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Table 2 Upregulated genes in human neuronal progenitor cells (NPC) following exposure to the serum

Rank Gene symbol  Gene ID Ratio Gene name Putative function
1 TMOD1 7111 13.05 Tropomodulin 1 A modulator of association between tropomyosin
: and the spectrin-actin complex
2 D1 3397 9.00 Inhibitor of DNA binding 1, A HLH protein that acts as a dominant negative
dominant negative helix-loop- regulator of bHLH family transcription factors
helix protein
3 CTGF 1490 5.17 Connective tissue growth factor A secreted mitogenic protein with insulin-like
growth factor-binding capacity
4 KLF9 687 4.43 Kruppel-like factor 9 A transcription factor that binds to GC box
elements
5 D3 3399 4.08 Inhibitor of DNA binding 3, A HLH protein that acts as a dominant negative
dominant negative helix-loop- regulator of bHLH family transcription factors
helix protein
6 FGFBP2 83888 3.76 Fibroblast growth factor binding A protein of unknown function secreted by
protein 2 T lymphocytes
7 ZNF436 80818 3.67 Zinc finger protein 436 A trancriptional factor that represses
transcriptional activities of SRE and AP-1
8 TGFA 7039 3.60 Transforming growth factor, alpha A growth factor that competes with EGF for
binding to EGF receptor
9 TPD52 7163 3.35 Tumor protein D52 A coiled-coil domain bearing protein involved in
calcium-mediated signal transduction and cell
proliferation
10 SULF1 23213 3.23 Sulfatase 1 An endosulfatase that modulates signaling by
heparin-binding growth factors
11 RGS4 5999 3.13 Regulator of G-protein signaling 4 A member of RGS family that deactivates G
) protein subunits of heterotrimeric G proteins
12 COLECI12 81035 2.93 Collectin sub-family member 12 A C-lectin family protein that acts as a scavenger
receptor binding to carbohydrate antigens
13 AGT 183 2.90 Angiotensinogen (serpin peptidase  Angiotensinogen cleaved by renin to produce
inhibitor, clade A, member 8) angiotensin I
14 SLC16A9 220963 2.82 Solute carrier family 16, member 9 A monocarboxylic acid transporter
(monocarboxylic acid
transporter 9)
15 METRN 79006 2.79 Meteorin, glial cell differentiation A glial cell differentiation regulator
regulator
16 CTSH 1512 215 Cathepsin H A lysosomal cysteine proteinase
17 GADD45B 4616 2.70 Growth arrest and DNA-damage- An environmental stress-inducible protein that
inducible, beta activates p38/INK signaling
18 SAMDI1 148398 2.69 Sterile alpha motif domain A protein with a SAM motif of unknown
containing 11 function
19 APC2 10297 2.67 Adenomatosis polyposis coli 2 A negative regulator of Wnt signaling
20 SLC2A5 6518 2.63 Solute carrier family 2 (facilitated  Glucose/fructose transporter GLUTS
glucose/fructose transporter),
member 5
21 GFAP 2670 2.62 Glial fibrillary acidic protein An intermediate filament protein of astrocytes
22 CCDC103 388389 2.59 Coiled-coil domain containing 103 A coiled-coil domain bearing protein of
unknown function
23 C9orf58 83543 2.55 Chromosome 9 open reading A calcium binding protein of unknown function
frame 58 (ionized calcium
binding adapter molecule 2;
1BA2)
24 CHI3L2 1117 2.52 Chitinase 3-like 2 A secreted chitinase-like protein of unknown
function
25 CFI 3426 2.46 Complement factor I A proteolytic enzyme that inactivates cell-bound,

activated C3
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Table 2 continued

