample. Cytokine ELISA. For cytokine determinations, the culture supernatant was stored at -80°C until use, and the amounts of IFN-γ,TNF, IL-5, IL-6, IL-10, IL-12p40, and IL-13 present were then determined by ELISA, according to the kit manufacturer's instructions (BD). Intracellular staining. Naive CD4+T cells were cultured with plate-bound antibodies against CD3 and CD28 in Th1 conditions, IFN- γ plus antibody against IL-4 in Th2 conditions, or IL-4 and antibody against IFN- γ , and the cells were then fixed and permeabilized (Cytofix/Cytoperm reagents; BD) and stained with mAbs against CD4, IFN- γ , and IL-4, according to the manufacturer's instructions (BD). CTLA-4 staining was performed after Cytofix/Cytoperm treatment. **FOXP3** intracellular staining. Naive CD4⁺T cells co-cultured with untreated DCs or IL-10–DCs were fixed and permeabilized with the human FOXP3 buffer set (BD) and stained with mAb against FOXP3. RNA isolation and real-time quantitative RT-PCR (Q-PCR). Cells were harvested for total RNA isolation with the Fastpure RNA kit (Takara Bio Inc.). Total RNA was reverse transcribed with Primescript RT (Takara Bio Inc.). An aliquot of the RT products was used as a template for real-time PCR with SYBR green Mastermix (Takara Bio Inc.) on an Mx3005P thermocycler (Agilent Technologies) with SYBR green I dye as the amplicon detector and ROX as the passive reference. The gene for HPRT (hypoxanthine phosphoribosyltransferase) was amplified as an endogenous reference. Quantification was achieved by both the standard curve and comparative $\Delta\Delta$ CT methods. **Data analysis.** Data are expressed as means \pm the SD. Unpaired t tests or analysis of variance was used for statistical analysis. P-values <0.05 were considered significant (*, P < 0.05; **, P < 0.01; and ***, P < 0.001). Online supplemental material. Fig. S1 shows normal Th1 and Th2 differentiation from naive CD4⁺T cells but increased Th2 cytokine production from activated T cells in PBMCs of *STAT3* patients. Fig. S2 shows that MoDC differentiation in vitro and TGF-β1 signaling in MoDCs are intact in *STAT3* patients. Fig. S3 shows that IL-10 treatment does not impair the differentiation of MoDCs, but down-regulation of CD80, CD83, and CD86 is defective in MoDCs from *STAT3* patients. Fig. S4 shows that suppression of proliferation by IL-10 pretreatment is impaired in MoDCs from *STAT3* patients. Fig. S5 shows that up-regulation of FOXP3, CTLA-4, and GITR is impaired in iT_{reg} cells co-cultured with patient IL-10-DCs. Fig. S6 shows that MoDCs from *STAT3* patients produce equivalent amounts of TGF-β1. Fig. S7 shows the characterization of primary DCs and MoDCs from the patient with *TYK2* deficiency. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20100799/DC1. We thank Ms. S. Miyakoshi for assistance with cell sorting with Moflo. This work is supported by Grants-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology (22021015 and 22390205), JEM VOL. 208, February 14, 2011 #### JEM Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Research on Intractable Diseases from the Ministry of Health, Labour and Welfare, the Uehara Foundation, the Naito Foundation, the Takeda Science Foundation, and the Mitsubishi Foundation. The authors have no conflicting financial interests. Submitted: 22 April 2010 Accepted: 11 January 2011 #### REFERENCES - Akdis, C.A., and M. Akdis. 2009. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. *J. Allergy Clin. Immunol.* 123:735–746. doi:10.1016/j.jaci.2009.02.030 - Akdis, M., J. Verhagen, A. Taylor, F. Karamloo, C. Karagiannidis, R. Crameri, S. Thunberg, G. Deniz, R. Valenta, H. Fiebig, et al. 2004. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 199:1567–1575. doi:10.1084/jem.20032058 - Akira, S. 2000. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 19:2607–2611. doi:10.1038/sj.onc.1203478 - Amsen, D., A. Antov, and R.A. Flavell. 2009. The different faces of Notch in T-helper-cell differentiation. Nat. Rev. Immunol. 9:116–124. doi:10 .1038/nri2488 - Avery, D.T., E.K. Deenick, C.S. Ma, S. Suryani, N. Simpson, G.Y. Chew, T.D. Chan, U. Palendira, J. Bustamante, S. Boisson-Dupuis, et al. 2010. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207:155–171. doi:10.1084/jem.20091706 - Baecher-Allan, C., E. Wolf, and D.A. Hafler. 2006. MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 176:4622–4631. - Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, and K. Palucka. 2000. Immunobiology of dendritic cells. *Annu. Rev. Immunol.* 18:767–811. doi:10.1146/annurev.immunol.18.1.767 - Bellinghausen, I., B. Klostermann, J. Knop, and J. Saloga. 2003. Human CD4+CD25+ T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J. Allergy Clin. Immunol. 111:862–868. doi:10.1067/mai.2003.1412 - Bennett, C.L., J. Christie, F. Ramsdell, M.E. Brunkow, P.J. Ferguson, L. Whitesell, T.E. Kelly, F.T. Saulsbury, P.F. Chance, and H.D. Ochs. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21. doi:10.1038/83713 - Bettelli, E., Y. Carrier, W. Gao, T. Korn, T.B. Strom, M. Oukka, H.L. Weiner, and V.K. Kuchroo. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. *Nature*. 441:235–238. doi:10.1038/nature04753 - Borish, L., A. Aarons, J. Rumbyrt, P. Cvietusa, J. Negri, and S. Wenzel. 1996. Interleukin-10 regulation in normal subjects and patients with asthma. J.Allergy Clin. Immunol. 97:1288–1296. doi:10.1016/S0091-6749(96)70197-5 - Brand, S. 2009. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut. 58:1152–1167. doi:10.1136/gut.2008.163667 - Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198:1875–1886. doi:10.1084/jem.20030152 - Coombes, J.L., K.R. Siddiqui, C.V. Arancibia-Cárcamo, J. Hall, C.M. Sun, Y. Belkaid, and F. Powrie. 2007. A
functionally specialized population of mucosal CD103⁺ DCs induces Foxp3⁺ regulatory T cells via a TGF-β-and retinoic acid-dependent mechanism. J. Exp. Med. 204:1757-1764. doi:10.1084/jem.20070590 - Corinti, S., C. Albanesi, A. la Sala, S. Pastore, and G. Girolomoni. 2001. Regulatory activity of autocrine IL-10 on dendritic cell functions. J. Immunol. 166:4312–4318. - Curotto de Lafaille, M.A., S. Muriglan, M.J. Sunshine, Y. Lei, N. Kutchukhidze, G.C. Furtado, A.K. Wensky, D. Olivares-Villagómez, and J.J. Lafaille. 2001. Hyper immunoglobulin E response in mice with monoclonal - populations of B and T lymphocytes. *J. Exp. Med.* 194:1349–1359. doi: 10.1084/jem.194.9.1349 - Curotto de Lafaille, M.A., N. Kutchukhidze, S. Shen, Y. Ding, H. Yee, and J.J. Lafaille. 2008. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. *Immunity*. 29:114–126. doi:10.1016/j.immuni.2008.05.010 - Davidson, N.J., M.W. Leach, M.M. Fort, L. Thompson-Snipes, R. Kühn, W. Müller, D.J. Berg, and D.M. Rennick. 1996. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 184:241–251. doi:10.1084/jem.184.1.241 - de Beaucoudrey, L., A. Puel, O. Filipe-Santos, A. Cobat, P. Ghandil, M. Chrabieh, J. Feinberg, H. von Bernuth, A. Samarina, L. Jannière, et al. 2008. Mutations in STAT3 and IL12RB1 impair the development of human IL-17producing T cells. J. Exp. Med. 205:1543–1550. doi:10.1084/jem.20080321 - Dillon, S.R., C. Sprecher, A. Hammond, J. Bilsborough, M. Rosenfeld-Franklin, S.R. Presnell, H.S. Haugen, M. Maurer, B. Harder, J. Johnston, et al. 2004. