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a dose-dependent manner (figure 3A,B). We also investigated the Homologous auto-regulations of KLF4
direct effect of the bile acids mixture on KLF4 expression using =~ The specificity of the KLF4 expression vector was confirmed by
primary cultured oesophageal keratinocytes, and found that bile  western blot analysis (supplementary figure 1). Transfection of

acids augmented KLF4 mRNA and protein expression in a dose-  the KLF4 expression vector into Het-1A cells increased KLF4
dependent manner (figure 3CD). When examined using promoter activity in a dose-dependent manner (figure 4A). We
immunofluorescence cytochemistry, KLF4 protein expression also constructed a series of reporter plasmids containing

was augmented with positive nuclear staining by the bile acids different lengths of the KLF4 promoter. The plasmid pKLE4/
mixture (figure 3E). Furthermore, we investigated the direct ~ 1080-Luc exhibited a level of activation following stimulation
effects of the bile acids mixture on pd0 and p65 protein with the KLF4 expression vector similar to the activation shown
expressions. The results of western blotting analysis revealed by pKLF4/1700-Luc. However, the plasmids pKLF4/425-Luc and
that the bile acids augmented p50 and p65 protein expressions pKLF4/233-Luc, as well as PGL3-basic without the KLF4
(figure 3D). In addition, p50 and p65 nuclear translocations promoter showed no activation response to KLF4 stimulation

were shown by immunofluorescence cytochemistry following (figure 4B). These results revealed that KLF4-induced activation

addition of the bile acids mixture (figure 3E). of the KLF4-promoter is controlled by a site located between
To determine whether KLF4 induction by bile acids occurs via —1115 and —460.

NF-kB activation, we used an siRNA approach with primary A previous report indicated that the KLF4 promoter has three

cultured cells. p50 and p65 mRNA expression was significantly GC boxes that bind to KLF4." Therefore, to confirm whether
decreased in p50 siRNA- and p65 siRNA-transfected samples, KLEF4 binds to the KLF4 promoter, a ChIP assay was performed
respectively (data not shown). Furthermore, KLF4 mRNA  using Het-1A cells. Real-time PCR analysis was performed to

expression was significantly decreased in cells transfected with amplify the promoter region of KLF4 from —781 to —614, which
specific p50 and p65 siRNAs as compared to the control non- contains the three GC boxes. The amount of transcript from the
specific siRNA transfected cells following bile acid treatment KLF4 transfected cells was significantly greater than that from
(figure 3F). the empty vector transfected cells (figure 4C).
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Figure 3  Effects of bile acids on KLF4 mRNA expression in (A) Het-1A, (B) OE33, and (C) primary cultured cells. Cells were stimulated with various
concentrations of the bile acids mixture or vehicle alone for 3 h, then RNA was extracted and subjected to real-time PCR for KLF4. Data were
normalised to GAPDH mRNA. Results are expressed as the mean + SEM of four experiments. **p<0.01 vs. control. *p<0.05 vs. control. (D) Effects
of bile acids on KLF4, p50, and p65 protein expressions in primary cultured cells. Cells were stimulated with various concentrations of the bile acids
mixture or vehicle alone for 6 h then protein was extracted and subjected to western blot analysis for KLF4, p50, p65 and B-actin. Blots shown are
representative of three separate experiments. (E) Effects of bile acids on KLF4, p50 and p65 protein expressions in primary cultured cells determined by
immunofluorescence cytochemistry. After incubation with 200 M of the bile acids mixture for 6 h, KLF4-, p50- and p65-positive cells with nuclear
staining were observed after nuclear counter-staining with DAPI. Results shown are representative of three separate experiments. (F) RNA interference
was performed using p50 or p65 siRNA, or control non-specific siRNA. At 48 h after transfection with each siRNA, primary cultured cells were
stimulated with the bile acids mixture (200 M) or vehicle alone for 3 h, then RNA was extracted and subjected to real-time PCR for KLF4. Data were
normalised to GAPDH. Data are expressed as the n-fold increase in transcript in the bile acid-stimulated samples over that in the vehicle-treated
samples. Results are expressed as the mean * SEM of three experiments. *p<0.05 vs. control siRNA transfected samples with bile acids treatment.
DAPI, 4',6-diamidino-2 -phenylindole dihydrochloride; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Figure 4 Homologous auto-regulation mechanism of KLF4. (A) Cells were co-transfected with a KLF4 promoter vector and the indicated amounts of
a KLF4 expression or empty vector, then cell lysates were used to determine luciferase activity at 24 h after transfection. Results are expressed as the
mean = SEM of four experiments. *p<:0.05 vs. control. (B) Reporter gene analysis of KLF4 promoter deletion constructs in Het-1A cells. Cells were
co-transfected with the indicated KLF4 promoter vectors and a KLF4 expression or empty vector. Results are expressed as the mean + SEM of four
experiments. *p<0.05 vs. pKLF4/1700-Luc. {C} Chromatin immunoprecipitation assay. Het-1A cells were co-transfected with a KLE4 promoter vector
and a KLF4 expression or empty vector for 24 h. Anti-KLF4 antibody immunoprecipitated DNA was purified and analysed by real-time PCR for the KLF4
promoter including GC boxes. The amount of precipitated DNA was normalised to input DNA. Results are expressed as the mean += SEM of three
experiments. **p<0.01 vs. empty vector.