Rank Gene symbol  Gene ID Ratio Gene name Putative function
26 CXCL14 9547 245 Chemokine (C-X-C motif) ligand A chemoattractant for monocytes and dendritic
14 cells
27 ANXA1 301 2.30 Annexin Al An annexin family protein with phospholipase
A2 inhibitory activity
28 RCAN1 1827 2.29 Regulator of calcineurin 1 A negative regulator of calcineurin signaling
29 RPE65 6121 2.24 Retinal pigment epithelium- A protein abundant in retinal pigment epithlium
specific protein 65 kDa cells involved in the 11-cis retinol synthesis
30 STK17A 9263 222 Serine/threonine kinase 17a DAP kinase-related apoptosis-inducing protein
(apoptosis-inducing) kinase DRAK1
31 C4orf30 54876 2.22 Chromosome 4 open reading Hypothetical protein LOC27146
frame 30 C4orf30
32 CRYAB 1410 221 Crystallin, alpha B A small HSP family protein
33 TMEM132B 114795 2.11 Transmembrane protein 132B A transmembrane protein of unknown function
34 FZD1 8321 2.10 Frizzled homolog 1 A fizzled gene family protein that acts as a
receptor for Wnt
35 D2 3398 2.10 Inhibitor of DNA binding 2, A HLH protein that acts as a dominant negative
dominant negative helix-loop- regulator of bHLH family transcription factors
helix protein
36 CDC42EP4 23580 2.09 CDC42 effector protein (Rho A CDC42-binding protein that interacts with
GTPase binding) 4 Rho family GTPases
37 NCAN 1463 2.08 Neurocan Chondroitin sulfate proteoglycan 3 involved in
modulation of cell adhesion and migration
38 NAV2 89797 2.07 Neuron navigator 2 A helicase regulated by all-trans retinoic acid
that plays a role in neuronal development
39 ENOX1 55068 2.06 Ecto-NOX disulfide-thiol An enzymes with a hydroquinone (NADH)
exchanger 1 oxidase activity and a protein disulfide-thiol
interchange activity
40 CLSTN2 64084 2.06 Calsyntenin 2 A postsynaptic membrane protein with
Ca**-binding activity
41 NMB 4828 2.03 Neuromedin B An amidated bombesin-like decapeptide
42 PCSK5 5125 2.02 Proprotein convertase subtilisin/ A member of the subtilisin-like proprotein
kexin type 5 convertase family
43 MANIC1 57134 2.02 Mannosidase, alpha, class 1C, Alpha-1,2-mannosidase IC involved in N-glycan
member 1 biosynthesis
44 GRAMDI1C 54762 2.02 GRAM domain containing 1C A protein with a GRAM motif of unknown
function
45 VATI1 10493 2.01 Vesicle amine transport protein 1

An integral membrane protein of cholinergic
synaptic vesicles involved in vesicular
transport

Whole Human Genome Microarray (41,000 genes) was hybridized with Cy5-labeled cRNA of NPC incubated in the 10% FBS-containing culture
medium and Cy3-labeled cRNA of NPC incubated in the serum-free culture medium. Upregulated genes in NPC by exposure to the serum are
listed in order of greatness of the Cy5/Cy3 signal intensity ratio. The results of ID1, ID3, and GFAP (underlined) were validated by real-time RT-

PCR analysis (see Fig. 3)

(CDC42EP4), neurocan (NCAN), neuron navigator 2
(NAV2), ecto-NOX disulfide-thiol exchanger 1 (ENOX1),
calsyntenin 2 (CLSTN2), neuromedin B (NMB), proprotein
convertase subtilisin/kexin type 5 (PCSKS5), mannosidase
alpha class 1C member 1 (MAN1C1), GRAM domain con-
taining 1C (GRAMDIC), and vesicle amine transport
protein 1 (VAT1).

It is worthy to note that three members of ID family
genes, ID1, ID2, and ID3, were upregulated coordinately in

@ Springer

the serum-treated NPC spheres. The ID family proteins that
have an HLH domain but lack the DNA binding domain act
as a dominant negative regulator of bHLH transcription
factors (Ruzinova and Benezra 2003). Real-time RT-PCR
and Western blot analysis validated marked upregulation of
ID1, ID3, and GFAP in NPC following exposure to the
serum (Fig. 3a—c, g, h). By immunocytochemistry, ID1
was located in the nucleus of GFAP-positive polygonal
cells under the serum-containing culture condition
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Fig. 3 Validation of microarray
data by real-time RT-PCR and
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western blot analysis. Human
NPC spheres were incubated for
72 h in the NPC medium with
(S8+) or without (S—) inclusion
of 10% FBS, and then total
cellular RNA or protein extract
was processed for real-time RT-
PCR and western blot analysis.
a—f Real-time RT-PCR. The
levels of target genes were
standardized against the levels
of the G3PDH gene. a ID1, b
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(Fig. 2c). Because GFAP is a defining marker of astro-
cytes, the results of microarray, RT-PCR, and Western blot

verified that the serum promotes astrocyte differentiation of
NPC.