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. *Nat. Immunol.* 5:752–760. doi:10.1038/ni1084 - Enk, A.H., and S.I. Katz. 1992. Early molecular events in the induction phase of contact sensitivity. *Proc. Natl. Acad. Sci. USA*. 89:1398–1402. doi:10.1073/pnas.89.4.1398 - Enk, A.H., V.L. Angeloni, M.C. Udey, and S.I. Katz. 1993. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. *J. Immunol.* 151:2390–2398. - Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. *Nat. Immunol.* 4:330–336. doi:10.1038/ni904 - Francis, J.N., S.J. Till, and S.R. Durham. 2003. Induction of IL-10+CD4+CD25+T cells by grass pollen immunotherapy. *J. Allergy Clin. Immunol.* 111:1255–1261. doi:10.1067/mai.2003.1570 - Francisco, L.M., V.H. Salinas, K.E. Brown, V.K. Vanguri, G.J. Freeman, V.K. Kuchroo, and A.H. Sharpe. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206:3015–3029. doi:10.1084/jem.20090847 - Glocker, E.O., D. Kotlarz, K. Boztug, E.M. Gertz, A.A. Schäffer, F. Noyan, M. Perro, J. Diestelhorst, A. Allroth, D. Murugan, et al. 2009. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361:2033–2045. doi:10.1056/NEJMoa0907206 - Grimbacher, B., A.A. Schäffer, S.M. Holland, J. Davis, J.I. Gallin, H.L. Malech, T.P. Atkinson, B.H. Belohradsky, R.H. Buckley, F. Cossu, et al. 1999. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am. J. Hum. Genet. 65:735–744. doi:10.1086/302547 - Grimbacher, B., S.M. Holland, and J.M. Puck. 2005. Hyper-IgE syndromes. Immunol. Rev. 203:244–250. doi:10.1111/j.0105-2896.2005.00228.x - Grindebacke, H., K. Wing, A.C. Andersson, E. Suri-Payer, S. Rak, and A. Rudin. 2004. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. *Clin. Exp. Allergy*. 34:1364–1372. doi:10.1111/j.1365-2222.2004.02067.x - Hammad, H., and B.N. Lambrecht. 2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat. Rev. Immunol. 8:193–204. doi:10.1038/nri2275 - Harrington, L.E., R.D. Hatton, P.R. Mangan, H. Turner, T.L. Murphy, K.M. Murphy, and C.T. Weaver. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6:1123–1132. doi:10.1038/ni1254 - Hawrylowicz, C.M., and A. O'Garra. 2005. Potential role of interleukin-10secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol. 5:271–283. doi:10.1038/nri1589 - Holland, S.M., F.R. DeLeo, H.Z. Elloumi, A.P. Hsu, G. Uzel, N. Brodsky, A.F. Freeman, A. Demidowich, J. Davis, M.L. Turner, et al. 2007. STAT3 mutations in the hyper-lgE syndrome. N. Engl. J. Med. 357:1608–1619. doi:10.1056/NEJMoa073687 - Hubert, P., N. Jacobs, J.H. Caberg, J. Boniver, and P. Delvenne. 2007. The cross-talk between dendritic and regulatory T cells: good or evil? J. Leukoc. Biol. 82:781–794. doi:10.1189/jlb.1106694 - Ivanov, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, D.J. Cua, and D.R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell. 126:1121-1133. doi:10.1016/j.cell.2006.07.035 248 Impaired iT_{reg} cell genesis in hyper-IgE syndrome | Saito et al. - Kakkar, R., and R.T. Lee. 2008. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 7:827–840. doi:10.1038/nrd2660 - Kapsenberg, M.L. 2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3:984–993. doi:10.1038/nri1246 - Keir, M.E., M.J. Butte, G.J. Freeman, and A.H. Sharpe. 2008. PD-1 and its ligands in tolerance and immunity. *Annu. Rev. Immunol.* 26:677–704. doi:10.1146/annurev.immunol.26.021607.090331 - Kühn, R., J. Löhler, D. Rennick, K. Rajewsky, and W. Müller. 1993. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 75:263-274. doi:10.1016/0092-8674(93)80068-P - Li, M.O., Y.Y. Wan, S. Sanjabi, A.K. Robertson, and R.A. Flavell. 2006. Transforming growth factor-beta regulation of immune responses. *Annu. Rev. Immunol.* 24:99–146. doi:10.1146/annurev.immunol.24.021605.090737 - Lim, S., E. Crawley, P. Woo, and P.J. Barnes. 1998. Haplotype associated with low interleukin-10 production in patients with severe asthma. *Lancet*. 352:113. doi:10.1016/S0140-6736(98)85018-6 - Lin, W., N. Truong, W.J. Grossman, D. Haribhai, C.B. Williams, J. Wang, M.G. Martín, and T.A. Chatila. 2005. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J. Allergy Clin. Immunol. 116:1106–1115. doi:10.1016/j.jaci.2005.08.046 - Ling, E.M., T. Smith, X.D. Nguyen, C. Pridgeon, M. Dallman, J. Arbery, V.A. Carr, and D.S. Robinson. 2004. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. *Lancet.* 363:608–615. doi:10.1016/S0140-6736(04)15592-X - Lloyd, C.M., and C.M. Hawrylowicz. 2009. Regulatory T cells in asthma. Immunity. 31:438–449. doi:10.1016/j.immuni.2009.08.007 - Ma, C.S., G.Y. Chew, N. Simpson, A. Priyadarshi, M. Wong, B. Grimbacher, D.A. Fulcher, S.G. Tangye, and M.C. Cook. 2008. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205:1551–1557. doi:10.1084/jem.20080218 - Milner, J.D., J.M. Brenchley, A. Laurence, A.F. Freeman, B.J. Hill, K.M. Elias, Y. Kanno, C. Spalding, H.Z. Elloumi, M.L. Paulson, et al. 2008. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. *Nature*. 452:773–776. doi:10.1038/nature06764 - Minegishi, Y. 2009. Hyper-IgE syndrome. Curr. Opin. Immunol. 21:487–492. doi:10.1016/j.coi.2009.07.013 - Minegishi, Y., M. Saito, T. Morio, K. Watanabe, K. Agematsu, S. Tsuchiya, H. Takada, T. Hara, N. Kawamura, T. Ariga, et al. 2006. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. *Immunity*. 25:745–755. doi:10.1016/j.immuni.2006.09.009 - Minegishi, Y., M. Saito, S. Tsuchiya, I. Tsuge, H. Takada, T. Hara, N. Kawamura, T. Ariga, S. Pasic, O. Stojkovic, et al. 2007. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. *Nature*. 448:1058–1062. doi:10.1038/nature06096 - Minegishi, Y., M. Saito, M. Nagasawa, H. Takada, T. Hara, S. Tsuchiya, K. Agematsu, M. Yamada, N. Kawamura, T. Ariga, et al. 2009. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J. Exp. Med. 206: 1291–1301. doi:10.1084/jem.20082767 - Ohkawara, B., K. Shirakabe, J. Hyodo-Miura, R. Matsuo, N. Ueno, K. Matsumoto, and H. Shibuya. 2004. Role of the TAK1-NLK-STAT3 pathway in TGF-beta-mediated mesoderm induction. *Genes Dev.* 18:381–386. doi:10.1101/gad.1166904 - Ou, L.S., E. Goleva, C. Hall, and D.Y. Leung. 2004.T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. *J. Allergy Clin. Immunol.* 113:756–763. doi:10.1016/j.jaci.2004.01.772 - Renner, E.D., S. Rylaarsdam, S. Anover-Sombke, A.L. Rack, J. Reichenbach, J.C. Carey, Q. Zhu, A.F. Jansson, J. Barboza, L.F. Schimke, et al. 2008. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 122:181–187. doi:10.1016/j.jaci.2008.04.037 - Rubtsov, Y.P., and A.Y. Rudensky. 2007. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 7:443–453. doi:10.1038/nri2095 - Rubtsov, Y.P., J.P. Rasmussen, E.Y. Chi, J. Fontenot, L. Castelli, X. Ye, P. Treuting, L. Siewe, A. Roers, W.R. Henderson Jr., et al. 2008. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. *Immunity*. 28:546–558. doi:10.1016/j.immuni.2008.02.017 - Rutella, S., S. Danese, and G. Leone. 2006. Tolerogenic dendritic cells: cyto-kine modulation comes of age. *Blood*. 108:1435–1440. doi:10.1182/blood-2006-03-006403 - Sakaguchi, S., T. Yamaguchi, T. Nomura, and M. Ono. 2008. Regulatory T cells and immune
