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In conclusion, the associations among asthma, biofilm-
forming bacteria, and revision ESS are strong and robust after
adjusting for other factors in patients with CRS from a tertiary
medical center. Despite its limitations, this study may improve
our understanding of refractory CRS pathogenesis, possibly
leading to more effective treatment strategies, such as incorpo-
rating the treatments of asthma and biofilm infection into
conventional CRS therapies. Prospective cohort studies in di-
verse populations are needed to assess the causality of these
associations.
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Quantification of «-deleting recombination
excision circles in Guthrie cards for the iden-
tification of early B-cell maturation defects

To the Editor:

X-linked agammaglobulinemia (XLA) is a primary immuno-
deficiency caused by severely decreased numbers of mature
peripheral B lymphocytes as a result of a mutation in the BTK
gene. Non-XLA is characterized by hypogammaglobulinemia
with decreased B-cell counts (less than 2% of mature B cells)
in the absence of the BTK gene mutation. Both XLA and non-
XLA are caused by an early B-cell maturation defect.' In patients
with XL A and non-XLA, recurrent infections appear between 3
and 18 months of age, whereas the mean age at diagnosis is 3
years.” This delayed diagnosis results in frequent hospitalization
because of pneumonia, sepsis, meningitis, and other bacterial
infections, which frequently require intravenous administration
of antibiotics and can be fatal. Frequent pneumonia results in a
high incidence of chronic lung diseases.” Thus, early diagnosis
and early treatment, including periodical intravenous immuno-
globulin replacement therapy, is essential to improve the progno-
sis and the quality of life of patients with XLA and non-XLA,

In the process of B-cell maturation, immunoglobulin k-delet-
ing recombination excision circles (KRECs) are produced during
k-deleting recombination allelic exclusion and isotypic exclusion
of the A chain.” Coding joint (cj) KRECs reside within the chro-
mosome, whereas signal joint (sj) KRECs are excised from
genomic DNA. ¢cjKREC levels remain the same after B-cell divi-
sion, whereas sjKREC levels decrease, because sjKRECs are not
replicated during cell division.” Because the B-cell maturation
defects in XLA and non-XLA occur before k-deleting recombina-
tion, KRECs are not supposed to be produced. Therefore, mea-
surements of KRECs have the potential to be applied to the
identification of these types of B-cell deficiencies in patients,
which consist of around 20% of all B-cell defects.® In addition,
some types of combined immunodeficiencies show an arrest in
B-cell maturation and can also be identified by this method.
The success of newborn screening for T-cell deficiencies by mea-
suring T-cell-receptor excision circles’ prompted us to develop a
newborn screening method for XLA and non-XLA by measuring
KRECs derived from neonatal Guthrie cards.

The study protocol was approved by the National Defense
Medical College institutional review board, and written informed
consent was obtained from the parents of normal controls, the
affected children, and adult patients, in accordance with the
Declaration of Helsinki.

First, we determined the sensitivity of detection levels of
¢jKRECs and sjKRECs in Guthrie cards using real-time quanti-
tative PCR.” Normal B cells from a healthy adult were isolated
from peripheral blood (PB; mean purity, 88.5%). PB was also ob-
tained from | patient with XLLA (P20) whose B-cell number was
0.09 in 1 pL whole blood and who was negative for sjKRECs
(<1.0 X 10% copies/ pg DNA). Various numbers of normal B cells
were serially added to 1 mL whole PB obtained from this patient
with XLA. The B-cell-added X1.A whole blood was then applied
to filter papers, and 3 punches (3 mm in diameter) of dried blood
spots were used for DNA extraction. At least 3 DNA samples con-
taining the same B-cell concentrations (0.09-400 B cells/pL)
were used for the real-time quantitative PCR of ¢jKRECs and
sJjKRECs. The percentages of the positive samples (>1.0 X 10?
copies/pg DNA) of ¢jKRECs and sjKRECs increased constantly
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FIG 1. Sensitivity levels of ¢jKRECs and sjKRECs. Various numbers of purified normal B cells were serially
added to whole PB from a patient with XLA (P20) to obtain B-cell~added XLA whole blood. ¢jKRECs and
sjKRECs were measured in 3 to 10 samples of each concentration in triplicate. In all analyses, RNaseP
(internal control) was positive (2.3 = 0.2 X 10° copies/pg DNA). X-axis, B-cell numbers in 1 uL whole blood
from a patient with XLA. Y-axis, Percentages of the KREC-positive results in the tests.

as the B-cell concentrations increased (Fig 1). None of the sam-
ples were positive for sJKRECs when the B-cell numbers were
less than 20/pL, but ¢cjKRECs were often positive. It has been re-
ported that 90% of patients with XLA have less than 0.2% B cells
in the PB at diagnosis.' Because peripheral lymphocyte numbers
in neonates range from 1200 to 9800/;1,L,8 the absolute B-cell
numbers of 90% of patients with XL.A are estimated to be 2.4
to 19,6/ at the time of blood collection for Guthrie cards, al-
though exact B-cell numbers of XLA in neonatal periods are
not known at this moment. Because neonates are known to have
fewer B cells than infants,” and we observed that B-cell numbers
are constantly low in patients with XLA throughout infancy
(Nakagawa, unpublished data, June 2010), which is consistent
with the fact that BTK plays an essential role in B-cell maturation.
It is likely that neonates with XL A also have severely decreased B
cells. On the other hand, all samples obtained from 400 B cells/pL
were positive for both ¢cjKRECs and sjKRECs. We also observed
that all healthy infants (1-11 months old; n = 15) were sjKREC-
positive (Nakagawa, unpublished data, June 2010) and might
have at least 600 B cells/pl. whole blood.” From these data, it
is assumed that at least 90% of patients with XLA are sjKREC-
negative, and healthy neonates are positive for sjKRECs on neo-
natal Guthrie cards.

