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Twenty percent to 30% of transient abnor-
mal myelopoiesis (TAM) observed in new-
borns with Down syndrome (DS) develop
myeloid leukemia of DS (ML-DS). Most
cases of TAM carry somatic GATAT muta-
tions resulting in the exclusive expres-
sion of a truncated protein (GATA1s).
However, there are no reports on the
expression levels of GATA1s in TAM
blasts, and the risk factors for the progres-
sion to ML-DS are unidentified. To test
whether the spectrum of transcripts

Introduction

derived from the mutant GATA7 genes
affects the expression levels, we classi-
fied the mutations according to the types
of transcripts, and investigated the mo-
dalities of expression by in vitro transfec-
tion experiments using GATA1 expres-
sion constructs harboring mutations. We
show here that the mutations affected the
amount of mutant protein. Based on our
estimates of GATA1s protein expression,
the mutations were classified into GATA1s
high and low groups. Phenotypic analy-

ses of 66 TAM patients with GATAT muta-
tions revealed that GATA1s low muta-
tions were significantly associated with a
risk of progression to ML-DS (P < .001)
and lower white blood cell counts
(P = .004). Our study indicates that quan-
titative differences in mutant protein lev-
els have significant effects on the pheno-
type of TAM and warrants further
investigation in a prospective study.
(Blood. 2010;116(22):4631-4638)

In children with Down syndrome (DS), the risk of developing acute

translated from the second methionine on exon 3. These findings

strongly suggest that the qualitative deficit of GATA1 contributes to
the genesis of TAM and ML-DS. The analysis of megakaryocyte-
specific knockdown of GATAI in vivo has revealed a critical role
for this factor in megakaryocytic development. Reduced expres-
sion (or complete absence) of GATA1 in megakaryocytes leads to
increased proliferation and deficient maturation as well as a
reduced number of circulating platelets.'®20 Mice harboring a
heterozygous GATA I knockdown allele frequently develop erythro-
blastic leukemia.?! These observations indicate that the expression
levels of GATAIl are crucial for the proper development of
erythroid and megakaryocytic cells and compromised GATA1
expression is a causal factor in leukemia.?? Nevertheless, the
impact of a quantitative deficit of the factor on the pathogenesis of
TAM and ML-DS has not been examined.

In this study, we classified the GATAI mutations observed in
TAM patients according to the types of transcripts, and investigated
the modalities of gene expression by in vitro transfection assays
using GATAI expression constructs. We report here that the
spectrum of the transcripts derived from the mutant genes affects
protein expression and the risk of progression from TAM to
ML-DS.

megakaryocytic leukemia (AMKL) is estimated at 500 times
higher than in children without DS. Interestingly, neonates with DS
are at a high risk of developing a hematologic disorder referred to
as transient abnormal myelopoiesis (TAM). It has been estimated
that 5% to 10% of infants with DS exhibit the disorder, and in most
cases, it resolves spontaneously within 3 months. However,
approximately 20% of the severe cases are still subject to fatal
complications and 20% to 30% of patients who escape from early
death develop AMKL referred to as myeloid leukemia of DS
(ML-DS) within 4 years.!

Recent studies found that high white blood cell (WBC) count,
failure of spontaneous remission, early gestational age (EGA) and
liver fibrosis or liver dysfunction are significantly associated with
early death.>7 Most of the same covariates were found in all of the
reports. However, the risk factors for the progression to ML-DS
remain elusive.

Blast cells in most patients with TAM and ML-DS have
mutations in exon 2 of the gene coding the transcription factor
GATA1,%1* which is essential for normal development of erythroid
and megakaryocytic cells.!518 The mutations lead to exclusive
expression of a truncated GATA1 protein (referred to as GATALs)

Submitted April 30, 2010; accepted August 2, 2010. Prepublished online as
Blood First Edition paper, August 20, 2010; DOI 10.1182/blood-2010-05-282426.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

*R.K. and T.T. contributed equally to this work.