tolerance. Cell. 133:775–787. doi:10.1016/j.cell.2008.05.009 - Schulz, O., A.D. Edwards, M. Schito, J. Aliberti, S. Manickasingham, A. Sher, and C. Reis e Sousa. 2000. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. *Immunity*, 13:453–462. doi:10.1016/S1074-7613(00)000045-5 - Spencer, S.D., F. Di Marco, J. Hooley, S. Pitts-Meek, M. Bauer, A.M. Ryan, B. Sordat, V.C. Gibbs, and M. Aguet. 1998. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J. Exp. Med. 187:571–578. doi:10.1084/jem.187.4.571 - Steinbrink, K., E. Graulich, S. Kubsch, J. Knop, and A.H. Enk. 2002. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. *Blood.* 99: 2468–2476. doi:10.1182/blood.V99.7.2468 - Steinman, R.M., D. Hawiger, and M.C. Nussenzweig. 2003. Tolerogenic dendritic cells. *Annu. Rev. Immunol.* 21:685–711. doi:10.1146/annurev.immunol.21.120601.141040 - Taams, L.S., M. Vukmanovic-Stejic, J. Smith, P.J. Dunne, J.M. Fletcher, F.J. Plunkett, S.B. Ebeling, G. Lombardi, M.H. Rustin, J.W. Bijlsma, et al. 2002. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 32:1621–1630. doi:10.1002/1521-4141(200206)32:6<1621::AID-IMMU1621>3.0.CO;2-Q - Trautmann, A., M. Akdis, D. Kleemann, F. Altznauer, H.U. Simon, T. Graeve, M. Noll, E.B. Bröcker, K. Blaser, and C.A. Akdis. 2000. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J. Clin. Invest. 106:25–35. doi:10.1172/JCI9199 - Umetsu, D.T., and R.H. DeKruyff. 2006. The regulation of allergy and asthma. Immunol. Rev. 212:238–255. doi:10.1111/j.0105-2896.2006.00413.x - Veldhoen, M., R.J. Hocking, C.J. Atkins, R.M. Locksley, and B. Stockinger. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. *Immunity*. 24:179–189. doi:10.1016/j.immuni.2006.01.001 - Vissers, J.L., B.C. van Esch, G.A. Hofman, M.L. Kapsenberg, F.R. Weller, and A.J. van Oosterhout. 2004. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model. *J. Allergy Clin. Immunol.* 113:1204–1210. doi:10.1016/j.jaci.2004.02.041 - Wang, Y.H., P. Angkasekwinai, N. Lu, K.S. Voo, K. Arima, S. Hanabuchi, A. Hippe, C.J. Corrigan, C. Dong, B. Homey, et al. 2007. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204:1837–1847. doi:10.1084/jem.20070406 - Wildin, R.S., F. Ramsdell, J. Peake, F. Faravelli, J.L. Casanova, N. Buist, E. Levy-Lahad, M. Mazzella, O. Goulet, L. Perroni, et al. 2001. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27:18–20. doi:10.1038/83707 - Yamazaki, S., K. Inaba, K.V. Tarbell, and R.M. Steinman. 2006a. Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity. *Immunol. Rev.* 212:314–329. doi:10.1111/j.0105-2896.2006.00422.x - Yamazaki, S., M. Patel, A. Harper, A. Bonito, H. Fukuyama, M. Pack, K.V. Tarbell, M. Talmor, J.V. Ravetch, K. Inaba, and R.M. Steinman. 2006b. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. *Proc. Natl. Acad. Sci. USA*. 103:2758–2763. doi:10.1073/pnas.0510606103 - Zheng, S.G., J. Wang, P. Wang, J.D. Gray, and D.A. Horwitz. 2007. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 178:2018–2027. - Zheng, Y., and A.Y. Rudensky. 2007. Foxp3 in control of the regulatory T cell lineage. *Nat. Immunol.* 8:457–462. doi:10.1038/ni1455 JEM VOL. 208, February 14, 2011 ### **Nationwide Survey of Patients with Primary** Immunodeficiency Diseases in Japan Masataka Ishimura · Hidetoshi Takada · Takehiko Doi · Kousuke Imai · Yoji Sasahara · Hirokazu Kanegane · Ryuta Nishikomori · Tomohiro Morio · Toshio Heike · Masao Kobayashi · Tadashi Ariga · Shigeru Tsuchiya · Shigeaki Nonoyama · Toshio Miyawaki · Toshiro Hara Received: 7 August 2011 / Accepted: 11 September 2011 / Published online: 29 September 2011 © Springer Science+Business Media, LLC 2011 Abstract To determine the prevalence and clinical characteristics of patients with in Japan, we conducted a nationwide survey of primary immunodeficiency disease (PID) patients for the first time in 30 years. Questionnaires were sent to 1,224 pediatric departments and 1,670 internal medicine departments of Japanese hospitals. A total of 1,240 patients were registered. The estimated number of patients with PID was 2,900 with a prevalence of 2.3 per 100,000 people and homogenous regional distribution in Japan. The male-tofemale ratio was 2.3:1 with a median age of 12.8 years. Adolescents or adults constituted 42.8% of the patients. A number of 25 (2.7%) and 78 (8.5%) patients developed malignant disorders and immune-related diseases, respectively, as complications of primary immunodeficiency disease. Close monitoring and appropriate management for these complications in addition to prevention of infectious diseases is important for improving the quality of life of PID patients. Keywords Primary immunodeficiency disease · epidemiology · nationwide survey · Japan #### Abbreviations | APECED | Autoimmune polyendocrinopathy with | |--------|--| | | candidiasis and ectodermal dystrophy | | BTK | Bruton's tyrosine kinase | | CGD | Chronic granulomatous disease | | CID | Combined T and B cell immunodeficiency | | CVID | Common variable immunodeficiency disease | | FMF | Familial Mediterranean fever | | IPEX | Immune dysregulation polyendocrinopathy | | | enteropathy X-linked | | NEMO | Nuclear factor kappa B essential modulator | | PID | Primary immunodeficiency disease | | SIgAD | Selective IgA deficiency | | SLE | Systemic lupus erythematosus | M. Ishimura (☑) · H. Takada · T. Doi · T. Hara Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan K. Imai · S. Nonoyama Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan e-mail: ischii@pediatr.med.kyushu-u.ac.jp Y. Sasahara · S. Tsuchiya Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan H. Kanegane · T. Miyawaki Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan R. Nishikomori · T. Heike Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan T. Morio Department of Pediatrics, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan M. Kobayashi Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan T. Ariga Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan TRAPS Tumor necrosis factor receptor-associated periodic syndrome WAS Wiskott-Aldrich syndrome WHIM Warts hypogammaglobulinemia, infections, and myelokathexis #### Introduction Patients with primary immunodeficiency disease (PID) show susceptibility to infections due to congenital immune system defects. These patients are also associated with noninfectious complications including autoimmune diseases and malignant disorders. Recent studies have revealed the causes of many PIDs to be mutations in various genes encoding molecules involved in the host defense mechanisms [1]. In addition, various new PIDs including defects in innate immunity and autoinflammatory disorders were identified under the recent progress in immunology and molecular genetics [2]. PID classification has been revised according to the identification of new PIDs and on the basis of new findings in PID pathophysiology. For a more precise clinical analysis, data should be obtained in accordance with the latest PID classifications. The first nationwide survey of patients with PID in Japan was conducted between 1974 and 1979, which included 497 registered cases [3]. By 2007, a total of 1,297 patients were cataloged by a small number of PID specialists into a registration system [4]. The approximate prevalence of PID patients in Japan in the first nationwide survey was 1.0 in 100,000 people, which was much lower than that in other countries [5–7]. This difference in PID prevalence between Japan and other countries suggested that some PID