Next, we measured cjKRECs and sjKREC:s in dried blood spots
in filter papers or Guthrie cards from 30 patients with XLA and 5
patients with non-XLA and from 133 necnates born at the National
Defense Medical College Hospital during this study period (Au-
gust 2008 to October 2009) and 138 healthy subjects of various
ages (1 month to 35 years old) to investigate the validity of this
method. The levels of B cells of the patients ranged from 0.0% to
1.1% of total lymphocytes and 0.0 to 35.78/p.L. IgG levels were 10
t0 462 mg/dL (see this article’s Tables E1 and E2 in the Online Re-
pository at www.jacionline.org). Patients with leaky pheno-
types‘*'o were included; 1 patient (P30) had more than 1% B
cells and 34.22/uL total B cells, and 4 patients had more than
300 mg/dL serum IgG (P12, P30, P31, P33). All of the normal
neonatal Guthrie cards were positive for both cjKRECs and
SKRECs (7.2 + 0.7 X 10° and 48 = 0.6 X 10° copies/pg
DNA, respectively). All healthy subjects of various ages were
also positive for both cjKRECs and sjKRECs (Nakagawa,
unpublished data, June 2010). In contrast, specimens from all 35
B-cell-deficient patients were sjKREC-negative (<1.0 X 107 cop-
ies/p.g DNA; Fig 2). All 5 patients with leaky phenotypes were also
sjKREC-negative, which might be explained by the hypothesis that
leaky B cells of patients with XLA are long-lived B cells that di-
vided several times and have fewer sjKRECs than naive B cells.
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FIG 2. Copy numbers of sjkRECs measured in neonatal Guthrie cards or
dried blood spots obtained from B-cell-deficient patients. On all samples
from control, neonatal Guthrie cards {n = 133) were sjKREC-positive (4.8 =
0.6 x 10° copies/,g DNA). B-cell-deficient patients were negative for
sjKRECs in neonatal Guthrie cards (XLA, n = 7; non-XLA, n = 1) and dried
blood spots (XLA, n = 23; non-XLA, n = 4).

One patient (P27) was positive for ¢jKRECs, but other patients
were negative for it. RPPH] (internal control) was detectable at
the same level as in normal controls in all samples.

These results indicate that sjKRECs are undetectable in XLA
and non-XLA and suggest that measurement of sjKRECs in
neonatal Guthrie cards has the potential for the use of newborn
mass screening to identify neonates with early B-cell maturation
defects. Greater numbers of neonatal Guthrie cards should be
examined to confirm this potential, and the data obtained from
dried blood spots on filter papers must be examined to prove that
they truly reflect the data obtained from neonatal Guthrie cards.
We should also examine whether screening can reduce the cost of
treatment of the bacterial infections and chronic lung diseases in
patients with XLA and non-XLA and increase the benefits for
these patients. An anticipated pilot study using a large cohort of
newborns must address these problems. We also found that
T-cell-receptor excision circles and sjKRECs can be measured
simultancously on the same plate. Thus, a pilot study of neonatal
screening for both T-cell and B-cell deficiencies could be
performed simultaneously.

We thank the patients and their families who participated in this study. We
also thank Ms Makiko Tanaka and Ms Kimiko Gasa for their skillful technical
assistance and members of the Department of Obstetrics and Gynecology at the
National Defense Medical College for collecting umbilical cord blood samples
as well as Drs Wataru and Masuko Hirose. We are also indebted to Prof J. Patrick
Barron, Chairman of the Department of International Medical Communications
of Tokyo Medical University, for his pro bono linguistic review of this article.

Noriko Nakagawa, MD*
Kohsuke Imai, MD, PhD™"
Hirokazu Kanegane, MD, PhD
Hiroki Sato, MS”

Masafumi Yamada, MD, PhD?
Kensuke Kondoh, MD, PhD*
Satoshi Okada, MD, PhD'
Masao Kobayashi, MD, PhD'
Kazunaga Agematsu, MD, PhD¥
Hidetoshi Takada, MD, PhD"
Noriko Mitsuiki, MD"

Koichi Oshima, MD'*

Osamu Ohara, PhDY

LETTERS TO THE EDITOR 225

Deepti Suri, MD'

Amit Rawat, MD'

Surjit Singh, MD'

Qiang Pan-Hammarstrom, MD, PhD™
Lennart Hammarstrom, MD, PhD™
Janine Reichenbach, MD"
Reinhard Seger, MD"

Tadashi Ariga, MD, PhD?

Toshiro Hara, MD, PhD"

Toshio Mivawaki, MD, PhD¢
Shigeaki Nonoyama, MD, PhD“

From “the Department of Pediatrics, National Defense Medical College, and "the
Department of Medical Informatics, National Defense Medical College Hospital,
Saitama, Japan; “the Department of Pediatrics, University of Toyama, Toyama, Japan;
“the Department of Pediatrics, Hokkaido University, Hokkaido, Japan; “the Depart-
ment of Pediatrics, St Marianna University School of Medicine, Kanagawa, Japan;
fthe Department of Pediatrics, Hiroshima University, Hiroshima, Japan; #the Depart-
ment of Pediatrics, Shinshu University, Nagano, Japan; "the Department of Pediatrics,
Kyushu University, Fukuoka, Japan; ithe Department of Pediatrics, Tokyo Medical
and Dental University, Tokyo, Japan; ithe Department of Human Genome Technol-
ogy, Kazusa DNA Research Institute, Chiba, Japan; “the Department of Clinical
Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto,
Japan; 'the Advanced Pediatric Centre Post Graduate Institute of Medical Education
and Research, Chandigarh, India; "the Division of Clinical Immunology, Department
of Laboratory Medicine, Huddinge Hospital, Karolinska Institute, Stockholm, Swe-
den; and "the Department of Immunology/Hematology/BMT, University Children’s
Hospital Zurich, Zurich, Switzerland. E-mail: kimai @ndmc.ac.jp.

Supported in part by grants from the Ministry of Defense; the Ministry of Health, Labor,
and Wetfare; the Ministry of Education, Culture, Sports, Science and Technology; and
the Kawano Masanori Foundation for Promotion of Pediatrics.

Disclosure of potential conflict of interest: The authors have declared that they have no
conflict of interest.

REFERENCES
1. Conley ME, Broides A, Hernandez-Trujillo V, Howard V, Kanegane H, Miyawaki
T, et al. Genetic analysis of patients with defects in early B-cell development.
Immunol Rev 20035;203:216-34.

. Kanegane H, Futatani T, Wang Y, Nomura K, Shinozaki K, Matsukura H, et al.
Clinical and mutational characteristics of X-linked agammaglobulinemia and its
carrier identified by flow cytometric assessment combined with genetic analysis.
J Allergy Clin Immunol 2001;108:1012-20.

3. Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F. et al.
Clinical, immunological, and molecular analysis in a large cohort of patients
with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol
2002;104:221-30.