Heterologous inter-regulation mechanism of Cdx2 stimulated
by KLF4

Transfection of the KLF4 expression vector into Het-1A cells
increased Cdx2 promoter activity in a dose-dependent manner

(figure 5A). We constructed a series of reporter plasmids
containing different lengths of the Cdx2 promoter. The plasmids
pCdx2/1014-Luc, pCdx2/631-Luc, pCdx2/438-Luc, pCdx2/319-
Luc, and pCdx2/219-Luc exhibited a level of activation following
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Figure 5 Heterologous inter-regulation mechanism of Cdx2 stimulated by KLF4. (A) Het-1A cells were cotransfected with a Cdx2 promoter vector and
a KLF4 expression or empty vector, then cell lysates were used to determine luciferase activity 24 h after transfection. Results are expressed as the
mean = SEM of four experiments. *p<0.05 vs. control. (B} Reporter gene analysis of Cdx2 promoter deletion and mutation constructs in Het-1A cells.
Cells were co-transfected with the indicated Cdx2 promoter vectors and a KLF4 expression or empty vector. Results are expressed as the mean +
SEM of four experiments. *p<0.05 vs. pCdx2/1541-Luc. {C) Chromatin immunoprecipitation assay. Het-1A cells were co-transfected with a Cdx2
promoter vector and a KLF4 expression or empty vector for 24 h. Anti-KLF4 antibody immunoprecipitated DNA was purified and analysed by real-time
PCR for the Cdx2 promoter including the Sp-1-binding site. The amounts of precipitated DNA were normalised to input DNA. Results are expressed as
the mean = SEM of three experiments. *p<0.05 vs. empty vector. (D) Immunofluorescence cytochemistry examination for KLF4 and Cdx2 conducted
48 h after transfection of a KLF4 expression vector. Cells transfected with the KLF4 expression vector expressed both KLF4 and Cdx2 proteins after
nuclear counter-staining with DAPI. Negative control, cells transfected with an empty vector; positive control, cells transfected with a Cdx2 expression
vector. Results shown are representative of three separate experiments. DAPI, 4',6-diamidino~2'-phenylindole dihydrochloride.
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stimulation with a KLF4 expression vector that was similar to
the activation shown by pCdx2/1541-Luc. However, the plas-
mids pCdx2/74-Luc and PGL3-basic without the Cdx2 promoter
showed no activation responses to KLF4 stimulation (figure 5B).
These results revealed that KLF4-induced activation of the KLF4-
promoter is controlled by a site located between —94 and +52.
We identified a putative Sp-1 binding site from —91 to —82
{teccegecetet) and speculated that KLE4 might bind to a Cdx2
promoter in this region. Therefore, to investigate the role of the
Sp-1 site in KLF4-induced stimulation of Cdx2 expression, that
element of the putative Sp-1-binding site was mutated, which
completely abolished the KLF4-induced activation of the Cdx2
promoter (figure 5B).

