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48 h of stimulation with 40 ng/ml PMA and 1073 M ionomycin. We used
anti~human IL-17A and anti-human IL-22 Duoset kits (R&D Systems)
and the anti-human IL-17F ELISA Ready-SET-GO! set (eBioscience).

Statistical analysis. We assessed differences between controls, MSMD pa-
tients bearing loss-of-function STATY alleles, and CMCD patients bearing
gain-of-function STATT alleles in terms of the percentages of IL-17A— and
IL-22-producing T cells, as assessed by flow cytometry, and in terms of the
amounts of IL-17A,IL-17F and IL-22 produced in various stimulation condi-
tions, as assessed by ELISA. We used the nonparametric Wilcoxon test, as im-
plemented in the PROC NPARTWAY of the SAS software version 9.1 (SAS
Institute). For all analyses, P < 0.05 was considered statistically significant.

Online supplemental material

Fig. S1 shows that STAT1-CMCD mutants are gain-of-function alleles by
loss of nuclear dephosphorylation. Fig. S2 is a schematic representation of
the cytokines and transcription factors directing the development of naive
CID4 cells into IL-17-producing T cells. Fig. S3 shows the normal response
of CMCD patient cells to IFN-a in terms of ISGF3 activation, to [FN-y
in terms of STAT1 nuclear translocation; and to IL-23 and IL-22 in terms
of pSTAT3. Fig. S4 shows impaired in vitro differntiation of IL-17- and
11-22—producing T cell blasts in patients with CMCD and gain-of-function
SATA1 mustations. Table S1 shows novel coding heterozygous variants found
by whole-exome sequencing in the 6 different patients. Table S2 shows novel
coding heterozygous variants found by whole-exome sequencing within
genes shared by more than one patient. Table S3 lists conservation and pre-
dictions on the function of the mutant STAT1 alleles associated with CMCD.
Table S4 lists the STAT1 GOF mutation created, and the pair of primers
used. Online supplemental material is available at http://www jem.org/cgi/
content/full/jem.20110958/DC1.
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Abstract X-linked ectodermal dysplasia with immunode-
ficiency (XL-ED-ID) is caused by hypomorphic mutations
in NEMO, which encodes nuclear factor-kappaB (NF-«B)
essential modulator. We identified a novel mutation, 769—1
G>C, at the splicing acceptor site of exon 7 in NEMO in a
Japanese patient with XL-ED-ID. Although various abnor-
mally spliced NEMO messenger RNAs (mRNAs) were
observed, a small amount of wild-type (WT) mRNA was
also identified. Decreased NEMO protein expression was
detected in various lineages of leukocytes. Although one
abnormally spliced NEMO protein showed residual NF-«xB
transcription activity, it did not seem to exert a dominant-
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negative effect against WI-NEMO activity. CD4" T cell
proliferation was impaired in response to measles and
mumps, but not rubella. These results were consistent with
the clinical and laboratory findings of the patient, suggest-
ing the functional importance of NEMO against specific
viral infections. The 769—1 G>C mutation is responsible for
decreased WT-NEMO protein expression, resulting in the
development of XL-ED-ID.

Keywords NEMO - XL-ED-ID - [KBKG - splice-site
mutation - measles

Introduction

X-linked ectodermal dysplasia with immunodeficiency
(XL-ED-ID) is an X-linked recessive disease which is
characterized by missing or malformed teeth, coarse hair,
dry skin, hypohidrosis, and immunodeficiency. It is report-
edly caused by mutations in the inhibitor of a kappa light
polypeptide gene enhancer in B cells, kinase gamma
(IKBK(G), also called nuclear factor-kappaB (NF-xB)
essential modulator (NVEMO) [1]. NEMO is a subunit of
the inhibitor of kappaB (IxkB) kinase (IKK) complex and
plays pivotal regulatory roles in NF-kB signaling pathways.
The IKK complex is activated via NEMO in response to
stimulation of a wide range of receptors, including Toll like
receptors, CD40, proinflammatory cytokine receptors,
ectodysplasin receptor, and receptor activator of NF-kB
[2-4]. The activated IKK complex induces ubiquitin-
mediated proteasomal degradation of IkB, resulting in
translocation of NF-kB dimers from the cytoplasm to the
nucleus. Subsequently, NF-«xB binds to specific kB sites and
regulates target gene transcription, activating downstream
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processes involved in inflammation, immunity, cell prolifer-
ation, apoptosis, ectodermal formation, and osteogenesis.

Patients with XL-ED-ID are susceptible to multiple and
severe bacterial infections of the respiratory and gastrointes-
tinal tracts, skin, soft tissues and bones, together with
meningitis and septicemia, from the early stage of infancy
[5, 6]. In addition to recurrent severe pyogenic infections,
patients also show susceptibility to mycobacterial infections.
Although viral infections are not thought to be representative
symptoms, some patients suffer from viral infections, e.g.,
cytomegalovirus (CMV), molluscum contagiosum virus,
human papilloma virus, and herpes simplex virus [6, 7].
The immunological abnormalities in the patient with XL-
ED-ID are characterized by dysregulated immunoglobulin
synthesis or hyperimmunogloblin M (hyper-IgM) syndrome,
impaired specific antibody production, defective natural
killer (NK) cell activity, and poor proinflammatory cytokine
production in response to physiological stimuli. Thus, in
patients with XL-ED-ID, responses to various stimuli such as
lipopolysaccharide (LPS), interleukin-1 (IL-1), IL-12, IL-18,
tumor necrosis factor alpha (TNF-«), and CD40 ligand
(CD40L) are impaired [8-11].

Male subjects inheriting large deletions, frameshifts, or
other amorphic mutations in /KBKG die in utero,
indicating that NEMO is essential for development in
humans. The mutations in patients with XL-ED-ID are
hypomorphic and these mutations impair, but do not
abolish NF-kB signaling, thus resulting in distinct clinical
and immunological phenotypes.

We identified a novel splice-site mutation, 769—1 G>C,
in IKBKG in a Japanese boy with XL-ED-ID. This splice-
site mutation was shown to produce not only various types
of abnormal messenger RNAs (mRNAs), but also low
expression of wild-type (WT) mRNA. The expression of
WT and abnormal NEMO proteins was also confirmed to be
at decreased level in this patient. The decreased expression
of NEMO protein is suspected to play an important role in
the development of XL-ED-ID.