4. Siminovitch KA, Bakhshi A, Goldman P, Korsmeyer SJ. A uniform deleting
element mediates the loss of kappa genes in human B cells. Nature 1985;316;
260-2.

5. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ. Replication history
of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced
B cell expansion. J Exp Med 2007;204:645-55.

6. Eades-Perner AM, Gathmann B, Knerr V, Guzman D, Veit D, Kindle G, et al. ESID
Registry Working Party. The European internet-based patient and research data-
base for primary immunodeficiencies: results 2004-06. Clin Exp Immunol 2007;
147:306-12.

7. Morinishi Y, Imai K, Nakagawa N, Sato H, Horiuchi K, Ohtsuka Y, et al. Identi-
fication of severe combined immunodeficiency by T-cell receptor excision circles
quantification using neonatal Guthrie cards. J Pediatr 2009;155:829-33.

8. Ozyurek E, Cetintas S, Ceylan T, Ogus E, Haberal A, Gurakan B, et al. Complete
blood count parameters for healthy, small-for-gestational-age, full-term newborns.
Clin Lab Haematol 2006;28:97-104.

9. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WC, Groe-
neveld K, et al. Immunophenotyping of blood lymphocytes in childhood: reference
values for lymphocyte subpopulations. J Pediatr 1997;130:388-93.

10. Kaneko H, Kawamoto N, Asano T, Mabuchi Y, Horikoshi H, Teramoto T, et al.
Leaky phenotype of X-linked agammaglobulinacmia in a Japanese family. Clin
Exp Immunol 2005;140:520-3.

o

Available online March 11, 2011.
doi:10.1016/j.jaci.2011.01.052

—138—



225.e1 LETTERS TO THE EDITOR J ALLERGY CLIN IMMUNOL

JULY 2011
TABLE E1. Characteristics of patients with XLA
Serum lg
Patient Unique Age {mg/dL) cD19* BTK mutation Source
no. patient no. (y) Sex IgG IgA 1gM % Lymph /plL Genomic DNA c¢DNA Amino acid Guthrie Dry spot
Pl 670 0 M 87 <6 10 021 12,99 29269G>T 1178-1G>T Splice acceptor defect X
P2 718 0 M 215 <i0 <0 0.07  7.04 11593_11594 insA 144_145insA Argd9 frameshift X
P3 722 0 M 80 <1 1 <1.00 NA 25644C>T 763C>T Arg255X X
P4 727 8§ M 295 59 57 0.11 3.52 29269G>T 1178-1G>T Splice acceptor defect X
P5 732 34 M 11400 <6 8 0.02 024 11631T>A 182T>A Ile61Asn X
P6 811 24 M 458 0 13 0.50  5.32 23570T>G 426T>G Tyrl42X X
P7 813 18 M 628* 109 6 0.60  6.87 23570T>G 426T>G Tyr142X X
P8 814 19 M 260 0 NA 020  3.01 16180C>T 344C>T Ser115Phe X
P9 815 13 M 600% <I0 <5 0.08 1.72 11590G>T 142-1G>T Splice acceptor defect X
P10 816 11 M 12 0 5 0.00  0.00 150kb deletion of BTK, TIMMSA, TAF7L, DRP2 X
Pl 817 10 M 10 2 24 0.80 35.78 36288C>T 1928C>T Thr6431le X
P12 824 13 M 462 6 27 0.41  14.49 27518C>A 895-11C>A Splice acceptor defect X
P13 834 5 M <237 <37 43 0.00  0.00 25715_26210del 776+57_839+73del Exon 9 deletion X
P14 838 21 M <50 <5 7 0.00  0.00 31596G>C 1631+1G>C Splice donor defect X
P15 839 16 M 604% <iI <2 0.04  0.66 31596G>C 1631+ 1G>C Splice donor defect X
P16 847 It M 698 26 11 0.08 1.86 25536delG 655delG Val219 frameshift X
P17 877 14 M 20 19 8 021  NA 32357T>C 1750+2T>C Splice donor defect X
P18 880 5 M 233 39 41 0.06 NA 10941-7_14592-+72del  1-7_240-+del Exon 1-3 deletion X
P19 888 8§ M <212 <37 150 0.15  6.60 11023G>A 83G>A Arg28His X
P20 891 21 M 195 <6 37 0.02  0.09 32243C>G 1638C>G Cys502Trp X
P21 958 0 M <50 <10 9 0.80 27.14 31544_31547 1580_1583del GTTT Cys527 frameshift X
delGTTT
P22 701 2 M II5 <2 4 0.09 1.99 16172C>A 336C>A Tyrl112X X
P23 911 0 M <I0 <6 <4 0.00  0.00 29955A>C 1350-2A>C Splice acceptor defect X
P24 937 0 M 60 <2 58 000  0.00 11022C>T 82C>T Arg28Cys X
P25 938 0 M <20 <4 <6 0.00  0.00 36269-7_36778+72del  1909-7_2418+7del  Exon 19 deletion X
P26 939 0 M 60 <2 22 0.00  0.00 11022C>T 82C>T Arg28Cys X
P27 890 12 M <237 <37 <20 0.03 NA 36261G>A 1909-8G>A Splice acceptor defect X
P28 944 6 M 12 <l 1 002 NA 36281C>T 1921C>T Arg641Cys X
P29 - 948 5 M <237 <37 <20 0.01 0.70 36261G>A 1909-8G>A Splice acceptor defect X
P30 1053 5 M 386 5 113 1.10  34.22 32259A>C 1654A>C Thr352Pro X

Age, Age at analysis of KRECs; CDI9" % Lymph, CD19-positive cell percentage in lymphocytes; CD/ 9* /uL, CD19-positive cell number in | wL whole peripheral blood;
M, male; NA, not available; Serum Ig, serum levels of immunoglobulins at diagnosis.

BTK mutation’s reference sequences are NCBI NC_000023.9, NM_000061.2, and NP_000052.1.