patients in Japan remained unregistered. To determine the prevalence and clinical characteristics of patients with PID in Japan on the basis of the recent international classification system for PID, we conducted a nationwide survey of PID for the first time in 30 years. #### Methods This study was performed according to the nationwide epidemiological survey manual of patients with intractable diseases (2nd edition 2006, Ministry of Health, Labour, and Welfare of Japan) as described previously [8]. PID classification was based on the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee in 2007 [2]. Patients with chronic benign neutropenia and syndrome of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis were excluded because these were considered to be acquired diseases. The survey was conducted on PID patients who were alive on December 1, 2008 and those who were newly diagnosed and dead between December 1, 2007 and November 30, 2008 in Japan. Among the 2,291 pediatric departments and 8,026 internal medicine departments in Japan, hospitals participating in the survey were randomly selected after setting the selection ratio according to the number of beds (overall selection rate: 53.4% for pediatric departments, 20.8% for internal medicine
departments; Table I). University hospitals and pediatric training hospitals, where many PID patients were considered to be treated, were stratified separately (Table I). Primary questionnaires regarding the number of patients and disease names based on PID classification were sent to the selected hospitals. Secondary questionnaires regarding age, gender, clinical manifestations, and complications of individual PID patients were sent to respondents who answered that they observed at least one PID patient with characteristics listed in the primary questionnaires. #### Results Questionnaires were distributed to 1,224 pediatric departments and 1,670 internal medicine departments of hospitals in Japan, and the response rate was 55.0% and 20.1%, respectively (Table I). A total of 1,240 patients (1,146 patients from pediatric departments and 94 patients from internal medicine departments) were registered (Table I). The estimated number of patients with PIDs in Japan was 2,900 (95% confidence interval: 2,300-3,500), and the prevalence was 2.3 per 100,000 inhabitants. We also determined the regional distribution on the basis of the patients' addresses. The estimated regional prevalence ranged from 1.7 to 4.0 per 100,000 inhabitants, and no significant differences were observed between different regions in Japan (Fig. 1). The most common form of PID was predominantly antibody deficiencies (40%), followed by congenital defects of phagocyte number, function, or both (19%) and other well-defined immunodeficiency syndromes (16%; Table II). Autoinflammatory disorders were observed in 108 cases (9%). The most common PID was Bruton's tyrosine kinase (BTK) deficiency (182 cases, 14.7%), followed by chronic granulomatous disease (CGD; 147 cases, 11.9%). However, common variable immunodeficiency disease (CVID) and selective IgA deficiency (SIgAD) were observed only in 136 (11.0%) and 49 cases (4.0%), respectively. Among patients registered from internal medicine departments, antibody deficiencies were the most common disorder (71%). In the secondary survey, 923 cases were registered. The male-to-female ratio was 2.3:1 (n=914, unanswered: 9 cases) with a median age of 12.8 years (range: 0 to 75 years; n= 897, unanswered: 26 cases). The number of adolescent or Table I Stratification and selection of hospitals and the survey results | | Stratification | Departments in Japan | Departments selected | Selection rate (%) | Return ^a | Response | Response rate (%) | PID Patient | Patients per department | Patients estimated | |------------|---------------------|----------------------|----------------------|--------------------|---------------------|----------|-------------------|-------------|-------------------------|--------------------| | Pediatrics | University hospital | 118 | 118 | 100 | 0 | 80 | 67.8 | 661 | 8.3 | 975 | | | Training hospital | 402 | 402 | 100 | 4 | 242 | 60.8 | 376 | 1.6 | 618 | | | ≥500 beds | 92 | 92 | 100 | 5 | 48 | 55.2 | 24 | 0.5 | 44 | | | 400-499 beds | 118 | 118 | 100 | 3 | 63 | 54.8 | 42 | 0.7 | 77 | | | 300-399 beds | 287 | 230 | 80.1 | 4 | 122 | 54.0 | 31 | 0.3 | 72 | | | 200-299 beds | 289 | 116 | 40.1 | 4 | 53 | 47.3 | 6 | 0.1 | 32 | | | 100-199 beds | 486 | 98 | 20.2 | 0 | 44 | 44.9 | 4 | 0.1 | 44 | | | <99 beds | 499 | 50 | 10.0 | 1 | 10 | 20.4 | 2 | 0.2 | 100 | | | Subtotal | 2,291 | 1,224 | 53.4 | 21 | 662 | 55.0 | 1,146 | 1.7 | 1,961 | | Internal | University hospital | 156 | 156 | 100 | 1 | 47 | 30.3 | 37 | 0.8 | 122 | | medicine | ≥500 beds | 374 | 374 | 100 | 1 | 86 | 23.1 | 35 | 0.4 | 152 | | | 400-499 beds | 328 | 263 | 80 | 1 | 54 | 20.6 | 6 | 0.1 | 36 | | | 300-399 beds | 692 | 278 | 40.2 | 6 | 49 | 18.0 | 10 | 0.2 | 140 | | | 200-299 beds | 1,008 | 202 | 20.0 | 0 | 36 | 17.8 | 2 | 0.1 | 56 | | | 100-199 beds | 2,460 | 246 | 10.0 | 1 | 36 | 14.7 | 1 | 0.0 | 68 | | | <99 beds | 3,008 | 151 | 5.0 | 6 | 24 | 16.6 | 3 | 0.1 | 375 | | | Subtotal | 8,026 | 1,670 | 20.8 | 16 | 332 | 20.1 | 94 | 0.3 | 950 | | Total | | 10,317 | 2,894 | 28.1 | 37 | 994 | 34.8 | 1,240 | | 2,911 | ^a Due to the closure of departments adult cases (≥15 years) was 384 (42.8%; Fig. 2a). The male-to-female ratio of the younger generation (<15 years) was 2.7:1, while that of the older generation (≥15 years) was 2.0:1. Combined T and B cell immunodeficiencies (CIDs) were predominantly observed in the younger generation, while antibody deficiencies were more common with Fig. 1 Regional distribution of PID patients. CI Confidence interval Table II Reported number of PID | Category | Total number | Pediatric department | Internal medicine department | |---|--------------|----------------------|------------------------------| | I. Combined T and B cell immunodeficiencies | 93 (7%) | 93 (8%) | 0 (0%) | | γc deficiency | 47 | 47 | 0 | | Adenosine deaminase deficiency | 9 | 9 | 0 | | Omenn syndrome | 4 | 4 | 0 | | Others | 23 | 23 | 0 | | Untested or undetermined | 10 | 10 | 0 | | II. Predominantly antibody deficiencies | 501 (40%) | 434 (38%) | 67 (71%) | | BTK deficiency | 182 | 173 | 9 | | Common variable immunodeficiency disorders | 136 | 107 | 29 | | Selective IgG subclass deficiency | 66 | 58 | 8 | | Selective IgA deficiency | 49 | 34 | 15 | | Hyper IgM syndrome | 34 | 34 | 0 | | Transient hypogammaglobulinemia of infancy | 7 | 7 | 0 | | Others | 11 | 7 | 4 | | Untested or undetermined | 16 | 14 | 2 | | III. Other well-defined immunodeficiency syndromes | 194 (16%) | 189 (17%) | 5 (5%) | | Wiskott–Aldrich syndrome | 60 | 60 | 0 | | DNA repair defects (other than those in category I) | 15 | 15 | 0 | | DiGeorge anomaly | 38 | 38 | 0 | | Hyper-IgE syndrome | 56 | 52 | 4 | | Chronic mucocutaneous candidiasis | 17 | 16 | 1 | | Others | 5 | 5 | 0 | | Untested or undetermined | 3 | 3 | 0 | | IV. Diseases of immune dysregulation | 49 (4%) | 48 (4%) | 1 (1%) | | | 9 | 8 | 1 (170) | | Chediak–Higashi syndrome Familial hemophagocytic lymphohistiocytosis syndrome | 5 | 5 | 0 | | • • • • • • • | 8 | 8 | 0 | | X-linked lymphoproliferative