To confirm whether KLF4 binds to the Cdx2 promoter, a ChIP
assay was performed using Het-1A cells. Real-time PCR analysis
was performed to amplify the region of the Cdx2 promoter from
~194 to ~48 that contains the Sp-1 binding site. The amount of
transcript from the cells transfected with the KLF4 expression
vector was significantly higher than that from cells transfected
with an empty vector (figure 5C).

Finally, Cdx2 protein expression following stimulation with
a KLF4 expression vector was evaluated in Het-1A cells using
immunofluorescence cytochemistry. Cells transfected with the

KLF4 construct were found to express the Cdx2 transcript
(figure 5D).

Heterologous inter-regulation mechanism of KLF4 stimulated
by Cdx2

Transfection of the Cdx2 expression vector into Het-1A cells
increased KLF4 promoter activity in a dose-dependent manner
(figure 6A). We also constructed a series of reporter plasmids
containing different lengths of the KLF4 promoter. The plasmids
pKLF4/1080-Luc, pKLF4/425-Luc, and pKLF4/233-Luc exhibited
a level of activation following stimulation with the Cdx2
expression vector similar to the activation shown by pKLF4/
1541-Luc. However, the plasmids pKLF4/35-Luc and PGL3-basic
without the KLF4 promoter showed no activation response to
Cdx2 stimulation (figure 6B). These results revealed that Cdx2-
induced activation of the KLF4-promoter is controlled by a site
located between —268 and —70. We identified multiple putative
Cdx2 binding sites and concluded that Cdx2 might bind to the
KLF4 promoter in these regions. To confirm whether Cdx2 binds
to the KLF4 promoter, a ChIP assay was performed with Het-1A
cells. Real-time PCR analysis was performed to amplify the
region of the KLF4 promoter from —259 to —56, which contains
multiple Cdx2 binding sites. The amount of transcript from the
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Figure 6 Heterologous inter-regulation mechanism of KLF4 stimulated with Cdx2. (A) Het-1A cells were cotransfected with a KLF4 promoter vector
and a Cdx2 expression or empty vector, then cell lysates were used to determine luciferase activity at 24 h after transfection. Results are expressed as
the mean = SEM of four experiments. *p<0.05 vs. control. {B) Reporter gene analysis of KLF4 promoter deletion constructs in Het-1A cells. Cells were
co-transfected with the indicated KLF4 promoter vectors and a Cdx2 expression or empty vector. Results are expressed as the mean * SEM of four
experiments. ¥*p<0.05 vs. pKLF4/1700-Luc. (C) Chromatin immunoprecipitation assay. Het-1A cells were transiently co-transfected with a KLF4
promoter vector and a Cdx2 expression or empty vector for 24 h. Anti-Cdx2 antibody immunoprecipitated DNA was purified and analysed by real-time
PCR for the KLF4 promoter including the Cdx2-binding site. The amounts of precipitated DNA were normalised to input DNA. Results are expressed as
the mean = SEM of three experiments. **p<0.01 vs. empty vector. (D) Forty-eight hours after transfection with a Cdx2 expression vector, an
immunofluorescence cytochemistry examination for Cdx2 and KLF4 was conducted. Cells transfected with the Cdx2 expression vector expressed both
Cdx2 and KLF4 proteins after nuclear counter-staining with DAPI. Negative control, cells transfected with an empty vector; positive control, cells
transfected with a KLF4 expression vector. Results shown are representative of three separate experiments. DAPI, 4’ 6-diamidino-2 -phenylindole
dihydrochloride.
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cells transfected with the Cdx2 expression vector was signifi-
cantly higher than that from cells transfected with an empty
vector (figure 6C).

Next, KLF4 protein expression following stimulation with
a Cdx2 expression vector was evaluated in Het-1A cells using
immunofluorescence cytochemistry and cells transfected with
the Cdx2 construct were shown to express the KLF4 transcript
(figure 6D).