#Trough level during intravenous immunoglobulin therapy.
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TABLE E2. Characteristics of patients with non-XLA
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Serum Ig (mg/dL) Source

Unique Age
Patient no. patient no. (y) Sex laG igA IgM % Lymph /pL BTK mutation Guthrie Dry spot
P31 596 4 F 386 <6 6 0.42 21.27 Normal X
P32 719 0 F <50 <5 <5 0.00 0.00 Normal X
P33 835 8 M 311 323 20 0.09 1.88 Normal
P34 915 0 M <212 <37 <20 0.00 0.00 Normal X
P35 947 0 M <21 <37 <39 0.00 0.00 Normal X

Age, Age at analysis of KRECs; CDI9" % Lymph, CD19-positive cell percentage in lymphocytes; CDI9™ /uL, CD19-positive cell number in 1 wL whole peripheral blood;
F, female; M, male; Serum Ig, serum levels of immunoglobulins at diagnosis.
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Mutations by Flow Cytometry
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Background: X-linked lymphoproliferative syndrome (XLP) is a rare immunodeficiency with extreme
vulnerability to Epstein-Barr virus (EBV) infection. It presents with fatal infectious mononucleosis, lym-
phoproliferative disorder, or dysgammaglobulinemia. The majority of affected males have mutations in
the SH2D1A/SLAM-associated protein (SAP) gene. We previously generated an antihuman SAP monoclo-
nal antibody (KST-3) for a flow cytometric assay and described the activation of T cells to be necessary
for the flow cytometric assessment of the SAP expression using an FITC-conjugated secondary antibody.

Methods: Between 2005 and 2008, we recruited 23 male patients with suspected XLP, including mainly
EBV-associated hemophagocylic lymphohistiocytosis (HLH), and attempted to evaluate SAP expression in fresh
lymphoid cells using Alexa Fluor 488-conjugated secondary antibody instead of an FITC-conjugated one.

Results: The method demonstrated that SAP was intensely expressed in CD8™ T cells and NK cells in normal
fresh blood samples, thus suggesting the possible rapid identification of individuals with SAP deficiency. SHZ2D1A
mutations were identified in six patients with SAP deficiency, but not in patients with normal SAP expression.

Conclusion: The outcomes from this trial were verified by a flow cytometric assay using KST-3 and
Alexa Fluor 488 secondary antibody. Based on the demonstration SAP deficiency in patients with sus-
pected XLP, including mainly EBV-associated HLH, this approach could serve as a method for the early
and rapid detection of patients with XLP-1. © 2010 International Clinical Cytometry Society

Key terms: flow cytometry; hemophagocytic lymphohistiocytosis; SLAM-associated protein; SH2014;
X-linked lymphoproliferative syndrome; genetic analysis
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X-linked lymphoproliferative syndrome (XLP) is a rare
inherited immunodeficiency estimated to affect approxi-
mately one in one million males, though it may be
under-diagnosed (1). Most XLP patients die in childhood,;
the survival rate is very poor, even with treatment (2).
Hematopoietic stem cell transplantation (HSCT) is the
only curative therapy for XLP. Rapid definitive diagnosis
and appropriate treatment are extremely significant for
life-saving and improved prognosis for XLP patients (3).
The responsible gene is termed the SH2D1A/SLAM-asso-
ciated protein (SAP) gene (4-6). In contrast, some pre-
sumed XLP patients do not harbor SH2D1A mutations,
although they are clinically and even historically similar
to XLP patients with SH2DI/A mutations. Recently,
Rigaud et al. (7) identified the second causative gene for
XLP, the BIRC4 gene, which encodes the X-linked inhibi-
tor of apoptosis protein (XIAP). Therefore, XLP is now
divided into two distinct diseases, XLP-1 and XLP-2.

Regarding a rapid diagnosis of XIP-1, we previously gen-
erated a rat monoclonal antibody (mAb) specific for
human SAP protein, termed KST3, to develop a flow cyto-
metric analysis of SAP deficiency seen in XLP patients
with SH2DI4 mutations (8). In the present study, we
attempt to evaluate possible SAP expression in fresh
lymphoid cells with a flow cytometric assay employing
Alexa Fluor 488-labled secondary antibody, which is much
brighter than conventional FITC antibodies (9). Between
2005 and 2008, we used a flow cytometric determination
of SAP deficiency in CD8" T and NK cells to test 23 male
patients with suspected XLP, including mainly EBV-associ-
ated hemophagocytic lymphohistiocytosis (HLH). SH2D14
mutations were identified in six patients with SAP defi-
ciency, but not in the other patients with normal SAP
expression. These results demonstrate that a flow cytomet-
ric assay using KST-3 and Alexa Fluor 488 secondary anti-
body can achieve the early and rapid detection of patients
with XLP-1.

MATERIALS AND METHODS
Study Subjects

The subjects in this study were largely male patients
with EBV-associated HLH. In addition, a few male
patients with lymphoma or hypo-yglobulinemia of
unknown genetic origin were studied. A total of 23 Japa-
nese male patients between 4 months and 40 years of
age with suspected XLP-1 were tested between 2005
and 2008. Normal donors included healthy adult volun-
teers 24-42 years of age, and children 1-14 years of age
without immunologic and hematologic diseases. After
written informed consent was obtained, 5-10 mL of ve-
nous blood was collected into heparin-containing
syringes and subjected to investigation within 24 h. The
study was approved by the Ethics Committee of the Uni-
versity of Toyama.

Flow Cytometric Analysis of SAP Expression

We performed a flow cytometric analysis of SAP
expressed in lymphoid cells using a rat antihuman SAP

Cytometry Part B: Clinical Cytometry

mAb, termed KST-3, as previously described (8). We
employed the Alexa Fluor 488-conjugated secondary
antibody to examine the possible flow cytometric assess-
ment of SAP expression in fresh lymphoid cells. Periph-
eral blood mononuclear cells (PBMC) were isolated by
Ficoll-Hypaque density gradient centrifugation and im-
mediately fixed in 1% paraformaldehyde for 30 min at
room temperature, and then permeabilized in 0.5% sapo-
nin for 15 min on ice. These cells were incubated with
2 pg/ml of KST-3 (rat IgG1) or irreverent rat IgG1 for 20
min on ice and further stained with a 1:1,000 dilution of
Alexa Fluor 488-conjugated goat anti-rat antibody (Molec-
ular Probes, Eugene, OR) for 20 min on ice. To evaluate
SAP expression in CD8™ T cells, CD4" T cells, NK cells,
and B cells, PBMC were stained with phycoerythrin-con-
jugated anti-CD8, anti-CD4, anti-CD56 or anti-CD19
mAbs (DAKO Japan, Kyoto, Japan), respectively, before
cellular fixation and permeabilization. In some experi-
ments, we used phycoerythrin-Texas Red (ECD)-conju-
gated anti-CD45RO (Immunotech, Marseille, France). We
analyzed the stained cells with a flow cytometer (EPICS
XL-MCL; Beckman Coulter KK, Tokyo, Japan).