syndrome | 8 . | 8 | 0 | | Autoimmune lymphoproliferative syndrome | 4 | 4 | 0 | | APECED | 7 | 7 | 0 | | IPEX syndrome | | | 0 | | Others | 2 | 2 | | | Untested or undetermined | 6 | 6 | 0 | | V. Congenital defects of phagocyte number, function, or both | 230 (19%) | 223 (19%) | 7 (8%) | | Severe congenital neutropenia | 44 | 42 | 2 | | Cyclic neutropenia | 19 | 17 | 2 | | Chronic granulomatous disease | 147 | 144 | 3 | | Mendelian susceptibility to mycobacterial disease | 5 | 5 | 0 | | Others | 9 | 9 | 0 | | Untested or undetermined | 6 | 6 | 0 | | VI. Defects in innate immunity | 15 (1%) | 15 (1%) | 0 | | Anhidrotic ectodermal dysplasia with immunodeficiency | 7 | 7 | 0 | | Interleukin-1 receptor-associated kinase 4 deficiency | 2 | 2 | 0 | | Others | 5 | 5 | 0 | | Untested or undetermined | 1 | 1 | 0 | | VII. Autoinflammatory disorders | 108 (9%) | 101 (9%) | 7 (8%) | | Familial Mediterranean fever | 44 | 40 | 4 | | TNF receptor-associated periodic syndrome | 13 | 12 | 1 | | Hyper IgD syndrome | 4 | 4 | 0 | | Cryopyrin-associated periodic syndrome | 22 | 22 | 0 | Table II (continued) | Category | Total number | Pediatric department | Internal medicine department | | | |-------------------------------|--------------|----------------------|------------------------------|--|--| | Others | 3 | 3 | 0 | | | | Untested or undetermined | 22 | 20 | 2 | | | | VIII. Complement deficiencies | 32 (3%) | 29 (3%) | 3 (3%) | | | | IX. Undetermined | 18 (1%) | 14 (1%) | 4 (4%) | | | | Total | 1,240 | 1,146 | 94 | | | APECED Autoimmune polyendocrinopathy with candidiasis and ectodermal dystrophy, IPEX immune dysregulation, polyendocrinopathy, enteropathy, X-linked increasing age (Fig. 2b). The median age of CID, BTK deficiency, CVID, and CGD patients was 5.2, 12.8, 25.1, and 14.7 years, respectively. It is well known that PID patients are susceptible to many pathogens and experience community-acquired or opportunistic infections. In this study, we focused on noninfectious complications of PID because they have been less well studied on a large scale and may provide important information for improving the quality of life of PID patients. Twenty-five PID patients developed malignant disorders (2.7%; Table III). Lymphoma, in particular, Epstein–Barr virus-related, and leukemia were dominant, while there were no patients with gastric carcinoma. CVID, Wiskott–Aldrich syndrome (WAS), and ataxia telangiectasia were more frequently associated with malignant diseases among PID patients. A case of Mendelian susceptibility Fig. 2 a Age distribution of PID patients. b Distribution of PID in each age group to mycobacterial disease with squamous cell carcinoma was also observed [9] (Table III). Seventy-eight PID patients had immune-related (autoimmune) diseases (8.5%; Table IVa). Autoimmune lymphoproliferative syndrome, immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, and nuclear factor kappa B essential modulator (NEMO) deficiency were associated with immune-related diseases at a very high incidence. In addition, immune-related diseases were relatively common in CGD and CVID patients (Table IVa). The most commonly observed immune-related disease was inflammatory bowel disease (33 cases), which was most frequently observed in CGD patients, followed by immune thrombocytopenic purpura (13 cases), autoimmune hemolytic anemia (8 cases), and systemic lupus erythematosus (SLE; 8 cases; Table IVa and b). Kawasaki disease occurred in WAS and CGD patients. In addition, this is the first report of Kawasaki disease in patients with complement deficiency (C9) and familial Mediterranean fever (FMF). A patient with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome and a patient with tumor necrosis factor receptor-associated periodic syndrome (TRAPS) were first reported as cases of type 1 diabetes mellitus and
SLE, respectively [10, 11]. #### Discussion We conducted a nationwide survey of PID for the first time in 30 years and report the prevalence of PID in Japan. We registered 1,240 PID patients and found that the estimated prevalence of PID (2.3/100,000) is higher than that previously reported (1.0/100,000) in Japan. Our results are equivalent to those reported in Singapore (2.7/100,000) and Taiwan (0.77-2.17/100,000) [12-14]. However, our values are lower than those reported in Middle Eastern countries such as Kuwait (11.98/100,000) or in European countries such as France (4.4/100,000) [5-7, 15]. The high rate of consanguinity may be a cause of the high prevalence rate of PID reported in Middle Eastern countries [6, 15]. There may has been sample selection bias in this study because some asymptomatic cases (SIgAD, etc.), clinically recovered cases (transient hypogammaglobulinemia of infancy, etc.), and cases in which patients were deceased were not registered. In addition, lack of recognition of PID in internal medicine departments, not just the low response rate, might also have influenced the estimated prevalence of PID as well as the age and disease distribution. The regional prevalence of PIDs in Japan was homogenous, unlike in other countries in which a higher prevalence was Table III Malignancies in PID patients | Primary immunodeficiency | Total | n | Malignancy | |--|-------|----|---| | I. Combined T and B cell immunodeficiencies | 75 | 2 | (2.7%) | | Ommen syndrome | 3 | 1 | NHL (EBV+) 1 ^a | | Adenosine deaminase deficiency | 4 | 1 | Breast carcinoma 1 | | II. Predominantly antibody deficiencies | 378 | 8 | (2.1%) | | Common variable immunodeficiency disorders | 93 | 7 | HL 2, ML 2, ALL 1, Basal cell carcinoma 1, Cervical carcinoma 1 | | Good syndrome | 4 | 1 | Double primary carcinoma of breast and colon 1 | | III. Other well-defined immunodeficiency syndromes | 165 | 7 | (4.2%) | | Wiskott-Aldrich syndrome | 57 | 5 | NHL 3, NHL/HL 1, LPD (EBV-) 1 | | Ataxia telangiectasia | 13 | 2 | T-ALL 1, MDS 1 | | IV. Diseases of immune dysregulation | 38 | 4 | (10.5%) | | X-linked lymphoproliferative syndrome | 5 | 2 | Burkitt lymphoma 2 | | Autoimmune lymphoproliferative syndrome | 6 | 2 | HL (EBV+) 1, Brain tumor 1 | | V. Congenital defects of phagocyte number, function, or both | 153 | 4 | (2.6%) | | Severe congenital neutropenia | 35 | 3 | MDS 3 (including 2 cases with monosomy 7) | | MSMD | 7 | 1 | Squamous cell carcinoma of finger 1 | | VI. Defects in innate immunity | 12 | 0 | (0%) | | VII. Autoinflammatory disorders | 74 | 0 | (0%) | | VIII. Complement deficiencies | 23 | 0 | (0%) | | IX. Undetermined | 5 | 0 | (0%) | | Total | 923 | 25 | (2.7%) | n Number of PID patients who had malignant disorders, ALL acute lymphoblastic leukemia, EBV Epstein-Barr virus, HL Hodgkin lymphoma, LPD lymphoproliferative disease, MDS myelodysplastic syndrome, ML malignant lymphoma, MSMD Mendelian susceptibility to mycobacterial disease, NHL non-Hodgkin lymphoma ^a The number of patients Table IV Immune-related diseases in PID patients | (a) Immune-related diseases with each PID | | | | |--|----------|---------|--| | Primary immunodeficiency | Total | n | Immune-related disease | | I. Combined T and B cell immunodeficiencies | 75 | 2 | (2.6%) | | MHC class II deficiency (suspected) | 1 | 1 | ITP with AIHA 1 ^a | | CD4 deficiency | 1 | 1 | Hashimoto disease 1 | | II. Predominantly antibody