The online version of this article contains a data supplement. © 2010 by The American Society of Hematology

BLOOD, 25 NOVEMBER 2010 - VOLUME 116, NUMBER 22 4631

57



From www.bloodjournal.org at Hirosaki University on November 29, 2010. For personal use only.

4632 KANEZAKIl et al

Methods

Patients

This study was approved by the Ethics Committee of Hirosaki University
Graduate School of Medicine, and all clinical samples were obtained with
informed consent from the parents of all patients with TAM, in accordance
with the Declaration of Helsinki. The following clinical data were collected:
sex, gestational age, birth weight, time of diagnosis, symptom at diagnosis,
and clinical presentation. The following laboratory data were obtained: a
complete blood cell count at diagnosis including WBC and the percentage
of blasts in the peripheral blood, coagulation parameters, liver enzymes
(alanine aminotransferase and aspartate aminotransferase), and total biliru-
bin. The procedure for the detection of GATAI mutations was described
previously.'? Genomic DNA was directly extracted from peripheral blood
or bone marrow with the QIAamp blood mini kit (QIAGEN). Total RNA
was extracted from white blood cells prepared by removal of erythrocytes
by hypotonic buffer treatment of peripheral blood. Clinical features,
outcomes, and characteristics of GATA I mutations are indicated in Table 1.

Construction of GATA1 expression vectors

To construct GATA! minigene expression vectors, fragments of the normal
human GATA! gene from a part of intron 1 to the stop codon located on
exon 6 were amplified by polymerase chain reaction (PCR; Prime STAR
HS: Takara Bio) and subcloned to mammalian expression vector pcDNA3.1
(+)/Neo (Invitrogen). To introduce mutations identical to those observed in
TAM patients into the expression vector, the regions containing mutations
were amplified by PCR from patient samples and inserted into the
expression plasmid. To construct expression vectors carrying cDNA,
we performed PCR using ¢cDNA derived from baby hamster kidney
21 (BHK-21) cells transfected with GATAI minigene vectors. The PCR
products were subcloned to pcDNA3.1(+)/Neo. Details of the sequence of
each expression construct are described in Table 2.

Transfection

BHK-21, a baby hamster kidney fibroblast cell line, was cultured
with Dulbecco modified Eagle medium supplemented 10% fetal bovine
serum. GATAI expression vectors were transfected into BHK-21 cells
using FuGENE HD transfection reagent (Roche Diagnostics) according
to the manufacturer’s methods. After 24 hours, protein and total RNA
were extracted.

Western blot analysis

Lysates of transfected BHK-21 cells were transferred to Hybond-P
(GE Healthcare) and processed for reaction with anti-GATA1 antibody
M-20 (Santa Cruz Biotechnology) or anti-neomycin phosphotransferase
IT (NeoR) antibody (Millipore) as described previously.??

Northern blot analysis

Two micrograms of total RNA were transferred to Hybond-N+ (GE
Healthcare) and hybridized with GATAI or NeoR DNA probe. Hybridiza-
tion and detection were performed with the Gene Images AlkPhos Direct
Labeling and Detection System (GE Healthcare) according to the manufac-
turer’s instructions.

RT-PCR

To detect alternatively spliced transcripts derived from GATA!I minigene
constructs or from patients’ peripheral blood mononuclear cells (obtained
by Ficoll-Hypaque fractionation), we performed reverse transcription
(RT)-PCR using primers T7: 5" AATACGACTCACTATAG 3’ and GATA1
AS1, and GATA1 S1 and GATA1 ASI, respectively.!® Densitometric
analyses were performed by the Quantity-One software (Version 4.5.2;
Bio-Rad Laboratories).
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Statistical analysis

The cumulative incidence of the progression to ML-DS was analyzed with
the Gray test. Differences in the distribution of individual parameters
among patient subsets were analyzed using the Pearson x? test or Fisher
exact test for categorized variables and the Mann-Whitney U test for
continuous variables. The univariate Cox proportional hazards model was
used to obtain the estimates and the 95% confidence interval of the relative
risk for prognostic factors.