Effects of Cdx2 or KLF4 over-expression on oesophageal
epithelial cells

Transfection of the Cdx2 expression vector into Het-1A cells
increased MUC2 promoter activity in a dose-dependent manner
(figure 7A). Transfection of the KLF4 expression vector into
Het-1A cells increased MUC2 promoter activity in a dose-
dependent manner (figure 7B). We also constructed a series of
reporter plasmids containing different lengths of the MUC2
promoter. The plasmids pMUC2/823-Luc, pMUC2/463-Luc,
pMUC2/214-Luc, and MUC2/80-Luc exhibited a level of activa-
tion following stimulation with the KLF4 expression vector that
was similar to the activation shown by pMUC2/1750-Luc.
However, the plasmids pMUC2/39-Luc and PGL3-basic without
the MUC2 promoter showed no activation response to KLF4
stimulation (figure 7C). These results revealed that KLF4-induced
activation of the MUC2-promoter is controlled by a site located
between —134 and —93. We identified a putative CACCC/Sp-1
binding site from —113 to —101 (gccccacccaccee) and speculated

that KLF4 might bind to the MUC2 promoter in this region.
Therefore, to investigate the role of the CACCC/Sp-1 site in
KLF4-induced stimulation of MUC2 expression, the element of
the putative CACCC/Sp-1-binding site was mutated, which
completely abolished KLF4-induced activation of the MUC2
promoter (figure 7C). To confirm whether KLF4 binds to the
MUC2 promoter, a ChIP assay was performed with Het-1A cells.
Real-time PCR analysis was performed to amplify the region of
the MUC2 promoter from —304 to —84 that contains the
CACCC/Sp-1 binding site. The amount of transcript from the
cells transfected with the KLF4 expression vector was signifi-
cantly higher than that from the cells transfected with an empty
vector (figure 7D). We also transfected a KLF4 expression vector
into Het-1A cells and observed the expression of intestine specific
MUC2 mRNA in those cells. After 48 h, Het-1A cells transfected
with the KLF4 expression construct induced MUC2 mRNA
expression (figure 7E). Next, MUC2 protein expression following
stimulation with a KLF4 expression vector was evaluated in
Het-1A cells using immunofluorescence cytochemistry and those
transfected with the KLF4 construct were found to express the
MUC2 transcript (figure 8A). In addition, cells transfected with
the KLF4 expression vector induced CK20 expression (figure 8B).

DISCUSSION

The results of the present experiments suggest that KLF4 is an
important molecular mediator in the development of Barrett’s
epithelium. This is the first known study to investigate the role
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Figure 7  Effects of over-expression of {A) Cdx2 and (B) KLF4 on MUC2 expression. Het-1Acells were co-transfected with a MUC2 promoter vector and
the indicated expression or empty vector, then cell lysates were used to determine luciferase activity 24 h after transfection. Results are expressed as the
mean += SEM of four experiments. **p<0.01 vs. control. *p<0.05 vs. control. (C) Reporter gene analysis of MUC2 promoter deletion and mutation
constructs in Het-1A cells. Cells were co-transfected with the indicated MUC2 promoter vectors and a KLF4 expression or empty vector. Results are
expressed as the mean + SEM of four experiments. *p<0.05 vs. pMUC2/1750-Luc. (D) Chromatin immunoprecipitation assay. Het-1A cells were
co-transfected with a MUC2 promoter vector and a KLF4 expression or empty vector for 24 h. Anti-KLF4 antibody immunoprecipitated DNA was purified
and analysed by real-time PCR for the MUC2 promoter including the CACCC/Sp-1 element. The amount of precipitated DNA was normalised to input DNA.
Results are expressed as the mean + SEM of three experiments. **p<0.01 vs. empty vector. (E} Forty-eight hours after transfection of a KLF4
expression or empty vector, RNA was extracted and subjected to real-time PCR for MUC2. Data were normalised to GAPDH mRNA. Results are
expressed as the mean = SEM of four experiments. **p<0.01 vs. empty vector. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Figure 8 Effects of over-expression of KLF4 on MUC2 and CK20
expressions. {A) Forty-eight hours after transfection with a KLF4
expression vector, an immunofluorescence cytochemistry examination
for KLF4 and MUC2 was conducted. Cells transfected with the KLF4
expression vector expressed both KLF4 and MUC2 proteins. Negative
control, cells transfected with an empty vector; positive control, SW480
cells. (B) Forty-eight hours after transfection with a KLF4 expression
vector, an immunofluorescence cytochemistry examination for KLF4 and
CK20 was conducted. Cells transfected with the KLF4 expression vector
expressed both KLF4 and CK20 proteins after nuclear counter-staining
with DAPI. Negative control, cells transfected with an empty vector;
positive control, Hela cells. Results shown are representative of three
separate experiments.