Downregulated Genes in Human NPC Following
Exposure to the Serum

Exposure of NPC to the serum reduced the levels of
expression of 23 genes (Table 3). They include neuronal
pentraxin I (NPTX1), cerebellin 4 (CBLN4), delta-like 1
(DLL1), cellular oncogene c-fos (FOS), SPARC related
modular calcium binding 1 (SMOC1), matrilin 2 (MATN?2),
platelet-derived growth factor receptor alpha (PDGFRA),
ryanodine receptor 3 (RYR3), transferrin receptor (TFRC),
pleckstrin homology domain containing family H member 2
(PLEKHH?2), delta-like 3 (DLL3), SRY-box 4 (SOX4),
myosin VC (MYOS5C), protocadherin 8 (PCDHS8), ankyrin
repeat domain 10 (ANKRD10), glutamate receptor iono-
tropic kainate 1 (GRIK1), chondroitin sulfate proteoglycan 4
(CSPG4), cystatin C (CST3), secreted frizzled-related pro-
tein 1 (SERP1), ryanodine receptor 1 (RYR1), growth arrest-
specific 1 (GAS1), cystatin D (CST3), and hairy and
enhancer of split 5 (HES5).

It is worthy to note that the list of downregulated genes
included two Notch ligand Delta family members, DLL1
and DLL3, and a Notch effector HESS. It is well known
that Notch signaling regulates cell fate specification and
multipotency of NSC and NPC (Yoshimatsu et al. 2006).
Real-time RT-PCR analysis validated substantial down-
regulation of NPTX1, DLL1, and FOS in the serum-treated
NPC (Fig. 2d-f).
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Functional Annotation of the Serum-Responsive Genes
in Human NPC

To investigate the functional annotation of the serum-
responsive genes in human NPC identified by microarray
analysis, the list of Entrez Gene IDs of 45 serum-upregu-
lated genes and 23 serum-downregulated genes was
uploaded onto the DAVID database. Top 5 most significant
biological processes relevant to the panel of these genes
consisted of developmental process (G0:0032502; 32
genes; P-value = 2.0E-9), anatomical structure develop-
ment (GO:0048856; 26 genes; P-value = 4.2E-9), multi-
cellular organismal development (GO:0007275; 26 genes;
P-value = 2.5E-8), system development (GO:0048 731; 20
genes; P-value = 2.2E-6), and anatomical structure mor-
phogenesis (GO:0009653; 16 genes; P-value = 3.2E-6).
The genes involved in the category G0O:0032502 include
the serum-upregulated genes such as IDI, ID2, ID3, CTGF,
TGFA, METRN, KLF9, SULF1, AGT, GADD45B,
ANXA1, RCANI, RPE65, STK17A, CRYAB, FZDI,
CDC42EP4, and VATI1, and the serum-downregulated
genes such as DLL1, DLL3, HES5, NPTX1, FOS, PDG-
FRA, RYRI1, RYR3, SOX4, PCDHS8, GRIK1, CSPG4,
SERP1, and GASI1. Thus, the genes whose expression
levels were drastically changed in NPC by exposure to the
serum are clustered in GO functional categories termed
“development.”

ID1 Acts as a Negative Regulator of DLL1 Expression

Since the serum-induced astrocyte differentiation of human
NPC was followed by remarkable upregulation of ID1, ID2,
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Table 3 Downregulated genes in human neuronal progenitor cells (NPC) following exposure to the serum

Rank Gene Gene Ratio Gene name Putative function
symbol D
1 NPTX1 4884 0.26 Neuronal pentraxin I A member of the neuronal pentraxin gene family involved
in synaptic plasticity
CBLN4 140689 0.36 Cerebellin 4 precursor A glycoprotein with sequence similarity to precerebellin
3 DLL1 28514 0.38 Delta-like 1 A Notch ligand involved in intercellular communication
FOS 2353 0.39 v-fos FBJ murine osteosarcoma A component of the AP-1 transcription factor complex
viral oncogene homolog
5 SMOC1 64093 0.41 SPARC related modular calcium binding 1 A secreted modular calcium-binding glycoprotein in
. basement membrane
6 MATN2 4147 0.43 Matrilin 2 A filament-forming protein widely distributed in
extracellular matrices
7 PDGFRA 5156 0.44 Platelet-derived growth factor A PDGF receptor component
receptor, alpha polypeptide
8 RYR3 6263 0.44 Ryanodine receptor 3 An intracellular calcium release channel
9 TFRC 7037 0.44 Transferrin receptor (p90, CD71) A gatekeeper for regulating iron