SH2D1A Mutation Detection

The SH2DIA mutations were detected by the direct
sequencing. Genomic DNA was purified from PBMC with
a QIAamp Blood Kit (Qiagen, Hilden, Germany), and each
of the four exon-ntron boundaries of the SH2DI14 gene
was amplified by PCR using the following primers: exon
1, forward, 5-GCC CTA CGT AGT GGG TCC ACA TAC
CAA CAG3/, and reverse 5-GCA GGA GGC CCA GGG
AAT GAA ATC CCC AGC3; exon 2, forward, 5-GGA AAC
TGT GGT TGG GCA GAT ACA ATA TGG-¥, and reverse,
5-GGC TAA ACA GGA CTG GGA CCA AAA TTC TC3;
exon 3, forward, 5-GCTCCTCTTGCAGGGAAATTC AGC
CAACC3, and reverse, 3-GCT ACC TCT CAT TTG ACT
TGC TGG CTA CAT C3'; exon 4, forward, 5-GAC AGG
GAC CTA GGC TCAGGC ATA AAC TGA C-3, and reverse,
5'-ATG TAC AAA AGTCCATTT CAG CTT TGAGS' as previ-
ously described (6). We used the BigDye terminator cycle
sequencing kit (Applied Biosystems, Foster City, CA) with
an automated ABI PRISM 310 DNA sequencer (Applied
Biosystems) to carry out the sequence reaction.

RESULTS
SAP Expression in Normal Doners

We examined whetheér a flow cytometric analysis
employing an Alexa Fluor 488-conjugated secondary
antibody instead of an FITC-conjugated one could assess
possible SAP expression in fresh lymphoid cells. We
used this method to examine normal donors for SAP
expression of CD4* T cells, CD8™ T cells, NK cells, and
B cells in fresh blood samples. A representative profile
in a healthy adult donor is shown in Figure 1. It has
been shown that the SAP protein is basically expressed
in all major T cell subsets and NK cells (6,8,10,11). Con-
sistent with these observations, we demonstrated that
CD8™ T cells and NK cells expressed SAP intensely,
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Fic. 1. The SAP expression in T, B, and NK cells in a normal adult donor. A flow cytometric analysis showed that CD8™ T cells and NK cells
expressed SAP relatively intensely, CD4" T cells weakly, and B cells negligibly. The dotted lines and shaded areas indicate staining by the control

antibody and anti-SAP mAb (KST-3), respectively.

CD4" T cells relatively weakly, and B cells negligibly. We
observed that SAP expression in CD8" T cells and CD4%
T cells varied from donor to donor. We assumed that
this variation might be due to individual differences in
proportions of CD45RO™ (memory/activated) subsets
among CD8' T cells and CD4" T cells. A three-color
analysis demonstrated that CD45RO™ populations of T
cell subsets showed enhanced SAP expression, espe-
cially of CD8™ T cells (Fig. 2).

SAP Expression and SH2D1A Mutations in Patients
with Suspected XLP

Based on the above observations in normal donors,
we chose a flow cytometric analysis of SAP expression
in CD8" T cells and NK cells to screen for SAP defi-

CD8* T cells

; 60.1%

1

CD45RO -

109 10! 10® 103 104

ciency seen in XLP patients with SH2DJA mutations.
Representative flow cytometric profiles are shown in
Figure 3. All patients were simultaneously examined for
a genetic analysis of the SH2DIA gene. The results of
SAP expression and SH2DIA mutation analyses
obtained from 23 patients with suspected XLP are sum-
marized in Table 1. Six patients (P1-P6) demonstrated
a marked reduction of SAP expression in CD8" T cells
and NK cells. The percentages of SAP protein in CD8™
T cells and NK cells in these patients were only 0.5~
3.7% and 1.2-3.1%, respectively. SH2DIA mutations
were confirmed in the patients with SAP deficiency.
The mutations included g.23917insA, g.19528G > A
@VS2 + G>A) in sibling cases, g.357insG, deletion of
exons 3-4, and g.352G > T (Ala3Ser). In contrast,

CD4* T cells

REWR

— CD45RO —

10° 10! 10% 10° 104

Fi. 2. An increased SAP expression in CD45RO™ T cell subsets. CD45RO™ (memory/activated) populations of T cells subsets, especially of CD8~

T cells, exhibited an enhanced SAP expression.
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Fic. 3. The SAP expression in suspected patients with XLP. A marked SAP deficiency in both CD8+ T cells and NK cells was notable in some
patients (A-C), but not in others (D, E). A, B, C, D, and E indicate P1, P2, P4, P10, and P11, respectively.

SH2DIA mutations were not seen in the other 17
patients (P7-P23), all of whom showed almost normal
SAP expression in CD8' T cells (7.2-88.8%) and NK

Table 1

cells (24.3-98.1%). It is important to take into account
the possibility that the flow cytometric assessment of
SAP expression in CD8" T cells may be age-dependent,

Clinical Characteristics and Immunological Data of the Patients Examined in this Study

%SAP™ cells in

SH2D1A mutation

Patient Age Clinical presentation EBV  Prognosis CD8*Tcells NK cells Nucleotide Amino acid
P1 10y hypo-y, HLH - After BMT 2.2 2.5 g.23917insA Frameshift
P2 2y HLH + Dead 3.7 3.1 g.19528G > A Frameshift
P3 2y ADEM HHV-6 After BMT 0.5 1.2 £.19528G > A Frameshift
P4 6y hypo-y - After BMT 2.1 1.2 2.357insG Frameshift
P5 14y hypo-y, HLH, lymphoma + After BMT 2.2 2.7 Deletion of exons 3-4
P6 40y HLH + Dead 2.7 NE g352G > T Ala3Ser
P7 ly HLH + Alive 7.2 54.1 None
P8 19y hypo-v, gastritis + Alive 35.8 65.2 None
P9 ly HLH + Alive 88.8 85.2 None
P10 2y HLH + Alive 45.2 65.7 None
P11 8y HLH + After CBT 23.2 76.3 None
P12 10 mo HLH + Alive 48.6 68.5 None
P13 3y Lymphoma, HLH - Dead 70.4 98.1 None
P14 6y HLH + Alive 35.4 55.3 None
P15 4 mo HLH + Alive 204 32.0 None
P16 ly HLH - Alive 41.7 57.7 None
P17 ly HLH + Alive 27.7 36.5 None
P18 ly HLH + Alive 13.5 32.6 None
P19 5y HLH + Alive 64.1 48.1 None
P20 7y HLH + Alive 51.0 49.9 None
P21 ly HLH + Alive 16.0 28.7 None
p22 ly HLH - Alive 47.4 54.0 None
P23 ly HLH -+ Alive 30.2 24.3 None
Normal (n = 12) Mean 48.5 53.8
(range) (21.6-90.8) (23.1-94.5)