Methods
Case Report

The patient was a 12-year-old male. He presented with mild
mental retardation, conical-shaped teeth, and hypodontia.
Hypohidrosis and alopecia were not observed. Similar
symptoms were not observed in his family members. He
had suffered from recurrent bacterial infections, e.g., three
episodes of bacterial meningitis (at 18, 27, and 28 months
of age; the pathogenic bacteria isolated from cerebrospinal
fluid was Streptococcus pneumoniae in the first and third
episodes and was unknown in the second episode),

recurrent episodes of pneumonia, cellulitis (at 4 years of
age; the pathogenic bacteria was unidentified), left knee
arthritis (8 years of age, S. pneumoniae), and osteomyelitis
(12 years old; the pathogenic bacteria was unknown).
Furthermore, the patient had also suffered from measles
despite receiving a measles vaccination.

The white blood cell and neutrophil counts were both
slightly decreased (Table I). The percentage of CD3, CD4,
CDS8, and CD16/56 in lymphocytes was within the normal
range. However, a mild decrease was noted in the CD19™ B
cell population. The serum immunoglobulin levels and
complement levels were within normal ranges. The produc-
tion of specific antibodies against S. pneumoniae and measles
were impaired despite having a history of infections and
vaccinations. The specific antibody against S. pneumoniae
was measured by ELISA and included the antigens of 23
serotypes. He had been vaccinated once with Pneumovax 23
at the age of 9. Furthermore, the specific antibody against the
mumps virus was not produced, although the patient was
administered the mumps vaccination. However, specific anti-
bodies against CMV, Epstein—Barr virus, Varicella zoster virus,
and rubella virus were normally developed. The abdominal
ultrasonography examination revealed that the patient’s spleen
was of normal size. The parents of the patient did not present
with immunodeficiency or incontinentia pigmenti.

We obtained blood samples from the patient and healthy
adult controls after obtaining informed consent. This study
was approved by the Ethics Committee/Internal Review
Board of Hiroshima University.

Molecular Genetics

Total RNA was extracted from peripheral blood mononu-
clear cells (PBMCs). Subsequently, complementary DNA
(cDNA) was synthesized by reverse transcription. Polymer-
ase chain reaction (PCR) was performed using primer set 1
(which spans the entire coding region of /KBKG, see
Supplementary Table) and an Expand Long PCR system
(Roche Diagnostics, Germany). The PCR products were
sequenced using primer sets 1 and 2. Genomic DNA was
extracted from peripheral blood leukocytes and buccal
mucosa. Sequence analysis was performed as described
previously [12]. In order to investigate the splicing pattern
of exon 7, PCR was performed using peripheral blood
leukocyte cDNA and primer set 3. The PCR products were
cloned into the pGEM-T Easy vector (Promega, USA), and
individual alleles were sequenced.

To generate WT and mutant JKBKG plasmids, cDNA was
synthesized from the patient’s PBMCs. PCR was performed
using KOD PCR system (TOYOBO, Japan) and primer set
4 (F and R), which includes HindIll and BamHI sites at the
5'- and 3’-end, respectively, and eliminates the stop codon
of IKBKG. The PCR products were cloned into the pGEM-
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Table I Laboratory data

RR Negative
range

Leukocyte fraction Specific antibody
WBC 5,390 /ul 6,000-10,000 S. pneumoniae Negative Negative
Neut 1,024 /ul 3,300-7,500 Measles <q <®
Ly 3,719 /ul 1,200-4,000 Rubella >128 <2
Mo 215 /ul 200-950 VZV 1gG 40 <10
Eo 377 /ul 0-600 Mumps <2 <2
Lymphocyte fraction JEV <4 <4
CD3 72 % 52-78 CMV IgG 20 <4
CD19 5 % 8-24 EBV VCA IgG 20 <10
CD16/56 21 % 6-27 EBV VCA IgM <10 <10
CD3/4 38 % 25-48 EBNA <10 <10
CD3/8 19 % 9-35 Polio type 1, 2, 3 <4 <4
Immunobiochemistry Pertussis 10 <10
IgG 966 mg/dl 816-1,342 Others
IgA 292 mg/dl 154-336 NK cell cytotoxicity 6 15-40%
IgM 76 mg/dl 62-103 LTT Positive
IgE 54 mg/dl <100
CHS0 312 U/ml 25-48
C3 97 mg/dl 65-135
C4 19 mg/dl 13-40

VZV Varicella zoster virus, JEV Japanese encephalitis virus, CMV cytomegalovirus, EBV Epstein—Barr virus, EBNA EBV nuclear antigen, L77

lymphocyte transformation test, RR reference range

T Easy vector. To generate the construct with a frameshift
mutation that produced a premature stop codon, we
repeated the PCR to eliminate the original stop codon
using primer set 4 (F and R2). These fragments were cloned
into P3xFlag-CMV-14 expression vector (Invitrogen, USA)
using the HindIll and BamHI sites.

Reporter Assay

WT and mutant constructs (2 ng per well), IgK-cona-Luc
(provided by S. Yamaoka), and pRL-TK (TOYO-B-Net,
Japan) were transfected into the NEMO null rat fibroblast
cells (provided by S. Yamaoka) using FuGENE HD
Transfection Reagent (Roche). We used WT and each of
the mutants (1 ng per well, respectively) for co-transfection
experiments. At 24 h after transfection, the cells were
stimulated with 15 ng/ml LPS (Sigma-Aldrich, USA) for
4 h. Then, cells were subjected to a luciferase assay using
the PicaGene Dual Luciferase Assay Kit (TOYO-B-NET).
Experiments were done in triplicate and the firefly
luciferase activity was normalized to the renilla activity.

Western Blot Analysis

The total proteins from EB virus-transformed B cells (EBV-
B cells) were subjected to an immunoblot analysis. We used
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a mouse anti-NEMO antibody (BD Bioscience, USA) and
an anti-flag antibody (Sigma-Aldrich) to detect the NEMO
protein and an anti-B-actin antibody (Sigma-Aldrich) as a
loading control.