10 PLEKHH2 130271 045

Pleckstrin homology domain containing, family A cytoskeletal protein involved in cell growth

H (with MyTH4 domain) member 2

11  DLL3 10683 0.46 Delta-like 3

12 SOX4 6659 0.46 SRY (sex determining region Y)-box 4
13 MYOsC 55930 0.46 Myosin VC

14 PCDHS 5100 0.47 Protocadherin 8

15 ANKRDI10 55608 0.48 Ankyrin repeat domain 10

16 GRIK1 2897 0.48 Glutamate receptor, ionotropic, kainate 1

17 CSPG4 1464 0.48 Chondroitin sulfate proteoglycan 4
(melanoma-associated; NG2)

18 CST3 1471 0.48 Cystatin C (amyloid angiopathy
and cerebral hemorrhage)

19  SFRP1 6422 0.49 Secreted frizzled-related protein 1

20 RYRI1 6261 0.49 Ryanodine receptor 1 (skeletal)

21 GAS1 2619 0.49 Growth arrest-specific 1

22 CST5 1473 0.50 Cystatin D

23  HESS 388585 0.50 Hairy and Enhancer of split 5 (Drosophila)

A Notch ligand involved in interceliular communication

A member of the SOX family transcription factor involved
in the regulation of embryonic development

A myosin superfamily protein involved in transferrin
trafficking

A member of the protocadherin gene family involved in
cell adhesion

A protein with ankyrin repeats of unknown function
Ionotropic glutamate receptor subunit GluRS

Chondroitin sulfate proteoglycan that plays a role in
stabilizing cell-substratum interaction

An extracellular inhibitor of cycteine proteases

A soluble inhibitor for Wnt signaling

A calcium release channel of the sarcoplasmic reticulum
A GPI-anchored protein expressed at growth arrest

An extracellular inhibitor of cysteine proteases

bHLH transcription factor downstream of Notch signaling

Whole Human Genome Microarray (41,000 genes) was hybridized with Cy5-labeled cRNA of NPC incubated in the 10% FBS-containing culture
medium and Cy3-labeled cRNA of NPC incubated in the serum-free culture medium. Downregulated genes in NPC by exposure to the serum are
listed in order of smallness of the Cy5/Cy3 signal intensity ratio. The results of NPTX1, DLL1, and FOS (underlined) were validated by real-time

RT-PCR analysis (see Fig. 3)

and ID3, and concomitant downregulation of DLL1 and
DLL3, we studied the possible inverse relationship between
ID family and Delta family genes with respect to regulation
of gene expression. First, by real-time RT-PCR, we deter-
mined the levels of ID1 and DLL1 expression in various
human neural and non-neural cell lines. The levels of ID1
expression are high but those of DLL1 are very low in
HMO6, and HeLa, HepG2, U-373MG, and SK-N-SH,
whereas the levels of DLL1 expression are high but those of
ID1 are much lower in NTera2 N and IMR-32 (Fig. 4a, b).

Next, we investigated the molecular network of
ID1, ID2, ID3, DLL1, and DLL3 by KeyMolnet, a

@_ Springer

bioinformatics tool for analyzing molecular interaction on
the curated knowledge database. The “N-points to N-
points” search of KeyMolnet illustrated the shortest route
connecting the start point molecules of ID1, ID2, and ID3
and the end point molecules DLL1 and DLL3 (Fig. 5). The
pathway based on the molecules showed a significant
relationship with canonical pathways of KeyMolnet
library, such as transcriptional regulation by SMAD
(P-value = 6.6E-12), transcriptional regulation by CREB
(P-value = 7.8E-11), and Notch signaling pathway
(P-value = 9.7E-9). Although no direct interaction was
identified between ID family and Delta family genes,
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Fig. 4 ID1 and DLLI1 expression in various human cell lines. Total
RNA of human cell lines, such as NTera2 teratocarcinoma, Y79
retinoblastoma, SK-N-SH neuroblastoma, IMR-32 neuroblastoma, U-
373MG astrocytoma, HMOG6 microglia, HeLa cervical carcinoma,
and HepG2 hepatoblastoma was processed for real-time RT-PCR
analysis. The levels of target genes were standardized against the
levels of the G3PDH gene. a ID1 and b DLL1

KeyMolnet indicated two proneural bHLLH genes, such as
human achaete-scute homolog 1 (HASHI, also known as
MASH1 or ASCL) and neurogenin 3 (NGN3, NEUROG3),
both of which have an indirect connection with ID1, ID2
and ID3 via HES1, and a T-box gene family member
TBX18 as principal regulators of DLIL1 expression
(Fig. 5). Because microarray analysis indicated that
MASH]1 is expressed in NPC spheres at much higher levels
than NGN3 (data not shown), we confined our attention to
a role of MASHI1 in the counterbalance between ID and
Delta family genes in regulation of gene expression.