deficiencies | 378 | 24 | (6.3%) | | Common variable immunodeficiency disorders | 93 | 16 | ITP 3, RA 2, AIHA 2, Hashimoto's disease 2, IBD 2, SLE 1, MG 1, ADEM 1, Autoimmune hepatitis 1, Uveitis 1 | | Hyper-IgM syndrome | 32 | 3 | JIA 1, SLE (complicated with C1q deficiency) 1, IBD 1 | | Selective IgA deficiency | 28 | 3 | SLE 1, SLE with Kikuchi disease 1, RA 1 | | IgG subclass deficiency | 50 | 2 | ITP with AIHA 1, ITP with MS 1 | | III. Other well-defined immunodeficiency syndromes | 165 | 5 | (3.0%) | | Wiskott-Aldrich syndrome | 57 | 3 | AIHA 2, Kawasaki disease 1 | | DiGeorge syndrome | 33 | 2 | AIHA 1, ITP 1 | | IV. Diseases of immune dysregulation | 38 | 10 | (26.3%) | | X-linked lymphoproliferative syndrome | 5 | 1 | IBD 1 | | Autoimmune lymphoproliferative syndrome | 6 | 4 | ITP 3, Graves' disease with IBD 1 | | APECED | 5 | 1 | T1DM with Hashimoto's disease and Vogt–Koyanagi–Harada disease | | IPEX syndrome | 6 | 4 | T1DM 1, T1DM with ITP, AIN and IBD 1, Autoimmune enteritis 1, AIHA with Autoimmune enteritis and Hashimoto's disease 1 | | V. Congenital defects of phagocyte number, function, or both | 153 | 25 | (16.3%) | | Chronic granulomatous disease | 87 | 25 | IBD 20, ITP 2, JIA 1, MCTD 1, Kawasaki disease 1 | | VI. Defects in innate immunity | 12 | 5 | (41.7%) | | NEMO deficiency | 7 | 4 | IBD 3, IBD with JIA 1 | | WHIM syndrome | 3 | 1 | T1DM 1 | | VII. Autoinflammatory disorders | 74 | 3 | (4.0%) | | Familial Mediterranean fever | 36 | 2 | SLE 1, Kawasaki disease 1 | | TNF receptor associated periodic syndrome | 9 | 1 | SLE 1, Kawasaki disease 1
SLE 1 | | VIII. Complement deficiencies | 23 | 3 | | | C4 deficiency | 23
1 | | (13.0%) | | C6 deficiency | | 1 | SLE with RA 1 | | • | 1 | 1 | IBD 1 | | C9 deficiency | 11 | 1 | Kawasaki disease 1 | | IX. Undetermined | 5 | 1 | (20%) | | Nakajo syndrome
Total | 1
923 | 1
78 | SLE 1
(8.5 %) | | (b) Immune-related manifestations associated with PID | | | | | Immune-related diseases | | n | | | IBD (including autoimmune enteritis) | | 33 | | | ITP | | 13 | | | AIHA | | 8 | | | SLE | | 8 | | | RA/JIA | | 6 | | | Hashimoto's disease/Graves' disease | | 5 | | | Kawasaki disease | | 4 | | | T1DM | | 4 | | | Uveitis (including Vogt-Koyanagi-Harada disease) | | 2 | | | ADEM/MS | | 2 | | | Others | | 5 | | n Number of PID patients who had immune-related disorders, ADEM acute disseminated encephalomyelitis, AIHA autoimmune hemolytic anemia, AIN autoimmune neutropenia, APECED autoimmune polyendocrinopathy candidiasis ectodermal dystrophy, IBD inflammatory bowel disease, IPEX immunodysregulation, polyendocrinopathy, enteropathy X-linked, ITP immune thrombocytopenic purpura, JIA juvenile idiopathic arthritis, MCTD mixed connective tissue disease, MG myasthenia gravis, MS multiple sclerosis, RA rheumatoid arthritis, SLE systemic lupus erythematosus, T1DM type 1 diabetes mellitus, WHIM warts, hypogammaglobulinemia, infections, and myelokathexis ^a The number of patients observed in urban areas [5, 7, 16]. This may be because many PID patients were treated or followed by PID specialists distributed nationwide in Japan; this is assumed by the location of hospitals with which they were affiliated. The distribution ratios of BTK deficiency (14.7%) and CGD (11.9%) in Japan were higher than those in a previous report from Europe (5.87% and 4.33%, respectively), while those of CIDs and other well-defined immunodeficiency syndromes were comparable [17]. The prevalence of BTK deficiency was previously reported to be 1/900,000-1,400,000 in a European cohort study [18]. In contrast, this value was estimated to be 1/300,000 in Japan in our study. BTK deficiency appears to be common in Japan, although this may be partially because more patients, including those showing atypical clinical manifestations, were diagnosed more accurately by the recently established genetic diagnostic network in Japan [19]. This is supported by the highest proportion of Japanese patients in the international mutation database for X-linked agammaglobulinemia (BTKbase) [20]. The reason for the low number of registered CGD patients in Europe in a recent report (1/620,000) [17] is unknown; the prevalence of CGD was 1 in 250,000 in a previous European survey [21], which was similar to our results (1 in 380,000 in this study and 1 in 280,000 in our previous study [22]). The percentage of BTK deficiency and CGD would be lower if more adult cases were registered because the prevalence of these disorders is low in adults. CVID was the most commonly reported PID (20.7%) in Europe, and the onset of symptoms was observed most commonly in the third decade of life in these patients [17, 23]. In this study, CVID constituted 11.0% (136 cases) of PID cases, and only 29 cases were reported from internal medicine departments (Table II). A lower number of registered CVID patients may have led to a lower number of reported patients with antibody deficiency and a lower prevalence of PID, although it is still possible that CVID is not as common in Japan as in European countries. There was no significant difference in the distribution rate of SIgAD between Japanese and Europeans, although SIgAD is rare in Japanese (1/18,500) compared with Caucasians (1/330-2,200) according to seroepidemiologic studies [24]. This may be because most SIgAD patients lack clinical manifestations. The distribution ratio of autoinflammatory disorders in Japan (9%) was much higher than that in Europe (1.02%) [17] (Table II). Considering the disease type of the autoinflammatory disorders was not specified in 22 cases (20%), it is possible that many other patients with autoinflammatory disorders remain undiagnosed in Japan as well as in other countries. The percentage of men (69.7%) with PID is higher in Japan than in Europe (60.8%) or Kuwait (61.8%), but is equivalent to that in Taiwan (70.2%) [6, 13, 17]. The higher ratio of men, particularly in younger generation (<15 years), appears to be due to the larger number of X-linked PID patients (BTK deficiency, X-CGD, γc deficiency, etc.) in this study compared to that in Europe or Kuwait. Adolescents or adults (≥15 years) constituted 42.8% of the patients in this study, which is equivalent to the number in the