Electrophoretic Mobility Shift Assay

EBV-B cells were stimulated with 10 ng/ml IL-13 (Sigma-
Aldrich) for 30 min and subjected to nuclear extraction. We
incubated 10 pg of nuclear extract with **P-labeled (ox-
dATP) NF-kB probe. The NF-kB double-stranded oligonu-
cleotides corresponding to a NF-kB-binding site consensus
sequence 5'-GAT CAT GGG GAA TCC CCA-3’" were used
as a NF-«B probe [13].

Flow Cytometry and Carboxyfluorescein Diacetate
Succinimidy! Ester Analyses

Flow cytometry analysis of intracellular NEMO protein was
performed using the previously reported method [12]. The
cells were stained for the following lineage markers after
staining for NEMO: CD3, CD14, CD19, and CD56 (BD
Bioscience). For CD40L stimulation, PBMCs were cultured
with recombinant soluble human CD40L (rfCD40L; 2.5 ug/
ml; PeproTech Inc, USA) for 48 h and then stained for
FCE2 (CD23), ICAM-1 (CD54), Fas (CD95), and CD19
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(BD Bioscience). For memory B cell analysis, PBMCs
were stained with APC-conjugated anti-CD19, PE-
conjugated anti-CD27, and FITC-conjugated anti-IgD anti-
bodies (BD Biosciences). Three-color analysis was carried
out by gating on CD19-APC-positive B cells.

For the preparation of measles virus-infected cell lysates
(measles lysates), Vero cells were infected with measles
virus (the Edmonston strain). Measles lysates were prepared
from the cells by clarification with a low-speed centrifuga-
tion. The PBMCs from the patient and five healthy adult
controls (all were approximately 20 years of age and had
developed specific antibodies against measles, rubella, and
mumps) were incubated with carboxyfluorescein diacetate
succinimidyl ester (CFSE) (Sigma-Aldrich) at a concentra-
tion of 0.05 mM [14, 15]. The cells were cultured for
7 days in RPMI-1640 (Sigma-Aldrich) containing 10% AB
human serum supplemented with 1 or 3 pg/ml phytohe-
magglutinin (PHA) (Sigma-Aldrich), 1 or 10 pg/ml measles
lysates, 1 or 5 ug/ml rubella lysates (Meridian Life Science,
USA), and 1 or 10 pg/ml mumps lysate (Fitzgerald, USA).
These cells were stained with APC-conjugated anti-CD4
antibodies (BD Biosciences) and subjected to a flow
cytometry analysis.

Cytokine Measurements

We used PBMCs from the patient and four age-matched
healthy adult controls (aged 20 years). CD14" cells were
purified from PBMCs using by magnetic sorting (BD
Biosciences). The purity levels of CD14" cells were more
than 90%. The CD14" cells were cultured for 48 h with the
addition of 100 U/mil LPS, and the concentration of TNF-o
in supernatant was measured in duplicate by Luminex.

Results

A Novel Splice-Site Mutation in /KBKG Results in Various
Abnormal Splicing Products

High molecular weight DNA was extracted from both the
peripheral blood samples and buccal mucosa, and the exons
and flanking introns of JKBKG were amplified by PCR and
sequenced. We identified a novel hemizygous single base-
pair G-to-C substitution at nucleotide 769 (-1), 769-1
G>C, of intron 6 in /KBKG in the peripheral blood samples
(Fig. 1a). The same mutation was also identified in genomic
DNA from buccal mucosa, suggesting that this mutation is
a germ-line mutation (data not shown). We could not
examine the patient’s parents and siblings because we could
not obtain consent from these family members. Thus, we
excluded the possibility that this mutation was a common
or irrelevant polymorphism by sequencing 214 healthy

A mmms

amﬁ

1‘ 760-1 <3>c
CCOTCCTTAGGGAAT GCACGC

r
=
§
B exon 6
E
3
&
exon & exon7
GCGGAAGCCGAGGAATGCAGC

Fig. 1 Sequence analysis. a Genomic DNA from the patient and
healthy controls were amplified by PCR and the products were
analyzed by Sanger sequencing. A novel hemizygous single base-pair
G-to-C substitution at nucleotide 769 (—1), 769—1 G>C, was identified
in IVS6 of IKBKG. b Total RNA was extracted from peripheral blood
mononuclear cells and cDNA was synthesized by reverse transcription.
PCR was performed using primers that spanned the entire coding
region of /KBKG. The presence of various abnormal splicing variants
was predicted in the patient

individuals, including 58 Japanese individuals. A splice
junction sequence is highly conserved in eukaryotic cells,
which is generally known as a GT-AG rule [16, 17]. Since
769—-1 G>C is involved in the highly conserved splicing
acceptor site, we analyzed the impact of this mutation on
NEMO mRNA splicing. As shown in Fig. 1b, the presence
of various abnormal splicing variants was predicted.

In order to investigate the effect of this mutation on
splicing, we performed PCR on ¢cDNA with primers which
span exons 6 and 7 of IKBKG. PCR products were cloned
into pGEM-T Easy vector and were subjected to sequence
analysis. A sequence analysis of 24 clones demonstrated
that 7 clones were derived from normal splicing and the
other 17 clones from various abnormal splicing events
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(Fig. 2a). Although these abnormal splicing patterns
contained insertions and/or deletions in various locations,
the major mutant patterns were a 171-bp insertion (+171-
NEMO) and 64-bp insertion (+64-NEMO) at the splice
acceptor site of exon 7. Among the 17 clones from the
abnormal splicing, 13 clones had in-frame changes result-

ing in large conformational changes of the NEMO protein,

and 4 clones (+64-NEMO) were a frameshift change
resulting in the premature termination of protein translation
(Fig. 2a). The ratio of WT and mutants was similar in PHA-
and IL-2-induced T cell blasts which were obtained on the
same day (Fig. 2b). We also collected blood samples from

the patient on other days, including 1 day the patient was
experiencing fever. The ratio of WT to mutant differed in
these later samples, compared to those in the initial
analysis. In these later timepoints, the ratio of WT was
decreased to 5% or 18%, suggesting that the ratio of WT

A
normal splicing _, intron$ clone
| - | 7/24

&7 AL {30%;}

abnormal splicing

4

: 9/24
&7 AG  AC

/ \rizb +L71bp L 2724

GT AG &7 AG  AC

| 42bp. i - 2/24
GT AG 6T AC AG
&7 AG AC  Ppremature
stop codon
C .
normat splicing intron 6 -~ _clone

1/19
(5%)

11748

1418

6/12

a7 AG AC T premature
stop codon

Fig. 2 Cloning analysis. a PCR products were cloned into the pGEM-
T Easy vector and were subjected to sequence analysis. The splice
pattern and the observed number of each clone are shown. The same
studies were performed using PHA- and IL-2-induced T cell blasts
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mRNA varies in the patient over time (Fig. 2¢, d). To
examine whether these splicing variants were also observed
in healthy individuals, we tested five healthy individuals
and did not find any of the variants found in the patient
(representative sequences are shown in Fig. 1b). Altogether,
these results suggest that the 769—1 G>C mutation in
IKBKG is responsible for various abnormal NEMO splicing
products.