P2 and P3 are monozygotic twins. y, years; mo, months; hypo-v, hypogammaglobulinemia; HLH, hemophagocytic lymphohistiocy-
tosis; ADEM, acute disseminated encephalomyelitis; HHV-6, human herpesvirus-6; BMT, bone marrow transplantation; CBT, cord

blood transplantation; and NE, not examined.
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Fic. 4. The SAP expression in XLP patients after HSCT. A flow cytometric analysis demonstrated an increased SAP expression in CD8+ T cells and
NK cells in 2 XLP patients after they have undergone HSCT. A and B indicate P1 and P4, respectively.

as exemplified in a one-yearold patient (P7) with no
SH2DI1A mutation. In this patient, the SAP expression
in CD8" T cells was much weaker than in normal
donors, thus suggesting a SAP deficiency, but the SAP
expression in NK cells was comparable with the
expression observed in normal donors.

Monitoring of the SAP Expression in XLP
Patients After HSCT

In this series, four patients (P1, P3, P4, and P5) with
XLP underwent HSCT. A flow cytometric assay was con-
ducted to evaluate SAP expression in CD8" T cells and
NK cells after HSCT. Representative cases are shown in
Figure 4. All of the patients demonstrated increases of
SAP expression in CD8' T cells and NK cells after
undergoing HSCT. These outcomes therefore appear to
validate the success of HSCT.

DISCUSSION

XLP is a rare but life-threatening disease. Most patients
with XLP die by 40 years of age, and more than 70% of
them die before 10 years of age (2). Early recognition in
nonfamilial cases may be difficult because XLP pheno-
types are heterogeneous in their clinical presentation.
The ability to rapidly screen and accurately diagnose
XLP patients facilitates the initiation of life-saving treat-
ment and preparation for HSCT. Currently, XLP is di-
vided into two distinct diseases, XLP-1 and XLP-2. The
former is caused by mutations in the SH2DIA gene,
whereas the latter is caused by mutations in the BIRC4

gene. The majority of XLP patients have XLP-1 (7). In a
previous study, we generated a rat mAb (KST-3) against
human SAP protein. It was applied to the flow cytomet-
ric evaluation of SAP deficiency seen in XLP-1 patients
(8). We found that activation of T cells in vitro for
approximately 4 days was necessary for flow cytometric
assessment of SAP expression using FITC-conjugated sec-
ondary antibody. The present study demonstrated that a
flow cytometric analysis of lymphoid SAP expression
was feasible in fresh blood samples by employing the
Alexa Fluor 488-conjugated secondary antibody instead
of the FITC-conjugated one. The Alexa Fluor 488-conju-
gated secondary antibody provides more intense fluores-
cence than the conventional one, and it can clearly
discriminate positive cells from negative ones (9). There-
fore, this method might lead to early and rapid detection
of XLP patients with the SH2DIA gene.

Our flow cytometric analysis of SAP expression in
CD8' T and NK cells identified SAP deficiency in 6 out
of 23 patients with suspected XLP. As expected, all six
patients with SAP deficiency (P1 -P6) were shown to
have mutations in the SH2D/A gene. As shown in previ-
ous studies of flow cytometry (8,11), all the missense,
nonsense, and frameshift mutations in the SH2DI1A4 gene
resulted in deficient expression of SAP protein. Although
XLP-1 patients with some missense mutations may show
normal SAP expression, SAP deficiency can be demon-
strated in most XLP-1 patients by flow cytometry. No
SH2D1A mutations were identified in the remaining 17
patients with normal SAP expression. The suspected
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XLP patients with normal SAP expression might have
X1LP-2, however, no BIRC4 mutations were identified in
these patients.

Among six patients diagnosed as having XLP-1, three
patients (P2, P5, and PG) showed EBV-associated HILH,
but HLH in P1 was not associated with EBV infection.
Two patients (P1 and P4) showed hypo-yglobulinemia
followed by acute EBV infection. P5 had EBV-negative
malignant lymphoma in his brain. Interestingly, one
patient (P3, a sibling of P2) had human herpesvirus-6
(HHV-6)-induced acute disseminated encephalomyelitis
(ADEM). XLP is generally considered susceptible to EBV
infection, but it might be vulnerable to infections from
other herpesviruses as well. ADEM, is a rare manifesta-
tion in XLP, that might be a variant form of cerebellar
vasculitis. Regarding clinical outcomes, two patients (P2
and PG) died of EBV-associated HLH, but four patients
(P1, P3, P4, and P5) recovered after undergoing HSCT.

In conclusion, this study verified the clinical utility of a
flow cytometric evaluation -of lymphoid SAP expression
for the detection of patients with XLP-1. Compared with
the conventional Western blot technique, a flow cytomet-
ric assay can be more quickly performed with less blood,
and multi-color analysis can reveal the protein expression
in each cell lineage. It might be useful for detecting rever-
tants and somatic mutations. In fact, Tabata et al. (11)
demonstrated a mosaic expression of SAP in CD8" T cells,
thus suggesting that the XLP-1 patient might have a rever-
tant of CD8™ T cells. Flow cytometric analysis of SAP pro-
tein is also useful to monitor a cellular reconstitution after
HSCT in X1P-1 patients. Recently, a rapid flow cytometric
screening method for XLP-2 has also reported (12). A
male with any of the clinical phenotypes of XLP, with or
without EBV infection, should initially be examined with a
flow cytometric assay using both anti-SAP and anti-XIAP
mAbs. Needless to say, a mutation analysis is the gold
standard for confirming a definite diagnosis.
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X-linked lymphoproliferative disease
(XLP1) is a rare immunodeficiency charac-
terized by severe immune dysregulation
and caused by mutations in the SH2D1A/
SAP gene. Clinical manifestations are
varied and include hemophagocytic lym-
phohistiocytosis (HLH), lymphoma and
dysgammaglobulinemia, often triggered
by Epstein-Barr virus infection. Historical
data published before improved treat-
ment regimens shows very poor out-
come. We describe a large cohort of 91 ge-
netically defined XLP1 patients collected
from centers woridwide and report char-