Results
Patient characteristics and outcomes

From 2003 to 2008, we screened GATA! mutations in clinical
samples obtained from 78 patients with TAM upon request from
referring hospitals. Acquired GATAI mutations were detected in a
total of 72 (92.3%) patients among them. Of the 72 patients,
6 harbored multiple GATA I mutant clones and were excluded from
this study because we could not determine a dominant clone in
these patients. Those 6 have not progressed to ML-DS. For the
remaining 66 patients (32 male and 34 female), the clinical
characteristics and laboratory data at diagnosis are described in
Table 1 and summarized in Table 3. Early death within the first
6 months of life occurred in 16 patients (24.2%). The covariates
correlated with early death were as follows: EGA, low birth weight,
high WBC count at diagnosis, high percentage of peripheral blast
cells, complication of effusions, and bleeding diatheses. These
prognostic factors were identified in previous studies.>’ Eleven
(16.7%) cases subsequently developed ML-DS. The median age at
diagnosis of ML-DS was 396 days (range 221-747 days). Univari-
ate analysis revealed no covariates correlated with progression to
ML-DS except the low total bilirubin level at diagnosis (P = .023).

GATA1 mutations affect expression levels of GATA1s protein

We first asked whether the spectrum of transcripts derived from the
mutant GATAI genes affected the expression levels of the transla-
tion products. The transcripts coding GATA1s protein were catego-
rized into 3 groups as follows: loss of the first methionine, splicing
errors, and premature termination codon (PTC). Furthermore, the
PTC group was divided into 2 subcategories by the location of
introduced PTC. In this report, we refer to the mutation that causes
PTC before the second methionine at codon 84 as PTC type 1, and
after codon 84 as PTC type 2. We constructed cDNA expression
vectors for each class of mutations observed in TAM patients, and
transfected these constructs into BHK-21 cells (Figure 1). The
details of the GATAI mutations are described in Table 2. Western
blot analysis revealed that GATA1s proteins were most abundantly
expressed in mutants with splicing errors. The transcripts from
mutants that had lost the first methionine were also efficiently
translated. In contrast, in the cells expressing PTC type 1 or type
2 constructs, GATA1s expression levels were uniformly low. Note
that the translation efficiency of the PTC type 2 transcripts was
lowest among them.

To test the possibility that mutations in GATA have an effect on
the quantity of the transcripts, we next prepared human GATA]
minigene expression vectors, and assessed the expression levels.
Consistent with the results using cDNA expression vectors, West-
ern blot analysis showed that the expression levels of GATAls
were lower in cells expressing PTC type 2 mutations, whereas the
expression levels of the proteins from PTC type 1 mutations were
not uniformly low (Figure 2Ai). Northern blot analysis revealed
that the lowest expression levels of GATAI mRNAs were observed
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Table 1. Clinical features and mutation characteristics in TAM patients with GATAT mutations

Patient No. Sex WBC, x10%L Outcome GATA1 mutation* Consequence of mutation Mutation type

213 F 89.0 Early death 199 G>T Glu67stop PTC 1-3'

413 F CR V81 to IVS2 del 1415 bp Splice mutant Splicing error

189 C>A

1613 E 28.3 CR 189 C>A Tyré3stop : PTC 1-3'

CR 189 C>A Tyr63stop PTC 1-3'

2225 F 25.0 Evolvedto ML-DS 194 ins 20 bp GGCACTGGCCTACTACAGGG Frame shift at codon 65, st&p at codon 143 PTC2
24 F 46.2 NA IVS1 3’ boundary AG>AA Splice mutant Splicing error
2% .