NEMO Protein Expression Is Decreased in the Patient

In order to examine the effect of the JKBKG mutation at the
protein level, we analyzed the expression of intracellular
NEMO by a flow cytometry analysis. The expression of the
NEMO protein in the patient was lower than that in healthy
controls in terms of CD3, CD4, CDS8, CD56, CD14, and
CD19-positive cells (Fig. 3a). Next, we performed an

_clone
I — | 6/16

T AC {37%)
abnormat splicing

v

normal splicing intron b

 2/16
- 1/16

11716

AG AC P prematurs
stop codon

normal splicing intron & clone
" , | s

p AC {18%

abnormal spliciag

117

- 2/17

, —s6ibyl 87
&Y AG AC  “Ppremature
stop coden

which were obtained the same day (b), PBMCs obtained another day
(¢), and PBMCs obtained on the day the patient was experiencing
fever (d). The splice pattern and the ratio of WT or mutant variants
were different based on the timing of blood collection
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Fig. 3 Analysis of NEMO protein expression and reporter assay. a
Expression of intracellular NEMO protein from the patient was
decreased in various lineages of leukocytes. The geometrical mean
fluorescence intensity of NEMO is shown in the FACS profile. b EBV-
B cells from the patient showed decreased levels of NEMO protein
expression. The upper arrow shows the band derived from +171-

immunoblot analysis using EBV-B cells from the patient.
As shown in Fig. 3b, two major bands were detected,
corresponding to the expected molecular weight of the
+171-NEMO mutant (approximately 57 kDa) and the
known molecular weight of WI-NEMO (50 kDa). The
results of densitometry revealed that the expression of WT-
NEMO protein from the patient was eightfold lower than
that from healthy controls. NEMO mutant proteins derived
from other abnormally spliced mRNAs were not detected in
this assay.

The Mutant NEMO Proteins Show Decreased NF-xkB
Transcriptional Activity

To further clarify the characteristics of these abnormally
spliced mRNAs, we performed transient gene expression

CD356

o

D4 CDIS

g21ps -
OLps+

mock WT +171 +64  WT/+171 WT/+64
WT 2 1 1
+171 Z 1
+64 2 1

NEMO (approximately 57 kDa), while the lower arrow shows WT-
NEMO (50 kDa). EBV-B cells in the patient were established from the
same blood collection as was used for the cloning analysis of Fig. 2a.
¢ WT-, +171-, and +64-NEMO were transfected into NEMO null cells,
and NF-«B activity was measured by luciferase assay. The quantity of
plasmids (nanogram) used for transfection is described

experiments specifically focused on the abnormal splicing
products, +171- and +64-NEMO. WT and these mutant
constructs were transfected into NEMO null cells. The
expression of the WT- and +171-NEMO proteins was
detected by either anti-NEMO or anti-Flag antibodies
(Supplementary Figure). We were unable to detect the
expression of the +64-NEMO protein in the transfectants,
suggesting that the +64-NEMO protein may be unstable.
Then, we examined the impact of these mutants on NF-xB
activation using reporter assay. As shown in Fig. 3¢, +64-
NEMO abolished NF-«B activation in response to LPS
stimulation. On the other hand, +171-NEMO displayed
residual NF-«B activity. To further clarify the effect of these
mutants on the WT protein, we performed a co-transfection
experiment. Co-transfection with half of the amount of WT
and +171-NEMO (WT/+171) resulted in only 75% of the
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NF-«B activity compared to cells transfected with WT-
NEMO, while co-transfection with WT and +64-NEMO
(WT/+64) resulted in approximately 50% of WT activity.
Considering that +64-NEMO is not expressed at the protein
level, the 50% NF-«kB activity observed here is likely
derived from half the amount of WI-NEMO plasmid. On
the other hand, +171-NEMO is thought to have residual
activity, even after co-transfection with WI-NEMO. This
result suggests that these mutants do not seem to exert a
dominant-negative effect against WI-NEMO-mediated NF-
kB activation. However, we could not completely rule out
the negative effect caused by the other abnormally spliced
variants, since we examined only two representative
variants.

The Functional Activity via NEMO Is Impaired
in the Patient

To analyze the functional impairment caused by the NEMO
mutation, we examined the CD23, CD56, and CD95
expression on CD19" B cells, markers of activated B cells,
in response to CD40L stimulation. As shown in Fig. 4a,
CD54 and CD95 expressions were reduced compared to
healthy controls, and CD23 expression was not detected in
the patient’s B cells, suggesting that activation of B cells
was not completely abrogated in the patient, but instead
CD19" B cells from the patient showed weak levels of
activation. Therefore, the patient’s cells showed partial, but
not complete, impairment following CD40L stimulation.
Next, we tested TNF-ov production in response to LPS
stimulation in peripheral blood CD14" monocytes. As
shown in Fig. 4b, CD14" monocytes from the patient
showed a lower level of TNF-« production compared with
those from healthy controls. To further clarify the functional
defects, we assessed NF-xkB DNA-binding ability in
response to IL-1f3 stimulation using EBV-B cells. As
shown in Fig. 4c, NF-xB DNA-binding ability was severely
impaired, but not abolished, in the patient. Thus, similar to
other patients with XL-ED-ID, the patient’s cells also
showed impairment in response to various stimuli which
induce IKK activation.