Introduction

acteristics and outcome data for 43 pa-
tients receiving hematopoietic stem cell
transplant (HSCT) and 48 untransplanted
patients. The advent of better treatment
strategies for HLH and malignancy has
greatly reduced mortality for these pa-
tients, but HLH still remains the most
severe feature of XLP1. Survival after
allogeneic HSCT is 81.4% with good im-
mune reconstitution in the large majority
of patients and little evidence of posttrans-
plant lymphoproliferative disease. How-
ever, survival falls to 50% in patients with
HLH as a feature of disease. Untrans-

planted patients have an overall survival
of 62.5% with the majority on immuno-
globulin replacement therapy, but the out-
come for those untransplanted after HLH
is extremely poor (18.8%). HSCT should
be undertaken in all patients with HLH,
because outcome without transpiant is
extremely poor. The outcome of HSCT for
other manifestations of XLP1 is very good,
and if HSCT is not undertaken immedi-
ately, patients must be monitored closely
for evidence of disease progression.
(Blood. 2011;117(1):53-62)

X-linked lymphoproliferative disease (XLP) is a rare primary
immunodeficiency first described in 1975 by Purtilo! and character-

ized by severe immune dysregulation often after viral infection
(typically with Epstein-Barr virus [EBV]). Since XLP was first
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described, our understanding of the molecular and cellular patho-
genesis of the disease has greatly improved. However, clinically, it
is stilt difficult to determine optimal management and prognosis for
patients due to the variability of clinical presentation, lack of
genotype-phenotype correlation, and rarity of the disease. Purtilo
established an XLP registry in 1980, and by 1995 more than
270 boys had been identified in 80 kindreds.? To date this registry
has provided the only data on clinical phenotype and prognosis for
this patient group. Overall mortality in this group was 75%, with
70% of boys succumbing before 10 years of age. However, current
outcomes for XLP may be very different due to the availability of
unambiguous molecular diagnosis, improved viral monitoring, and
the improvement in treatment regimens for disease manifestations.

XLP affects 1 to 3 million boys,3* and most commonly presents
in childhood or early adolescence. Presentation may be acute in the
case of fulminant infectious mononucleosis (FIM)/hemophago-
cytic lymphohistiocytosis (HLH) or lymphoma or less aggressive
with dysgammaglobulinemia or recurrent infections. Patients often
manifest more than one phenotype and may progress from one
phenotype to another, for example presenting with hypogam-
maglobulinemia and progressing to lymphoma, and different
clinical features are often present in families highlighting the lack
of genotype-phenotype correlation. Other rare but well-described
presenting features include aplastic anemia, vasculitis, and chronic
gastritis.»>8 It is now known that the clinical syndrome of XLP
arises from 2 different genetic defects in SH2DIA (XLP1, by far
the most common and the focus of this report) and the BIRC/XIAP
gene (XLP2). The gene responsible for XLP1 is the SH2DIA gene
found on the X chromosome at position Xq25,>!! which encodes
the cytoplasmic protein SAP (signaling lymphocyte activation
molecule or SLAM-associated protein). SAP is a key regulator of
normal immune function in T cells,!>!* npatural killer (NK)
cells,!518 NKT cells,'®?0 and possibly B cells,2! and defects in
this protein lead to the varied immune defects described in
XLP1 patients.?0?2 Humoral defects seen in this disease are thought
to arise from impaired CD4* T-cell interaction with B cells and not
an intrinsic B-cell deficit.??

Although it has always been presumed that EBV infection
plays a crucial role in the development of clinical features in
XLP1 patients, it is now clear that a proportion of boys are EBV
negative at presentation and remain so. Indeed, 10% of patients
have immunological abnormalities before any evidence of EBV
exposure.*?* X P1 is therefore a disorder of immune dysregulation
rather than a disorder specifically associated with EBV infection.

Before 1994, acute management of FIM and HLH included
antiviral medications, high-dose intravenous immunoglobulin (Ig),
immunosuppressants, and other immune modulators such as inter-
feron-o.. These treatments proved disappointing?® and the XLP
registry data showed a survival of only 4% for boys presenting with
these manifestations. Improved chemotherapy -regimes for lym-
phoma and immunosuppressive protocols to treat HLH (including
rituximab) may reduce the mortality rate for XLP1 patients and
allow stabilization before hematopoietic stem cell transplant
(HSCT).?¢ Our report provides valuable outcome data collected
since the introduction of current HLH treatment protocols, focusing
on XLP1 patients with mutations in the SH2DIA gene.

Allogeneic HSCT remains the only curative.option for XLP1 at
present although large scale outcome studies are not available.
Recently, Lankester et al reviewed 14 cases in the literature who
had undergone HSCT and found an overall survival of 71% (10/14)
with little evidence of EBV reactivation and posttransplant lym-
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phoproliferative disease.’” We describe here outcome data for a
much larger cohort of patients transplanted since 1997.

There is no consensus on whether clinically stable XL.P1 patients
should undergo HSCT as the natural history of the disease is so variable,
even within the same family. Treatment and management of the disease
is severely hampered by the lack of data of a large cohort of patients and
previously published outcome data are based on historical data,
which may represent patients with conditions other than XLP1 as
inclusion was based on clinical and not genetic diagnosis. Also,
little recent data exist for patients who remain untransplanted. Hence, we
describe a large cohort of genetically defined XLP! patients collected
from centers worldwide. The data presented will allow for better
counseling of affected families regarding prognosis and management
options, particularly in relation to timing of transplant.

Methods

Data collection

Questionnaires regarding patient demographics, transplant characteristics,
and outcome were sent to centers worldwide identified through the
European Society for Immunodeficiencies/European Bone Marrow Trans-
plantation Registry, published case reports or centers known to perform
pediatric HSCT. Retrospective analysis was performed using data collected
for 91 patients from 32 centers worldwide. The number of cases from each
center varied between 1 and 27 but was on average 1-2 cases. Patients
included in this study were born between 1941 and 2005; 63 were bom in or
after 1990 (24 untransplanted patients and 39 transplanted patients). Only
patients with a confirmed mutation in the SH2DI4 gene were included in
this series. Patients with mutations in other XLP-associated genes such as
XIAP/BIRC-4 were excluded, as were patients with abnormal SAP
expression but no confirmed mutation in SH2DIA. EBV status was
determined by polymerase chain reaction to avoid variable serology results
in XLP1 patients and especially in those with dysgammaglobulinemia.
Questionnaires offered reporting of FIM and HLH separately; thus, some
centers with experience in this area reported patient data accordingly, and it
is presented as such.