of KLF4 expression induced by bile acids in development of the
disease. Other studies have found that KLF4 gene expression has
characteristic tissue distribution, with its expression noted in
epithelial cells of the gut, skin, and tongue, as well as several
other organs.? ¥ However, it has not been fully revealed whether
KLF4 is expressed in the oesophagus. Herein, we examined the
expression level of KLF4 in the ocesophagus, and found a lower
level as compared to its expression in the small and large
intestines, similar to Cdx2. The roles of KLF4 and Cdx2 in the
development and carcinogenesis of the intestinal mucosa have
been reported to be similar,'? ? thus we examined the role of
KLF4 in Barrett’s epithelium development in our study.

First, we determined whether bile acids can induce the
expression of KLF4 in vivo using Barrett’s epithelium formed in
model rats with an oesophago-jejunal anastomosis. KLF4
expression was observed in rat Barrett’s epithelium, thus bile
acids are suggested to be inducers of KLF4. However, the
expression pattern was found to be different from that of Cdx2,
as KLF4-positive cells were observed mainly in the surface
villi, whereas there was only a small number of those cells in
the crypts. In contrast, Cdx2-positive cells were reported to
be abundant in both surface villi and crypts of columnar
glands.% ' 2% Although there is a possibility that many different
types of cells are present in whole biopsy samples, our results
from examinations of human tissues suggest that KLF4 expres-
sion is related to the development of Barrett’s oesophagus.

Next, we investigated whether bile acids induce KLF4
expression in oesophageal epithelium in vitro. In patients with
Barrett’s oesophagus, the most common bile acids found in
refluxant are cholic acid, glycocholic acid and taurocholic acid.?*
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Since a mixture of bile acids is considered to provide physio-
logical stimulation,” *' we investigated the changes in KLF4
promoter activity following stimulation with such a mixture
and found that the bile acids stimulated KLE4 promoter activity
in three types of oesophageal cells. Furthermore, as expected,
KLF4 mRNA and protein expressions in oesophageal epithelial
cells were augmented by treatment with the bile acids mixture.

Certain bile acids have been reported to be potent activators of
NEF-kB sites of the promoters of several important proteins,
including Cdx1 and Cdx2.° %? 2 The NF-kB family is comprised
of several members that interact as homodimers or hetero-
dimers, which function as key regulators of both developmental
and pathologic processes. Indeed, deoxycholic acid induced
NEF-kB subunit p50 nuclear translocation and binding to these
sites of the Cdx2 promoter.”? It was also proposed that the
Cdx2 promoter is positively regulated by pd0 homodimers,
whereas it is negatively regulated by p50—p65 heterodimers.®!
Furthermore, we and others have suggested that Cdx1 is also an
important molecular mediator of Barrett’s metaplasia, and
that bile acids stimulate Cdx1 expression by upregulation of
p65.%% The present results indicate that the KLF4 promoter is
positively regulated by p50 and p65 heterodimers following
exposure to bile acids in rat primary cultured keratinocytes.
Since activation of the NF-kB pathway is cell-type specific?” it
would be interesting to also evaluate the effects of bile acids on
KLF4 expression in cell lines derived from Barrett’s oesophagus.