Next, we studied the molecular interaction between ID1
and MASHI1. By immunoprecipitation analysis of recom-
binant ID1 and MASHI proteins coexpressed in HEK293
cells, we identified a direct interaction between ID1 and
MASHI1 (Fig. 6a, b, lane 2). Then, we cloned two non-
overlapping sequences of the human DLL1 promoter
containing several E-box sequences, conmsisting of the
region #1 spanning —1,253 and —254 or the region #2
spanning —2,946 and —1,786, in the luciferase reporter
vector. Dual luciferase assay indicated that both DLL1
promoter sequences were activated by the expression of
MASH], but this activation was suppressed by the coex-
pression of ID1 (Fig. 6c, d).

BMP4 Upregulates ID1 and GFAP Expression
in Human NPC

Previous studies showed that the serum contains substantial
amounts of BMP4 (Kodaira et al. 2006). Because the serum-
induced astrocyte differentiation of human NPC was fol-
lowed by robust upregulation of ID1, we studied the direct
effect of BMP4 on expression of ID1 and GFAP in human
NPC. When incubated under the serum-free NPC medium, a
72 h-treatment of NPC with 50 ng/ml BMP4 greatly ele-
vated the levels of ID1 and GFAP mRNA expression,
suggesting that BMP4 serves as a candidate for astrocyte-
inducing factors included in the serum (Fig. 7a, b).

Discussion

We studied the effect of the serum on gene expression
profile of cultured human NPC to identify the gene sig-
nature of the astrocyte differentiation of human NPC.
Following exposure to the serum, human NPC spheres
rapidly attached on the plastic surface, and subsequently,
adherent cells were differentiated into astrocytes, accom-
panied by upregulation of GFAP expression, consistent
with the previous studies on the rodent NSC and NPC
(Chiang et al. 1996; Brunet et al. 2004). The serum ele-
vated the levels of expression of 45 genes in human NPC,
including three ID family members ID1, ID2, and ID3, all
of which are direct target genes regulated by bone mor-
phogenetic proteins (BMP) (Hollnagel et al. 1999). In
contrast, the serum reduced the expression of 23 genes in
human NPC, including three Delta-Notch signaling com-
ponents DLL1, DLL3, and HESS5. ID proteins act as a
dominant negative regulator of bHLH transcription factors
by binding to the ubiquitously expressed bHLH E proteins,
such as E2A gene products E12 and E47, or by binding to
the cell lineage-restricted bHLH transcription factors
(Langlands et al. 1997; Nakashima et al. 2001). By in silico
molecular network analysis of ID1, ID2, ID3, DLLI1, and
DLL3 on KeyMolnet, we identified MASH1 as one of
important regulators of DLL1 expression. Furthermore, by
coimmunoprecipitation analysis, we identified ID1 as a
direct binding partner of MASHI. By luciferase assay, we
found that activation of DLL1 promoter by MASH1 was
counteracted by ID1. Finally, we found that BMP4 ele-
vated the levels of ID1 and GFAP expression in NPC under
the serum-free culture conditions. Because the serum
contains substantial amounts of BMP4 (Kodaira et al.
2006), our observations raise the possible scenario that the
serum factor(s), most probably BMP4, induces astrocyte
differentiation by upregulating the expression of ID family
genes that repress the proneural bHLH protein-mediated
Delta expression in human NPC (Fig. 8).
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cell membrane

cytoplasm

nucleus

Fig. 5 Molecular network analysis of ID1, ID2, ID3, DLLI1, and
DLL3. KeyMolnet, a bioinformatics tool for analyzing molecular
interaction on the curated knowledge database, identified the shortest
route connecting the start point molecules of ID1, ID2, and ID3 (red)
and the end point molecules DLL1 and DLL3 (blue). The pathway
based on the molecules showed a significant relationship with
transcriptional regulation by SMAD or CREB and Notch signaling
pathway. The molecular network indicated HASH1 (MASH1),

The Serum-Induced Astrocyte Differentiation
of Human NPC is Characterized by a Counteraction
of ID Family Genes on Delta Family Genes