2 plicing err
2824 F 346 CR IVS1 to exon2 del 148 bp Splice mutant Splicing error
30 F 52.3 Evolved to ML-DS 187 ins CCTAC Frame shift at codon 63, stop at codon 138 PTC2

3

Loss of 1st Met

Early death

3524 L
3624 M 57.6 Early death 193-199 GACGCTG>TAGTAGT Asp65stop PTC 1-3'

Early Eleath

Evolved to ML-DS

5 ; . . e
Early death Frame shift at codon 63, stop at codon 74

Early death ' Glu2stop
Gluzstop
Splice mutant

Evolved to ML-DS Frame shift at codon 62, stop at codon 135

No translation from Met1 Loss of 1st Met

Splicing error

Earl y deat

We previously reported the GATA 1 mutations of the indicated patients.
F indicates female; M, male; CR, complete remission; NA, not available; and IVS, intervening sequence.
*For cDNA nucleotide numbering, nucleotide number 1 corresponds to the A of the ATG translation initiation codon in the reference sequence.
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Table 2. GATA1 expression vectors used in this study
Name Patient no. GATAT mutation* Last normal GATA1 amino acid PTC Mutation type

14,16,18,47 189 C>A

38, 39 del AG

158ins 7 bp

188 ins 22 bp

149 ins 20 bp

— indicates not applicable.
*For cDNA nucleotide numbering, nucleotide number 1 corresponds to the A of the ATG translation initiation codon in the reference sequence.

in cells transfected with PTC type 2 constructs, whereas the mRNA  using the minigene constructs. Western blot analysis showed
levels in mutants that had lost the first methionine and PTC type relatively higher expression of the proteins in samples expressing
1 mutants were almost comparable to those of control minigene P1-5, P1-7, P1-8, P1-2, and P1-3 than the other constructs (Figure
constructs harboring wild type GATAI gene (Figure 2Aiii). Thus, 2Bi). Each mutation in the mutant minigene construct is described
abundant proteins were produced from GATAI mRNAs in mutants  in Table 2. Interestingly, all samples that expressed higher levels of
with splicing errors and those that lost the first methionine. GATAls protein exhibited intense signals at lower molecular
Conversely, relatively low levels of protein were produced by PTC  weights than the dominant GATA1 signal (Figure 2Biii). Because
type 2 mutants because of inefficient translation and reduced levels  the size of the lower molecular weight band was identical to that
of message (Figure 2Ai,iii). However, in the case of PTC type observed in the splicing error mutant (Figure 2Biii), we speculated
1 mutations, especially P1-1 and P1-4, we could find no correlation  that the signal might be derived from a transcript lacking exon
between the amount of transcripts or translation efficiency and the 2 (Aexon 2) by alternative splicing. To examine that possibility, we
expression levels of GATA1s proteins (Figure 2Ai,iii). attempted Northern blot analysis using the GATAI exon 2 fragment
as a probe, and as expected, only the longer transcript was detected
(Figure 2Biv). To confirm the correlation between the amount of
Aexon 2 transcript and GATA1s protein, we performed a quantita-
To investigate the precise relationship between PTC type 1 mutations  tive assessment by densitometric analysis. The results showed a
and GATALls protein levels, we examined more type 1 mutations strong correlation between Aexon 2 transcript and GATA1s protein

GATA1s expression levels largely depend on the amount of the
alternative splicing form

Table 3. Findings at diagnosis and during the course of TAM were significantly associated with early death and the progression to leukemia
(univariate analysis)

Variable Total (n

66) Early death (n = 16) P Progressed to ML-DS (n = 11) P

5 (45.5)

Male, n (%)

)

* WBC < 70 X 10°1L, n (%) 30 (50.8)
~ WBC 109/L, n (
Median peripheral blasts, % (range) 56.0 (4.0-94.0) 78.0 (8.0-93.0) .031 49.5 (6.0-66.0) 752

Median AS ng
Median ALT, IU/L (range) 39 (4-6583) 41 (7-473) 455 12 (4-96) 615
Me fdL (ran
Effusions, n (%) 16 of 44 (36.4) 8 of 11 (72.7) .007 10of 7 (14.3) 912