European study (≥16 years: 46.6%), while those >16 years constituted only 10.9% in the previous survey [3, 17]. In this study, it was found that CVID and SIgAD are common in adults (Table II) and that antibody deficiencies are more common with increasing age (Fig. 2b). A reason for the increased number of adult PID patients may be long-term survival of PID patients due to improved treatments such as immunoglobulin replacement therapy. In addition, an increased likelihood of patients being diagnosed by internists as having late-onset PID, e.g., CVID and SIgAD, may have contributed to these values [17, 25, 26]. Therefore, it is important for internists to be well-informed regarding PID. In contrast, CIDs are fatal during infancy without hematopoietic stem cell transplantation or gene therapy. Because hematopoietic stem cell transplantation has been widely performed in Japan since the 1990s, surviving patients with CID are limited to the younger generation, similar to French patients (Fig. 2b) [5, 27, 28]. It has been reported that PID patients are at increased risk of developing malignant diseases, in particular, non-Hodgkin lymphoma, leukemia, and stomach cancer [29]. Although lymphoma and leukemia were relatively common, stomach cancer was not observed in our study. In the previous survey in Japan, eight of nine PID patients with malignant disorders (including one gastric cancer patient) died [3]. It is possible that some PID patients with malignant disorders were not registered because they were deceased. PID is also associated with immune-related diseases because of a defect in the mechanisms to control self-reactive B and T cells. The frequency of immune-related manifestations varied among individual PID patients, as reported previously [30, 31]. Four PID patients who had developed Kawasaki disease, one patient with WHIM syndrome and type 1 diabetes mellitus, and one patient with TRAPS and SLE in our study may provide new pathophysiological insights of these diseases and the association between PID and autoimmune diseases. #### Conclusions We report the prevalence and clinical characteristics of PIDs in Japan. Although the advances in diagnostic technologies and treatments have improved the prognoses of PID, many patients continue to experience severe complications such as malignancy and immune-related diseases as well as infections. To improve the quality of life of PID patients, it is necessary to pay attention to complications and treat them appropriately. Web-based PID databases and consultation systems have been created in Japan (Primary Immunodeficiency Database in Japan [4] and Resource of Asian Primary Immunodeficiency Diseases in Asian countries [32]) to reveal precise information regarding PID and to promote cooperation between doctors and researchers [19]. **Acknowledgments** The authors would like to thank the support of the Japanese Research Group on Primary Immunodeficiency Diseases, which is supported by Japan's Ministry of Health, Labour and Welfare. Conflict of Interest There is no actual or potential conflict of interest in relation to the study. #### References - Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182–94. - Geha RS, Notarangelo LD, Casanova JL, Chapel H, Conley ME, Fischer A, et al. Primary immunodeficiency diseases: an update from the international union of immunological societies primary immunodeficiency diseases classification committee. J Allergy Clin Immunol. 2007;120(4):776–94. - Hayakawa H, Iwata T, Yata J, Kobayashi N. Primary immunodeficiency syndrome in Japan. I. overview of a nationwide survey on primary immunodeficiency syndrome. J Clin Immunol. 1981;1 (1):31–9. - Primary Immunodeficiency Database in Japan (PIDJ). http://pidj. rcai.riken.jp/ (in Japanese). - CEREDIH. The French PID study group. The French national registry of primary immunodeficiency diseases. Clin Immunol. 2010;135(2):264–72. - Al-Herz W. Primary immunodeficiency disorders in Kuwait: first report from Kuwait national primary immunodeficiency registry (2004–2006). J Clin Immunol. 2008;28(2):186–93. - Stray-Pedersen A, Abrahamsen TG, Froland SS. Primary immunodeficiency diseases in Norway. J Clin Immunol. 2000;20(6):477–85. - Nakamura Y, Matsumoto T, Tamakoshi A, Kawamura T, Seino Y, Kasuga M, et al. Prevalence of idiopathic hypoparathyroidism and pseudohypoparathyroidism in Japan. J Epidemiol. 2000;10(1):29–33. - Toyoda H, Ido M, Nakanishi K, Nakano T, Kamiya H, Matsumine A, et al. Multiple cutaneous squamous cell carcinomas in a patient with interferon gamma receptor 2 (IFN gamma R2) deficiency. J Med Genet. 2010;47(9):631–4. - Takaya J, Fujii Y, Higashino H, Taniuchi S, Nakamura M, Kaneko K. A case of WHIM syndrome associated with diabetes and hypothyroidism. Pediatr Diabetes. 2009;10(7):484–6. - 11. Ida H, Kawasaki E, Miyashita T, Tanaka F, Kamachi M, Izumi Y, et al. A novel mutation (T61I) in the gene encoding tumour necrosis factor receptor superfamily 1A (TNFRSF1A) in a Japanese patient with tumour necrosis factor receptor-associated periodic syndrome (TRAPS) associated with systemic lupus erythematosus. Rheumatology (Oxford). 2004;43(10):1292–9. - 12. Lim DL, Thong BY, Ho SY, Shek LP, Lou J, Leong KP, et al. Primary immunodeficiency diseases in Singapore—the last 11 years. Singapore Med J. 2003;44(11):579–86. - Lee WI, Kuo ML, Huang JL, Lin SJ, Wu CJ. Distribution and clinical aspects of primary immunodeficiencies in a Taiwan pediatric tertiary hospital during a 20-year period. J Clin Immunol. 2005;25(2):162-73. - 14. Lee WI, Huang JL, Jaing TH, Shyur SD, Yang KD, Chien YH, et al. Distribution, clinical features and treatment in Taiwanese patients with symptomatic primary immunodeficiency diseases (PIDs) in a nationwide population-based study during 1985–2010. Immunobiology. 2011 Jun 21 [Epub ahead of print]. - Shabestari MS, Maljaei SH, Baradaran R, Barzegar M, Hashemi F, Mesri A, et al. Distribution of primary immunodeficiency diseases in the Turk ethnic group, living in the northwestern Iran. J Clin Immunol. 2007;27(5):510–6. - Matamoros Flori N, Mila Llambi J, Espanol Boren T, Raga Borja S, Fontan Casariego G. Primary immunodeficiency syndrome in Spain: first report of the national registry in children and adults. J Clin Immunol. 1997;17(4):333–9. - 17. Gathmann B, Grimbacher B, Beaute J, Dudoit Y, Mahlaoui N, Fischer A, et al. The European internet-based patient and research database for primary immunodeficiencies: results 2006–2008. Clin Exp Immunol. 2009;157 Suppl 1:3–11. - Toth B, Volokha A, Mihas A, Pac M, Bernatowska E, Kondratenko I, et al. Genetic and demographic features of X-linked agammaglobulinemia in Eastern and Central Europe: a cohort study. Mol Immunol. 2009;46(10):2140-6. - Burrows PD, Fischer A. Building networks for immunodeficiency diseases and immunology training. Nat Immunol. 2008;9(9):1005–7. - Valiaho J, Smith CI, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat. 2006;27 (12):1209–17. - 21. van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234. - Hasui M. Chronic granulomatous disease in Japan: incidence and natural history. The study group of phagocyte disorders of Japan. Pediatr Int. 1999;41(5):589–93. - 23. Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86. - Kanoh T, Mizumoto T, Yasuda N, Koya M, Ohno Y, Uchino H, et al. Selective IgA deficiency in Japanese blood donors: frequency and statistical analysis. Vox Sang. 1986;50(2):81–6. - 25. Aghamohammadi A, Moin M, Farhoudi A, Rezaei N, Pourpak Z, Movahedi M, et al. Efficacy of intravenous immunoglobulin on the prevention of pneumonia in patients with agammaglobulin-emia. FEMS Immunol Med Microbiol. 2004;40(2):113–8. - Quartier P, Debre M, De Blic J, de Sauverzac R, Sayegh N, Jabado N, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr. 1999;134(5):589–96. - 27. Sakata N, Kawa K, Kato K, Yabe H, Yabe M, Nagasawa M, et al. Unrelated donor marrow transplantation for congenital immunodeficiency and metabolic disease: an update of the experience of the Japan marrow donor program. Int J Hematol. 2004;80(2):174– 82. - 28. Morio T, Atsuta Y, Tomizawa D, Nagamura-Inoue T, Kato K, Ariga T, et al. Outcome of unrelated umbilical cord blood transplantation in 88 patients with primary immunodeficiency in Japan. Br J Haematol. 