Some homeobox genes, including Cdx1 and Cdx2, have been
shown to positively regulate their own expression, as the Cdx
promoter has multiple Cdx responsive elements.” Notably,
mechanisms similar to those of Cdx1 and Cdx2 were revealed in
regard to KLF4 expression induced by bile acids. KLF4 can be
a transcriptional activator or repressor, and it binds to a similar
DNA sequence that has either a CACCC homology or is rich in
GC contents.'* 26 Therefore, we examined whether KLF4 binds
to the KLF4 promoter in esophageal epithelial cells. Transfection
of the KLF4 expression vector into Het-1A cells increased KLF4
promoter activity and, using a number of deletion constructs of
the KLF4 promoter, we confirmed that KLF4 is capable of
transactivating the promoter of its own gene through three
closely spaced GC boxes within the promoter. Once the
expressions of KLF4 are positively regulated by bile acids, even if
the induction level is low, the self-replication mechanism
induces a higher expression of KLF4.
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Figure 9 Schema of mechanism of Barrett's epithelium development.
Bile acids directly stimulate the expressions of KLF4 and Cdx2. Next,
auto- and inter-regulation mechanisms between KLF4 and Cdx2
contribute to cellular proliferation and trans-differentiation in intestinal
metaplasia.
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In the next step, we investigated the heterologous inter-
regulation mechanism between KLF4 and Cdx2. Prior studies
that utilised CHO and RKO cells revealed that Cdx2 induces
KLF4 promoter activation via Cdx responsive elements within
the KLF4 promoter.'® ° In the present study, transfection of the
KLF4 expression vector into Het-1A cells increased the promoter
activity of Cdx2 and induced production of Cdx2 protein. Using
a number of deletion and mutation constructs, we also revealed
that KLF4 protein binds to Sp-1 responsive elements of the Cdx2
promoter. Furthermore, transfection of the Cdx2 expression
vector into Het-1A cells increased KLF4 promoter activity and
induced KLF4 protein. Taken together, bile acids augment KLF4
expression, and contribute to induce auto- and inter-regulation
mechanisms between KLF4 and Cdx2.

KLF4 is known to be a direct transcriptional activator of the
intestine specific gene JALP? In addition, colonic goblet cells
throughout colonic epithelia in KLF4—/— mice were found to
have reduced expression of MUC2.'" Therefore, we examined
whether over-expression of KLF4 in Het-1A cells could trigger
their trans-differentiation to intestinal type columnar epithelial
cells. Using a number of deletion and mutation constructs, we
revealed that KLF4 protein binds to CACCC/Sp-1 responsive
elements of the MUC2 promoter. As expected, Het-1A cells
transfected with the KLF4 expression vector induced MUC2
mRNA and protein expressions. Furthermore, Het-1A cells
transfected with the KLF4 expression vector induced columnar
marker CK20. However, KLF4 is a weak inducer of MUC2 as
compared to Cdx2, as activation of the MUC2 promoter by
a Cdx2 expression vector caused an approximately 10-fold
increase, whereas that induced by a KLF4 expression vector was
approximately threefold. KLF4 also contributes to induction of an
inter-regulation network with Cdx2, and directly and indirectly
stimulates cellular trans-differentiation into intestinal meta-
plasia. Taken together with our previous findings® ” these results
indicate that over-expression of transcription factors, including
KLF4, Cdx2 and Cdx1, induced by bile acids may change the
phenotype of oesophageal stem cells into columnar cells (figure 9).

In conclusion, we found that induction of KLF4 expression in
oesophageal keratinocytes in response to bile acids has impor-
tant functions in the induction of metaplastic changes during
Barrett’s epithelium development. In addition, our results
revealed that the transcriptional network related to KLF4 and
Cdx2 has important roles in development of this disease.
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DIAGNOSIS AND TREATMENT OF EOSINOPHILIC ESOPHAGITIS

Yoshikazu KINOSHITAY, Shunji ISHIHARAY, Yuji AMANO?
AND Hirofumi FUJISHIRO?

1) Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo.
2) Division of Endoscopy, Shimane University Hospital, Tzumo.
3) Division of Endoscopy, Shimane Prefectural Central Hospital, Izumo.

Fosinophilic esophagitis is a rare type of esophageal disease that features dense intra-
epithelial infiltration by eosinophils, which is caused by an allergic reaction to food or aeroaller-
gens. Chronic eosinophil-related inflammation causes edema and fibrosis in the esophageal
submucosal layer, while abnormal esophageal motor activity and fibrosis-related esophageal
stenosis result in unpleasant symptoms including dysphagia and food impaction. In an endos-
copic study of affected patients, longitudinal furrows, whitish stipple-like exudates, and
multiple focal strictures were often found. For establishment of the diagnosis, dense infiltration
of eosinophils (15-30 eosinophils/HPF) should be identified in an esophageal mucosal biopsy
specimen. Local administration of glucocorticoids has recently been reported as useful first-
line therapy for eosinophilic esophagitis.
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