Blee

Some clinical data were not available. We defined the number of patients for whom clinical data was available as (n).
LBW indicates low birth weight; AST, aspartate transaminase; ALT, alanine transaminase; and T-Bil, total bilirubin.
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Figure 1. Effects of mutant transcripts of GATAT on the expression level of the
truncated protein. The GATAT mutations observed in TAM patients are classified
according to the types of transcripts. The translational efficiency of each transcript
was assessed by Western blot analysis in BHK-21 cells transfected with GATAT
cDNA expression vectors (top part of the panel) and Northern blot analysis (bottom
part of the panel), respectively. WG indicates wild type GATA1; SP, splicing error
mutation (Aexon 2); L, loss of first methionine mutation; P1, PTC type 1 mutation; P2,
PTC type 2 mutation. The details of the GATAT mutations are summarized in Table 1.
NeoR indicates Neomycin phosphotransferase Il.

levels (r = 0.892, P = .003), but not with the long transcript
containing exon2 nor total GATAI mRNA (supplemental Figure
1, available on the Blood Web site; see the Supplemental Materials
link at the top of the online article). Next, we performed RT-PCR
using primers recognizing both transcripts, and calculated the ratio
of Aexon 2 to the long transcript (Figure 2Bvi-vii). The intensive
short transcript was detected in all samples with higher expression
of GATAls (P1-5, P1-7, P1-8, P1-2, and P1-3; Figure 2Bvii).
Interestingly, most of these mutations were clustered in the
3’ region of exon 2 (Table 2, Figure 2Bvii). These results suggest
that the location of the mutation predicts the efficiency of
alternative splicing and GATA1s expression levels.

To examine whether differential splicing efficiency could also
be observed in TAM blasts with PTC type 1 mutations, RT-PCR
analysis was performed using patients’ clinical samples. Intense
transcription of the short form was observed in the samples from
the patients who had GATAI mutations located on the 3’ side of
exon 2 (+169 to +218 in mRNA from the ATG translation
initiation codon; Figure 3A-B). We refer to them as PTC type 1-3’
and the mutations located on the 5’ side of exon 2 as PTC type 1-5".

Correlation of the phenotype and GATA1 mutations in
TAM patients

Based on these results, GATAI mutations were classified into
2 groups: a high GATA1s expression group (GATA1s high group)
including the loss of first methionine type, the splicing error type,
and PTC type 1-3', and a low GATA1s expression group (GATAls
low group) including PTC type 1-5' and PTC type 2. We classified
TAM patients into these 2 groups in accordance with the GATAls
expression levels estimated from the mutations and compared their
clinical data. High counts of WBC and blast cells were significantly
associated with the GATA1s high group (P = .004 and P = .008,
respectively; Table 4). Although high WBC count was correlated
with early death, there were no significant differences in the
cumulative incidence of early death between the 2 groups (Figure
4). Importantly, TAM patients in the GATAls low group had a
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significantly higher risk for the development of leukemia (P < .001;
Figure 4). Of 11 TAM patients who progressed to ML-DS, 10
belonged to the GATAls low group. Notably, 8 patients among
them had PTC type 2 mutations (Tables 1, 5).
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Figure 2. GATA1 mutations affect the expression level of the truncated protein.
(A) The expression levels of GATA1s protein and mRNA were assessed in BHK-21
cells transfected with human GATAT minigene expression vectors carrying mutations
observed in TAM patients. Western blot analysis was performed with anti-
GATA1 (i) or anti-NeoR antibody (ii). Northern blot analysis was carried out with
GATAT exon 3-6 fragment (iii) or NeoR cDNA (iv) as probe. (B) The expression levels
of GATA1s protein and mRNA in BHK-21 cells transfected with human GATA7
minigene expression vectors with PTC type 1 mutation. Levels were assessed by
Western blot analysis with anti-GATA1 antibody (i), anti-NeoR antibody (ji). Northern
blot analysis was performed with GATA1 exon 3-6 (iii), exon 2 (iv), or NeoR cDNA (v).
To detect the transcripts derived from the human GATAT minigene expression
construct, RT-PCR analysis was carried out using primers described in “RT-PCR” (vi).
Ex 2(+) and Ex 2(—) indicate PCR products or transcripts with or without exon 2,
respectively. Ratio of Ex 2(—)/(+) was calculated from the results of a densitometric
analysis of the RT-PCR. The asterisk denotes unavailable data (vii).
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Figure 3. The location of the PTC type 1 mutation affects the efficiency of
alternative splicing in TAM blast cells. (A) The location of the GATAT mutation in
each TAM patient. Details of the mutation in each sample are described in Tabie
1. (B) RT-PCR analysis of GATAT in TAM blast cells harboring PTC type 1 mutations.
RT-PCR was performed using primers recognizing both the long transcript including
exon 2 and Aexon 2 (top). All of the patient samples consisted of mononuclear cells
from peripheral blood. The numbers in parentheses indicate the number of nucleo-
tides in mRNA from the translation initiation codon. Ex 2(+) and Ex 2(—) indicate PCR
products with or without exon 2, respectively (middle). Ratio of Ex 2(—)/(+) was
calculated from the results of a densitometric analysis of the RT-PCR (bottom). Note
that the intense bands of the short form were observed in the samples from the
patients who have GATA T mutations located on the 3’ side of exon 2 (lanes 7-11).