Memory B Cells Are Decreased in the Patient

The number of CD27" memory B cells within the CD19" B
cell population was decreased in the patient (6.0%) in
comparison to the number observed in healthy controls
(30.4+17.8%, n=10). A reduced number of CD27"
memory B cells has also been reported in patients with X-
linked anhidrotic ectodermal dysplasia with hyper-IgM
syndrome (HED-ID) caused by NEMO impairment [18,
19] as well as in a patient with a 5" untranslated region
(UTR) mutation of /KBKG, with high levels of IgA [20].
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However, as far as we know, a reduction in the memory B
cell compartment has not yet been reported in patients with
ED-ID. B cells in patients with defect in NF-kB are unable
to undergo somatic hypermutation and class switch recom-
bination, resulting in a loss of memory B cells [19, 21, 22].
Although we need to test other patients with ED-ID to
confirm this memory B cell phenotype, the diminished
memory B cell population may become a common finding
not only in patients with HED-ID, but also in patients with
an impairment of NEMO.

The Increase in CD4" T Cell Proliferation Is Impaired
for Measles and Mumps Infections

The patient developed measles in spite of having a history
of measles vaccination. Furthermore, although specific
antibodies against measles and mumps virus were not
detected, specific antibodies against CMV, Epstein—Barr
virus, Varicella zoster virus, and rubella virus were normal.
To clarify the mechanism underlying the impairment of
specific antibody production against measles and mumps
viruses, we tested the specific T cell response against these
viral infections. We analyzed CD4" T cells using a CFSE
proliferation assay according to the method described in a
previous report [23]. CD4™ T cells from the patient were
unable to proliferate in response to measles lysate and
mumps lysate (Fig. 5a, b). On the other hand, they
proliferated well in response to PHA and rubella lysate.
CFSE is a commonly used and useful tool for analyzing
specific T cell response against Candida, CMV, measles
viruses, and others, and these results suggest that the
specific T cell response against measles and mumps virus is
impaired in the patient [14, 15, 23]. These findings were
compatible with patient’s laboratory findings of the impair-
ment of a specific antibody production against measles
virus and mumps virus, in spite of having received these
vaccinations and having a prior measles infection.

Discussion

We identified a novel hemizygous splice-site mutation in
IKBKG in a Japanese boy with XL-ED-ID. Both the WT
and various abnormally spliced forms of NEMO mRNA
were observed in the patient’s cells. There are two
possibilities which may account for this finding. One is
leakage through the splice-site mutation, the other is
mosaicism. Leakage through the splice-site mutation has
also been described in many human diseases [24-26],
including in a patient with a NEMO abnormality who had a
splice-site mutation, 1056—1 G>A [27]. Similar to what was
observed in our current study, the ratio of WT to mutant
NEMO mRNA observed varied with the timing of blood
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Fig. 4 Analysis of functional activity via NEMO. a Expression of
CD23, CD54, and CD95, the surface markers of activated B cells, was
measured using flow cytometry. PBMCs from the patient and healthy
controls were treated with (shaded histograms) or without (open
histograms) CD40L. b TNF-« production in response to LPS by

collection in the patient with a 1056—1 G>A mutation.
Curiously, however, there is a difference between the
expression of WI-NEMO protein and the frequency of
WT-NEMO mRNA in our patient. Although the frequency
of WI-NEMO mRNA observed in the patient in our
splicing assay was approximately 30% of all splice tran-

Cell No.

Fluorescent

intensily

,+.

+ IL-1B

control

patient

CD14" cells was measured by Luminex. Data from the healthy
subjects are represented as mean £ SD (n=4). ¢ The NF-«kB DNA-
binding ability in response to IL-13 was measured by electrophoretic
mobility shift assay. EBV-B cells from the patient showed a lower
level of DNA-binding ability than healthy controls

scripts, expression of NEMO protein from the patient was
only 12.5% that of WT levels. We suspect that the influence
of nonsense-mediated RNA decay can explain this incon-
sistency between WIT-NEMO expression at the mRNA and
protein level. Some abnormally spliced forms of NEMO,
such as 64-NEMO, result in premature stop codon. These
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Fig. 5 CFSE analysis of the response of CD4" cells to PHA and
various viruses. a Representative FACS figures from the patient and
healthy subjects are shown. The lower-right quadrant of the FACS
profile indicates the proportion of CD4™ T cells that had undergone
division in response to the indicated stimuli. b Summary of the

products are predicted to be susceptible to nonsense-
mediated RNA decay. Therefore, although the splicing
assay in this study is an effective way to detect variously
spliced transcripts derived from the 769—1 G>C mutation, it
may overestimate the proportion of in-frame transcripts
which include WT-NEMO.

The other possibility to explain the existence of both WT
and mutant mRNAs is germ-line or reversion mosaicism of
WT and mutant NEMO-containing cells, as has previously
been reported in patients with immunological disorders
[28-31]. Furthermore, a reversion mosaicism has been
identified in one patient with XL-ED-ID [12]. This patient
exhibited NEMO protein expression that varied among cell
lineages. Two types of NEMO-expressing cells, NEMO
high and NEMO low, were observed by flow cytometric

@ Springer

measles

mumps rubella

percentage of proliferating CD4™ T cells is shown. The data in the
white columns represent the mean = SD of five healthy subjects.
Although CD4™ T cells from the patient proliferated in response to the
rubella virus, few divided cells were observed upon stimulation with
the measles or mumps viruses

analysis. However, the pattern of NEMO expression did not
differ among the lineages in our current study (Fig. 3a). In
addition, we did not identify the WT-NEMO sequence from
Sanger sequence using genomic DNA extracted from
peripheral blood leukocytes or buccal mucosa from the
patient (Fig. la). Taken together, although we could not
completely exclude the possibility of low frequency
mosaicism, we presume that normal NEMO mRNAs are
derived from leakage through the splice-site mutation that
may give rise to XL-ED-ID.

The levels of NEMO protein expression decreased
markedly, and the functional activity via NEMO in response
to various stimuli were impaired in our patient. Recently,
Mooster et al. reported a patient with immunodeficiency
caused by a splice-site mutation in the 5" UTR of the
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IKBKG [20]. This patient also showed decreased expression
of the NEMO protein, thus resulting in reduced NF-«B
activity. In addition, the authors proposed that inadequate
levels of normal NEMO protein played a role in the
molecular pathogenesis of this patient. Similarly, decreased
expression of NEMO protein was also suspected to have
played an important role in the clinical manifestations of
our patient. However, in contrast to our patient, neither the
patients with 1056—1 G>C nor 5 UTR mutation that
demonstrated a residual expression of WI-NEMO presented
with ectodermal dysplasia. Further studies will therefore be
required to elucidate the factor that is associated with the
development of the ectodermal phenotype.