Data in various forms from 11 patients have been previously pub-
lished>232 but standardized information was recollected in this study and
added to the series.

Management of HLH and lymphoma

Patients who presented with HLH were managed predominandy in
accordance with HLH 94 or HLH 2004 protocols. Additional or alternative
treatment included antiviral therapy (aciclovir, ganciclovir, or foscarnet,
n = 6), high-dose intravenous immunoglobulin (n = 9), immunosuppres-
sion (steroids, cyclosporine, and etoposide, n = 12), or anti-CD20 antibody
(rituximab, n = 10). Intrathecal therapy was used where central nervous
system involvement was suspected. Ten patients who proceeded to trans-
plant received rituximab therapy before transplant, either as treatment for
HLH or during conditioning.

Regimes for the treatment of lymphoma varied in line with appropriate
national guidelines (eg, COPAD [cyclophosphamide, vincristine, predni-
sone, and doxorubicin]) study, Berlin-Frankfurt-Munster Group, Associazi-
one Italiana Ematologia Oncologia Pediatrica, or United Kingdom Chil-
dren’s Cancer Study Group guidelines) and only occasionally involved
surgical management.

Statistical analysis

Kaplan-Meier curves were used to analyze survival figures. The log rank
test (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests were used to com-
pare survival between different groups. Statistical analysis including hazard
ratio calculation was performed using GraphPad Prism Version 5.00 for
Windows.
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Table 1. Presenting symptoms and features of XLP1 patients with
associated mortality

Incidence Mortality
Presenting symptom " :
HLH 31.9% 65.5%
FIM 77% 14.3%
Lymphoma 14.3% 7.7%
Dysgammaglobulinemia 22% 5%
Family history of 16.5% 20%
XLP1 alone
Other 7.7% 14:3%
Features occurring at any time
HLH 35.0% 65.6%
FiM 9.9% 22.2%
Lymphoma 24.2% 9%
Dysgammaglobulinemia 50.5% 13%
Other 15.4% 28.6%
Results

Data from 91 patients (64 pedigrees) in 32 centers worldwide were
included in this report. The overall survival of XLP1 patients was
71.4% (65/91), and patients displayed a heterogeneous clinical
phenotype. Due to the heterogeneity of the group, data were
analyzed according to presentation with HLH, EBV status, and
whether patients had received HSCT, allowing characterization of
outcome after transplant.

Spectrum of XLP1 mutations

In keeping with previous publications, no genotype/phenotype
correlation was evident, and the most frequently reported mutation
involved the arginine residue at position 55 (exon 2) found in
11 patients from 9 different families. Detailed genetic information
was available for 62 patients (50 pedigrees; supplemental Table 1,
available on the Blood Web site; see the Supplemental Materials
link at the top of the online article). Exon 2 had the most mutations
with missense mutations accounting for the majority but nonsense,
frameshift, and splice site mutations were also reported. Large gene
deletions (up to 11 Mb) including those involving the whole gene
were identified in 5 families. Three of these larger deletions were
associated with gastrointestinal symptoms of colitis and gastritis.
Such symptoms were not found in patients with other mutations
apart from a patient with diarrhea as a feature (missense mutation
exon 1, 62 T > C). In a further 29 patients, detailed genetic data
were not supplied but a SAP/SH2DIA gene defect was confirmed
by the documenting center.

Clinical manifestations of XLP1

Table 1 shows the presenting features of disease as well as features
of disease manifesting throughout the course of the condition. HLH
remained the most common presenting feature (39.6%), although
dysgammaglobulinemia was the manifestation seen most com-
monly in patients during the course of the illness.

Although clinical features have remained similar to previously
published data,? the survival associated with XLP1 is 71.4%, which
is significantly improved over historical survival of 25%. The
survival associated with different phenotypes has also changed
significantly with mortality associated with HLH decreased from
96% to 65%, lymphoproliferative disease from 35% to 8%, and
dysgammaglobulinemia from 55% to 5%.

OUTCOME OF PATIENTS WITH XLP1 AND SH2D1AMUTATIONS 55

Twenty-two patients suffered from malignant lymphoprolifera-
tive disease, with eighteen patients (81.8%) diagnosed with B-cell
non-Hodgkin lymphoma mainly of the abdomen and cervical
region. In 5 patients the disease was recurrent, with 1 patient
experiencing a cerebral tumor. Only 1 patient was reported with
cerebral T-cell lymphoma. Data on tumor histology is lacking in
3 patients.

immunological abnormalities at diagnosis

' Details of immune function were available for 57 patients, although

in some cases, data were only available after the onset of disease
manifestations that may have influenced immunoglobulin and
lymphocyte subset levels. Immunoglobulin levels were recorded
in 49 patients, and 32 of these showed varying degrees of
abnormal immunoglobulin levels. Twelve children presented with
neutropenia. Lymphocyte subset data were available for 47 pa-
tients; 19 showed a reduced percentage of B cells, 26 showed low
NK cell numbers, and 12 had a reversed CD4:CD8 ratio.

Presentation with HLH

The mortality for patients presenting with HLH was 65.6%, with a
median age at presentation of 3 years 2 months (range 8 months to
9 years). Of the 32 patients with HLH, 16 underwent transplant, of
whom 8 survived (50%; Figure 1). Of those who did not receive a
transplant, only 3 survived (18.8%), confirming previous reports
that the prognosis for patients with HLH associated with a genetic
defect is extremely poor and that HSCT is necessary.

EBV status

EBV status was documented in 79 patients showing that 51 (64.6%)
were EBV positive at presentation or diagnosis (Table 2 and supplemen-
tal Figure 1). The median age of presentation in this group was
4 years (range 8 months to 40 years), and the overall mortality was
35.2% (18/51). There was no significant difference in mortality between
patients with (35.2%) and without (28.6%) documented EBV infection.
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Figure 1. Outcome of patients with HLH during course of disease. Survival of
patients who present with HLH—patients who remain untransplanted have a poor
survival outcome with only 18.8% survival. By contrast the survival of those who
undergo transplant is higher at 50%.
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