2011;154(3):363–72. - Vajdic CM, Mao L, van Leeuwen MT, Kirkpatrick P, Grulich AE, Riminton S. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood. 2010;116(8):1228–34. - 30. Bussone G, Mouthon L. Autoimmune manifestations in primary immune deficiencies. Autoimmun Rev. 2009;8(4):332–6. - Arason GJ, Jorgensen GH, Ludviksson BR. Primary immunodeficiency and autoimmunity: lessons from human diseases. Scand J Immunol. 2010;71(5):317–28. - 32. Resource of Asian primary immunodeficiency diseases (RAPID). http://rapid.rcai.riken.jp/RAPID/. In conclusion, the associations among asthma, biofilm-forming bacteria, and revision ESS are strong and robust after adjusting for other factors in patients with CRS from a tertiary medical center. Despite its limitations, this study may improve our understanding of refractory CRS pathogenesis, possibly leading to more effective treatment strategies, such as incorporating the treatments of asthma and biofilm infection into conventional CRS therapies. Prospective cohort studies in diverse populations are needed to assess the causality of these associations. We thank Alexander Chiu for providing the clinical samples, Andrew Cucchiara for helping with the data cleansing and
analysis, and Jennifer Kofonow, Anthony Prince, Jacob Steiger, Michael Cohen, Edwin Tamashiro, and Natalia Goldstein for performing the Calgary biofilm assay and organizing the data. Zi Zhang, MD^a Darren R. Linkin, MD, MSCE^b Brian S. Finkelman, BS^a Bert W. O'Malley, Jr, MD^c Erica R. Thaler, MD^c Laurel Doghramji, RN, BSN^c David W. Kennedy, MD^c Noam A. Cohen, MD, PhD^c James N. Palmer, MD^c From ^athe Center for Clinical Epidemiology and Biostatistics, ^bthe Department of Medicine, Division of Infectious Diseases, and ^cthe Department of Otorhinolaryngology–Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa. E-mail: james.palmer@uphs.upenn.edu. Supported by the Flight Attendant Medical Research Institute Clinical Investigator Award (053367 to N.A.C. and 052414 to J.N.P.). Disclosure of potential conflict of interest: J. N. Palmer receives research support from the Flight Attendant Medical Research Institute, has provided legal consultation/ expert witness testimony in cases related to complications in sinus surgery, and is a member of the board of directors for the American Rhinologic Society. D. W. Kennedy is the medical director of ENT Care and a member of RhinActive. N. A. Cohen receives research support from the Flight Attendant Medical Research Institute. The rest of the authors have declared that they have no conflict of interest. #### REFERENCES - Fokkens W, Lund V, Mullol J. EP3OS 2007: European position paper on rhinosinusitis and nasal polyps 2007: a summary for otorhinolaryngologists. Rhinology 2007; 45:07:101 - Newman LJ, Platts-Mills TA, Phillips CD, Hazen KC, Gross CW. Chronic sinusitis: relationship of computed tomographic findings to allergy, asthma, and eosinophilia. JAMA 1994;271:363-7. - Psaltis AJ, Weitzel EK, Ha KR, Wormald PJ. The effect of bacterial biofilms on post-sinus surgical outcomes. Am J Rhinol 2008;22:1-6. - Prince AA, Steiger JD, Khalid AN, Dogrhamji L, Reger C, Eau Claire S, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol 2008;22: 239-45 - Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol 2004;114:155-212. - National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol 2007;120:S94-S138. - Banerji A, Piccirillo JF, Thawley SE, Levitt RG, Schechtman KB, Kramper MA, et al. Chronic rhinosinusitis patients with polyps or polypoid mucosa have a greater burden of illness. Am J Rhinol 2007;21:19-26. - Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318-22. - Richtsmeier WJ. Top 10 reasons for endoscopic maxillary sinus surgery failure. Laryngoscope 2001;111:1952-6. Available online March 24, 2011. doi:10.1016/j.jaci.2011.02.022 # Quantification of κ -deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects To the Editor: X-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by severely decreased numbers of mature peripheral B lymphocytes as a result of a mutation in the BTK gene. Non-XLA is characterized by hypogammaglobulinemia with decreased B-cell counts (less than 2% of mature B cells) in the absence of the BTK gene mutation. Both XLA and non-XLA are caused by an early B-cell maturation defect. In patients with XLA and non-XLA, recurrent infections appear between 3 and 18 months of age, whereas the mean age at diagnosis is 3 years.² This delayed diagnosis results in frequent hospitalization because of pneumonia, sepsis, meningitis, and other bacterial infections, which frequently require intravenous administration of antibiotics and can be fatal. Frequent pneumonia results in a high incidence of chronic lung diseases. Thus, early diagnosis and early treatment, including periodical intravenous immunoglobulin replacement therapy, is essential to improve the prognosis and the quality of life of patients with XLA and non-XLA. In the process of B-cell maturation, immunoglobulin κ-deleting recombination excision circles (KRECs) are produced during κ-deleting recombination allelic exclusion and isotypic exclusion of the λ chain. 4 Coding joint (cj) KRECs reside within the chromosome, whereas signal joint (sj) KRECs are excised from genomic DNA. cjKREC levels remain the same after B-cell division, whereas sjKREC levels decrease, because sjKRECs are not replicated during cell division.⁵ Because the B-cell maturation defects in XLA and non-XLA occur before κ-deleting recombination, KRECs are not supposed to be produced. Therefore, measurements of KRECs have the potential to be applied to the identification of these types of B-cell deficiencies in patients, which consist of around 20% of all B-cell defects. In addition, some types of combined immunodeficiencies show an arrest in B-cell maturation and can also be identified by this method. The success of newborn screening for T-cell deficiencies by measuring T-cell–receptor excision circles⁷ prompted us to develop a newborn screening method for XLA and non-XLA by measuring KRECs derived from neonatal Guthrie cards. The study protocol was approved by the National Defense Medical College institutional review board, and written informed consent was obtained from the parents of normal controls, the affected children, and adult patients, in accordance with the Declaration of Helsinki. First, we determined the sensitivity of detection levels of cjKRECs and sjKRECs in Guthrie cards using real-time quantitative PCR. Normal B cells from a healthy adult were isolated from peripheral blood (PB; mean purity, 88.5%). PB was also obtained from 1 patient with XLA (P20) whose B-cell number was 0.09 in 1 μ L whole blood and who was negative for sjKRECs (<1.0 \times 10² copies/ μ g DNA). Various numbers of normal B cells were serially added to 1 mL whole PB obtained from this patient with XLA. The B-cell–added XLA whole blood was then applied to filter papers, and 3 punches (3 mm in diameter) of dried blood spots were used for DNA extraction. At least 3 DNA samples containing the same B-cell concentrations (0.09-400 B cells/ μ L) were used for the real-time quantitative PCR of cjKRECs and sjKRECs. The percentages of the positive samples (>1.0 \times 10² copies/ μ g DNA) of cjKRECs and sjKRECs increased constantly