CD4" T cells from the patient exhibit impaired prolifer-
ation in response to measles and mumps viruses. On the
other hand, normal proliferation was observed upon
stimulation with the rubella virus. To our knowledge, this
is the first study to clarify an impairment of T cell
proliferation in response to viral infections by CSFE
analysis in a patient with NEMO mutation. These results
were completely consistent with the laboratory finding of
specific antibody production against rubella, but not
measles and mumps viruses. Furthermore, the impairment
of antibody production against measles, but not rubella, was
also observed in another patient with ED-ID carrying a
D311E hypomorphic mutation in NEMO (Imai et al., in
revision in J Clin Immunol). It is interesting to speculate
how the impairment of the NEMO protein disturbs the
response against measles. Generally, the first line of host
defense against viral infection is the innate immune system
[32]. Viral infections induce inflammatory reactions via
induction of IFNs and via the activation of NF-kB. The
activation of interferon regulatory factor-3 (IRF-3) plays an
important role in the induction of IFNs against viral
infections. IRF-3 recognizes the measles virus nucleocapsid
and triggers the induction of interferon production. How-
ever, IRF-3 activation and IRF-3-dependent gene induction
are abrogated in NEMO-deficient cells [33]. Indeed,
impairment of TLR3-induced NF-xkB- and IRF-3-
dependent IFN induction has also been documented in a
patient with NEMO mutation (Audry et al. J Allergy Clin
Immunol. in press, reference number: YMAI 8998). In
addition, the activation of NF-kB also plays a pivotal role
in the host defense against measles. The measles virus
phosphoprotein upregulates the ubiquitin-modifying en-
zyme A20, a negative feedback regulator of NF-«kB,
resulting in viral escape from the host immune system
[34, 35]. Therefore, the impairments of acquired immunity
against viral infections observed in the patient may be
derived from an impairment of innate immunity caused by
NEMO mutation. Further studies will therefore be required
to confirm the clinical and cellular phenotype against viral
infections in other patients with NEMO mutation.

Conclusion

The 769—1 G>C mutation was shown to cause a decrease
in NF-kB activation through the decreased expression
level of NEMO protein, thus resulting in the develop-
ment of XL-ED-ID.
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In conclusion, the associations among asthma, biofilm-
forming bacteria, and revision ESS are strong and robust after
adjusting for other factors in patients with CRS from a tertiary
medical center. Despite its limitations, this study may improve
our understanding of refractory CRS pathogenesis, possibly
leading to more effective treatment strategies, such as incorpo-
rating the treatments of asthma and biofilm infection into
conventional CRS therapies. Prospective cohort studies in di-
verse populations are needed to assess the causality of these
associations.
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Quantification of x-deleting recombination
excision circles in Guthrie cards for the iden-
tification of early B-cell maturation defects

To the Editor:

X-linked agammaglobulinemia (XLA) is a primary immuno-
deficiency caused by severely decreased numbers of mature
peripheral B lymphocytes as a result of a mutation in the BTK
gene. Non-XLA is characterized by hypogammaglobulinemia
with decreased B-cell counts (less than 2% of mature B cells)
in the absence of the BTK gene mutation. Both XL A and non-
XLA are caused by an early B-cell maturation defect.' In patients
with XLA and non-XLA, recurrent infections appear between 3
and 18 months of age, whereas the mean age at diagnosis is 3
years.” This delayed diagnosis results in frequent hospitalization
because of pneumonia, sepsis, meningitis, and other bacterial
infections, which frequently require intravenous administration
of antibiotics and can be fatal. Frequent pneumonia results in a
high incidence of chronic lung diseases.” Thus, early diagnosis
and early treatment, including periodical intravenous immuno-
globulin replacement therapy, is essential to improve the progno-
sis and the quality of life of patients with XLLA and non-XLA.

In the process of B-cell maturation, immunoglobulin k-delet-
ing recombination excision circles (KRECs) are produced during
k-deleting recombination allelic exclusion and isotypic exclusion
of the \ chain.* Coding joint (cj) KRECs reside within the chro-
mosome, whereas signal joint (sj) KRECs are excised from
genomic DNA. ¢jKREC levels remain the same after B-cell divi-
sion, whereas sjKREC levels decrease, because sjKRECs are not
replicated during cell division.” Because the B-cell maturation
defects in XL A and non-XLA occur before k-deleting recombina-
tion, KRECs are not supposed to be produced. Therefore, mea-
surements of KRECs have the potential to be applied to the
identification of these types of B-cell deficiencies in patients,
which consist of around 20% of all B-cell defects.® In addition,
some types of combined immunodeficiencies show an arrest in
B-cell maturation and can also be identified by this method.
The success of newborn screening for T-cell deficiencies by mea-
suring T-cell-receptor excision circles’ prompted us to develop a
newborn screening method for XLLA and non-XLA by measuring
KRECs derived from neonatal Guthrie cards.

The study protocol was approved by the National Defense
Medical College institutional review board, and written informed
consent was obtained from the parents of normal controls, the
affected children, and adult patients, in accordance with the
Declaration of Helsinki.

First, we determined the sensitivity of detection levels of
cjKRECs and sjKRECs in Guthrie cards using real-time quanti-
tative PCR.> Normal B cells from a healthy adult were isolated
from peripheral blood (PB; mean purity, 88.5%). PB was also ob-
tained from 1 patient with XLA (P20) whose B-cell number was
0.09 in 1 pL whole blood and who was negative for sjKRECs
(<1.0 X 10? copies/p.g DNA). Various numbers of normal B cells
were serially added to 1 mL whole PB obtained from this patient
with XLA. The B-cell-added XILLA whole blood was then applied
to filter papers, and 3 punches (3 mm in diameter) of dried blood
spots were used for DNA extraction. Atleast 3 DNA samples con-
taining the same B-cell concentrations (0.09-400 B cells/pL)
were used for the real-time quantitative PCR of ¢jKRECs and
sjKRECs. The percentages of the positive samples (>1.0 X 107
copies/pg DNA) of ¢jKRECs and sjKRECsS increased constantly
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FIG 1. Sensitivity levels of cjKRECs and sjKRECs. Various numbers of purified normal B cells were serially
added to whole PB from a patient with XLA (P20) to obtain B-cell-added XLA whole blood. ¢jKRECs and
sjKRECs were measured in 3 to 10 samples of each concentration in triplicate. In all analyses, RNaseP
(internal control) was positive (2.3 = 0.2 X 10° copies/ug DNA). X-axis, B-cell numbers in 1 pL whole blood
from a patient with XLA. Y-axis, Percentages of the KREC-positive results in the tests.