To validate this observation, we examined the proportion of
mutation types in 40 ML-DS patients observed in the same period
of time as this surveillance. The results showed a significantly
higher incidence of GATA1s low type mutations in ML-DS than in
TAM (P = .039; Table 5). These results further support the present
findings that quantitative differences in the mutant protein have a
significant effect on the risk of progression to ML-DS.

Table 4. Correlations between patient covariates and GATA1
expression levels

GATA1s expression group
High (n = 40) Low (n = 26) P

WBC, X109

Number of ble

7t

Bleeding diatheses, n (%) 8 of 20 (27.6) 5 of 16 (31.3) 528t

Values are given as the median (range). P values estimated by Mann-Whitney
Utest. .

*Pearson x? test.

1Fisher exact test.
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Figure 4. Cumulative incidence of early death and of ML-DS in children with
TAM. Based on the estimated GATA1s expression levels, patients were classified in
2 groups: GATATs high and low groups. TAM patients in the GATA1s low group had a
significantly higher risk for the development of leukemia (P (gray) < .001).

Discussion

In TAM, GATAI mutations lead to the expression of proteins
lacking the N-terminal transactivation domain. In addition to this
qualitative change, we showed here that the mutations affect the
expression level of the truncated protein. The mutations were
classified into 2 groups according to the estimated GATAls
expression level. Comparison of the clinical features between the
2 groups revealed that GATA1s low mutations were significantly
associated with a high risk of progression to ML-DS and lower
counts of both WBC and blast cells. These results suggest that
quantitative differences in protein expression caused by GATAI
mutations have significant effects on the phenotype of TAM.

GATA1s was shown previously to be produced from wild-type
GATA] through 2 mechanisms: use of the alternative translation
initiation site at codon 84 of the full-length transcript and alterna-
tive splicing of exon 2.1226 However, the translation efficiencies of
GATALls from the full-length of mRNA and short transcripts have
not been investigated. Our results clearly showed that the Aexon
2 transcript produced GATA1s much more abundantly than did the
full-length transcript. The translation efficiencies of GATA1s from
full-length transcripts containing PTC were also lower than the
alternative spliced form. These results support our contention that
GATAls expression levels largely depend on the amount of the
Aexon 2 transcript. Thus, one cannot predict the expression level of
GATA1s protein from the total amount of the transcript.