as the B-cell concentrations increased (Fig 1). None of the sam-
ples were positive for sjKRECs when the B-cell numbers were
less than 20/pL, but cjKRECs were often positive. It has been re-
ported that 90% of patients with XL A have less than 0.2% B cells
in the PB at diagnosis.' Because peripheral lymphocyte numbers
in neonates range from 1200 to 9800/uL,® the absolute B-cell
numbers of 90% of patients with XLA are estimated to be 2.4
to 19.6/uL at the time of blood collection for Guthrie cards, al-
though exact B-cell numbers of XILA in neonatal periods are
not known at this moment. Because neonates are known to have
fewer B cells than infants,9 and we observed that B-cell numbers
are constantly low in patients with XLA throughout infancy
(Nakagawa, unpublished data, June 2010), which is consistent
with the fact that BTK plays an essential role in B-cell maturation.
It is likely that neonates with XLLA also have severely decreased B
cells. On the other hand, all samples obtained from 400 B cells/pL
were positive for both ¢jKRECs and sjKRECs. We also observed
that all healthy infants (1-11 months old; n = 15) were sjKREC-
positive (Nakagawa, unpublished data, June 2010) and might
have at least 600 B cells/pL. whole blood.” From these data, it
is assumed that at least 90% of patients with XLLA are sjKREC-
negative, and healthy neonates are positive for sjKRECs on neo-
natal Guthrie cards.

Next, we measured cjKRECs and sjKREC:s in dried blood spots
in filter papers or Guthrie cards from 30 patients with XLA and 5
patients with non-XLA and from 133 neonates born at the National
Defense Medical College Hospital during this study period (Au-
gust 2008 to October 2009) and 138 healthy subjects of various
ages (1 month to 35 years old) to investigate the validity of this
method. The levels of B cells of the patients ranged from 0.0% to
1.1% of total lymphocytes and 0.0 to 35.78/pL. IgG levels were 10
to 462 mg/dL (see this article’s Tables E1 and E2 in the Online Re-
pository at www.jacionline.org). Patients with leaky pheno-
types'' were included; 1 patient (P30) had more than 1% B
cells and 34.22/uL total B cells, and 4 patients had more than
300 mg/dL serum IgG (P12, P30, P31, P33). All of the normal
neonatal Guthrie cards were positive for both ¢jKRECs and
$JKRECs (7.2 = 0.7 X 10° and 4.8 = 0.6 X 10’ copies/pg
DNA, respectively). All healthy subjects of various ages were
also positive for both c¢jKRECs and sjKRECs (Nakagawa,
unpublished data, June 2010). In contrast, specimens from all 35
B-cell-deficient patients were sjKREC-negative (<1.0 X 10* cop-
ies/ig DNA; Fig 2). All 5 patients with leaky phenotypes were also
sjKREC-negative, which might be explained by the hypothesis that
leaky B cells of patients with XLA are long-lived B cells that di-
vided several times and have fewer sjKRECs than naive B cells.
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FIG 2. Copy numbers of sjKRECs measured in neonatal Guthrie cards or
dried blood spots obtained from B-cell-deficient patients. On all samples
from control, neonatal Guthrie cards (n = 133) were sjKREC-positive (4.8 =+
0.6 X 10° copies/ug DNA). B-celi-deficient patients were negative for
sjKRECs in neonatal Guthrie cards (XLA, n = 7; non-XLA, n = 1) and dried
blood spots (XLA, n = 23; non-XLA, n = 4).

One patient (P27) was positive for ¢jKRECs, but other patients
were negative for it. RPPHI (internal control) was detectable at
the same level as in normal controls in all samples.

These results indicate that sjKRECs are undetectable in XLA
and non-XLA and suggest that measurement of sjJKRECs in
neonatal Guthrie cards has the potential for the use of newborn
mass screening to identify neonates with early B-cell maturation
defects. Greater numbers of neonatal Guthrie cards should be
examined to confirm this potential, and the data obtained from
dried blood spots on filter papers must be examined to prove that
they truly reflect the data obtained from neonatal Guthrie cards.
‘We should also examine whether screening can reduce the cost of
treatment of the bacterial infections and chronic lung diseases in
patients with XL A and non-XLA and increase the benefits for
these patients. An anticipated pilot study using a large cohort of
newborns must address these problems. We also found that
T-cell-receptor excision circles and sjKRECs can be measured
simultaneously on the same plate. Thus, a pilot study of neonatal
screening for both T-cell and B-cell deficiencies could be
performed simultaneously.
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also thank Ms Makiko Tanaka and Ms Kimiko Gasa for their skillful technical
assistance and members of the Department of Obstetrics and Gynecology at the
National Defense Medical College for collecting umbilical cord blood samples
as well as Drs Wataru and Masuko Hirose. We are also indebted to Prof J. Patrick
Barron, Chairman of the Department of International Medical Communications
of Tokyo Medical University, for his pro bono linguistic review of this article.
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TABLE E1. Characteristics of patients with XLA

Serum Ig
Patient Unique Age (mg/dL) cbh19t BTK mutation Source
no. patient no. (y) Sex IgG IgA IgM % Lymph /pL Genomic DNA cDNA Amino acid Guthrie Dry spot
Pl 670 0 M 8 <6 10 021 1299 29269G>T 1G>T Splice acceptor defect  x
P2 718 0 M 215 <I0 <10 007  7.04 11593_11594 msA 144_145insA  Argd9 frameshift X
P3. 722 0 M 80 <1 I <100 NA 25644C>T  Te o Argssx
P4 727 8§ M 295 59 57 0.11 352 29269G>T 1178- 1G>T Splice acceptor defect X
P5 732 34 M 1140 <6 8 002 024 11631T>A  182T>A _ De6lAsn X
P6 811 24 M 458 0 13 050 532 23570T>G '426T>G Tyrld2X X
P7 813 18 M 628% 109 6 060 687 23570T>G . Tyriox X
P8 814 19 M 260 O NA 020 301 16180C>T ’344C>T Serl115Phe X
P9 815 13 M 600 <10 <5 008 172 11590G>T . 1421G>T _ Splice acceptor defect X
P10 816 11 M 12 0 5 000 000 150kb deletion of BTK TIMMSA, TAF7L DRPZ B b
Pi1 817 10 M 100 2 24 080 3578 36288C>T - 1928C>T . Th643lle : X
P12 824 13 M 462 6 27 041 1449 27518C>A 895- 11C>A Splice acceptor defect X
P13 834 5 M <237 <37 43 000 000 25715.26210del 776+57_839+73del Exon 9 deletion X
P14 838 21 M <50 <5 7 0.00  0.00 31596G>C 1631+1G>C ) Sphce donor defect X
P15 839 16 M 604* <1 <2 004 0.6 31596G>C  1631+1G>C  Splice donor defect X
P16 847 11 M  698* 26 11 008 1.86 25536delG 655delG ~ Val219 frameshift X
P17 877 14 M. 20 19 8 021 NA 32357T>C 175042T>C _ Splice donor defect X
P18 880 5 M 233 39 41 006 NA 10941-?_14592+7del 1-7_240+7del _Exon 1-3 deleuon x
PI9 88 8 M <212 <37 150 015 660 11023G>A | 83G>A  Arg28His X
P20 891 21 M 195 <6 37 002 0.09 32243C>G 163,8C>G B Cys502Trp X
P21 958 0 M <50 <I0 9 080 27.14 31544 31547 1580_;1583de1‘G’I‘I'1“ Cy5527 frameshift X
P22 701 2 M 115 <2 4 009 199 16172C>A  336C>A Tyr112X X
P23 911 00 M <10 <6 <4 000  0.00 29955A>C J13502A5C0 ‘Sphcye_a‘ccepto‘r defect: - x-
P24 937 0 M 60 <2 58 000 000 11022C>T 82C>T Arg28Cys X
P25 938 0 M <20 <4 <6 000 000 36269-7 36778+7del 1909-?_2418+7del  Exon 19 deletion x
P26 939 0 M 60 <2 22 000 000 11022C>T 82C>T Arg28Cys X
P27 890 12 M <237 <37 <20 003 NA 36261G>A 1909-8G>A - Splice acceptor defect X
P28 944 6 M 12 <l 1 002 NA 36281C>T 1921C>T  Arg641Cys ‘ X
P29 948 5 M <237 <37.<200 001 = 0.70 36261G>A 1909-8G>A . Splice acceptor defect x
P30 1053 5 M 38 5 113 110 3422 32259A>C 1654A>C Thr552Pro X

Age, Age at analysis of KRECs; CD19" % Lymph, CD19-positive cell percentage in lymphocytes; CDI19" /uL, CD19-positive cell number in 1 wL whole peripheral blood;

M, male; NA, not available; Serum Ig, serum levels of immunoglobulins at diagnosis.

BTK mutation’s reference sequences are NCBI NC_000023.9, NM_000061.2, and NP_000052.1.
*Trough level during intravenous immunoglobulin therapy.
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TABLE E2. Characteristics of patients with non-XLA

Serum Ig (mg/dL) cD19* Source
Unique Age

Patient no. patient no. (y) Sex lgG IgA gl % Lymph /plL BTK mutation Guthrie Dry spot
P3l 596 4 F 386 <6 ‘ S o 0.42~  L o Normal ey
P32 719 0 F <50 <5 <5 000 000 Normal x

P33 o835 '8 M 311 33 o0 009 - 18 Nomal X
P34 ; 915 0 M <212 <37 <20 000 000  Normal X
P57 0 M <21 <37 <39 000 000  Normal X

Age, Age at analysis of KRECs; CD19" % Lymph, CD19-positive cell percentage in lymphocytes; CDI9" /ul, CD19-positive cell number in 1 pL whole peripheral blood;
F female; M, male; Serum Ig, serum levels of immunoglobulins at diagnosis.
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Abstract

Purpose The aim of this study is to investigate clinical
characteristics and genetic backgrounds of Mendelian
susceptibility to mycobacterial diseases (MSMD) in Japan.
Methods Forty-six patients diagnosed as having MSMD
were enrolled in this study. All patients were analyzed for the
IFNGRI, IFNGR2, IL12B, ILI2RBI, STAT!1, and NEMO
gene mutations known to be associated with MSMD.
Results Six patients and one patient were diagnosed as
having partial interferon-y receptor 1 deficiency and
nuclear factor-kB-essential modulator deficiency, respec-
tively. Six of the seven patients had recurrent disseminated
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mycobacterial infections, while 93% of the patients without
these mutations had only one episode of infection.
Conclusions The patients with a genetic mutation were
more susceptible to developing recurrent disseminated
mycobacterial infections. Recurrent disseminated mycobac-
terial infections occurred in a small number of patients even
without these mutations, suggesting the presence of as yet
undetermined genetic factors underlying the development
and progression of this disease.

Keywords Disseminated mycobacterial infection -
IFN-yR1 deficiency - NEMO deficiency - flow cytometric
analysis

Introduction

Although the outcome of mycobacterial infection is
influenced by many factors, including the virulence of the
pathogen and the environment of the host, it has been
demonstrated that host genetic factors play important roles
in the defense against mycobacteria [1]. Mendelian suscep-
tibility to mycobacterial diseases (MSMD, MIM 209950) is
a rare primary immunodeficiency syndrome characterized by
a predisposition to develop infections caused by weakly
virulent mycobacteria, such as Mycobacterium bovis bacille
Calmette-Guerin (BCG) and environmental non-tuberculous
mycobacteria (NTM) [2—4]. These patients are vulnerable to
systemic salmonellosis and infections with Mycobacterium
tuberculosis, the virulent mycobacterial species, to a lesser
extent [5, 6]. Diseases caused by other intracellular
pathogens, such as Nocardia, Listeria, Paracoccidioides,
Histoplasma, and Leishmania, and some viruses, such as
human herpes virus-8, have only rarely been reported,
mostly in single patients [7-12].
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