The differences in the quantities of GATA1s proteins expressed
by PTC type 1-5"-and -3’ mutations revealed the importance of the
location of the mutation for splicing efficiency and protein
expression. The splicing efficiency is regulated by cis-elements
located in exons and introns (referred to as exonic and intronic
splicing enhancers or silencers), and transacting factors recogniz-
ing these elements.?’2® The PTC type 1-3' mutations induced
efficient skipping of exon 2 (Figures 2Bvi-vii, 3A-B). These
mutations might affect exonic splicing enhancers or silencers
located in exon 2. To predict the splicing pattern from the mutations
more accurately, the elucidation of cis-elements and transacting
splicing factors, which regulate the splicing of exon 2 of GATAI,
will be very important.
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Table 5. Summary of outcomes and GATA1 mutation types in TAM patients

Outcome of TAM

TAM

Mutation type CR Early death

Evolved to ML-DS

PTC1-3',n (%)
Low

The nonsense mediated RNA decay pathway (NMD), a cellular
mechanism for detection of PTC and prevention of translation from
aberrant transcripts,?®2% might regulate the expression of GATAls
protein derived from PTC type 2 mutations, which contained PTCs
after the second methionine at codon 84. We consistently detected
low amounts of transcripts of GATAI in samples expressing PTC
type 2 mutations, whereas the expression levels of GATAl mRNA
from PTC type 1 mutations were comparable with that from
wild-type GATAI (Figure 2Aiii). These results suggest that the
location of PTC relative to alternative translation initiation sites is
important for effective NMD surveillance.

Available evidence indicates that acute leukemia arises from
cooperation between one class of mutations that interferes with
differentiation (class II mutations) and another class that confers a
proliferative advantage to cells (class I mutations).3! Recent reports
showed that introducing high levels of exogenous GATA1 lacking
the N-terminus did not reduce the aberrant growth of GATA1-null
megakaryocytes, but instead induced differentiation.3>33 This obser-
vation suggested that abundant GATA1s protein functions like a
class I mutation in TAM blasts. In contrast, reducing GATA1
expression leads to differentiation arrest and aberrant growth of
megakaryocytic cells.!%2° The present data suggest that GATAs is
expressed at very low levels in TAM blasts with GATAls low
mutations. These levels may not be sufficient to provoke normal
maturation. Together, these findings suggest that the low expres-
sion of GATAls might function like class II mutations in TAM
blasts. Additional class I mutations or epigenetic alterations might
be more effective in the development of leukemia in blast cells
expressing GATA1s at low levels.

In the present study, we identified a subgroup of TAM patients
with a higher risk of developing ML-DS. Of 66 children,
11 (16.7%) with TAM subsequently developed ML-DS and 10 of
them belonged to the GATA1s low group harboring the PTC type
2 or PTC type 1-5' mutations. Surprisingly, 8 of 11 patients
(73%) with the PTC type 2 mutations developed ML-DS (Tables
1, 5), whereas 2 of 15 patients (13.3%) with PTC type 1-5'
mutations developed leukemia. The estimated expression levels of
GATA1s from PTC type 2 mutations were lower than those from
PTC type 1-5" mutations (Figures 1, 2Ai). These results suggest
that the type 2 mutations may be a more significant risk factor for
developing ML-DS (supplemental Figure 2). However, our classifi-
cation of GATAI mutations mainly rested on extrapolation from in
vitro transfection experiments (Figures 1-2) and RT-PCR analyses
of a small number of patient samples (Figure 3). The stability of the
transcripts and the splicing efficiency of the second exon of GATA!
will be regulated through complex mechanisms. To confirm our
findings, precise mapping of the mutations that affect the expres-
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sion levels of GATA1s and a prospective study with a large series
of TAM patients are necessary.

Finally, we proposed the hypothesis that the quantitative
differences in GATAls protein expression caused by mutations
have a significant effect on the phenotype of TAM. The observa-
tions described here provide valuable information about the roles
of GATAI mutations on multistep leukemogenesis in DS patients.
Moreover, the results might have implications for management of
leukemia observed in DS infants and children. Because the blast
cells in both TAM and subsequent ML-DS appear highly sensitive
to cytarabine, >3 the preleukemic clone could be treated with
low-dose cytarabine without severe side effects, and elimination of
the preleukemic clone might prevent progression to leukemia.
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