We proposed the hypothesis that ID genes act as a
key positive regulator of the serum-induced astrocyte
differentiation of human NPC. The following previous
observations support this view. The expression of four ID
members is transiently elevated in immortalized mouse
astrocyte precursor cells during astrocyte differentiation
(Andres-Barquin et al. 1997). ID gene expression is rapidly
induced in cultured rat astrocytes following stimulation
with the serum (Tzeng and de Vellis 1997). Treatment of
rodent NPC with BMP4 induces the expression of four ID
genes, followed by induction of astrocyte differentiation,
while the complex formation of ID4 or ID2 with bHLH
proteins OLIG1 and OLIG2 blocks oligodendrocyte line-
age commitment (Samanta and Kessler 2004).

ID proteins also act as a negative regulator of neuronal
differentiation by preventing premature exit of neuroblasts
from the cell cycle (Lyden et al. 1999). Retroviral vector-
mediated overexpression of ID1 in the mouse brain in vivo
inhibits neurogenesis but promotes astrocytogenesis (Cai

@ Springer

neurogenin 3 (NGN3), and TBX18 as principal regulators of DLL1
expression. The molecular relation is shown by solid line with arrow
(direct binding or activation), solid line without arrow (complex
formation), and dash line with arrow (transcriptional activation), and
dash line with arrow and stop (transcriptional repression). Thick lines
indicate the core contents, while thin lines indicate the secondary
contents of KeyMolnet

et al. 2000). BMP2 induces the expression of ID1 and ID3,
which inhibit the transcriptional activity of MASH]1 and
E47 complex on an E-box-containing promoter, suggesting
that ID protein-mediated antagonism of proneural bHLH
transcription factors plays a role in inhibition of neuronal
differentiation (Nakashima et al. 2001). Combinatorial
actions of proneural bHLH and inhibitory HLH factors
regulate the timing of differentiation of NPC (Kageyama
et al. 2005). ID1 binds not only to E proteins but also to
myogenic bHLH transcription factors MYOD and MYF5
with high affinity (Langlands et al. 1997). We found that
ID1 is a direct binding partner of neurogenic bHLH tran-
scription factor MASH1. MASHI deficient mice showed a
severe loss of NPC in the subventricular zone of the medial
ganglionic eminence, and MASHI, expressed in NPC,
regulates neuronal differentiation by inducing the expres-
sion of Notch ligands DLL1 and DLL3, resulting in
activation of Notch signaling in adjacent cells (Casarosa
et al. 1999; Ito et al. 2000). Importantly, Mashl directly
activates the promoter of DLL1 gene (Castro et al. 2006).
The activation of Delta-Notch signaling plays a key role in
maintenance of NPC in the undifferentiated state (Yoshi-
matsu et al. 2006).
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Fig. 6 Activation of the DLL1 promoter by MASHI1 was counter-
acted by ID1. a, b Coimmunoprecipitation analysis. Recombinant
MASHI protein tagged with Flag and ID1 protein tagged with Myc
were coexpressed in HEK293 cells. Immunoprecipitation (IP)
followed by Western blotting (WB) was performed by using the
antibodies against Flag and Myc. The lanes (1-3) represent (1) input
control of cell lysate, (2) IP with anti-Flag or anti-Myc antibody, and
(3) IP with normal mouse or rabbit IgG. ¢, d Dual luciferase assay.
Two non-overlapping regions of the human DLL1 promoter,
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consisting of the region #1 spanning —1,253 and —254 or the region
#2 spanning —2,946 and —1,786, were cloned into the Firefly
luciferase reporter vector. It was co-transfected with the Renilla
luciferase reporter vector (an internal control) in HEK293 cells, which
were introduced with none (CNT), MASH]I, or both MASH1 and ID1
expression vectors at 36 h before transfection of the luciferase
reporter vectors. At 16 h after transfection of the luciferase reporter
vectors, cell lysate was processed for dual luciferase assay. The ratio
of Firefly (F)/Renilla (R) luminescence (RLU) is indicated
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Fig. 8 The serum-induced astrocyte differentiation of human NPC is
characterized by a counteraction between ID and Delta family genes.
The present observations raise the possible scenario that the serum
factor(s), most probably BMP4, induces astrocyte differentiation by
upregulating the expression of ID family genes that repress the
proneural bHLH protein, probably MASH1-mediated Delta expres-
sion in human NPC

The Serum-Induced Astrocyte Differentiation
of Human NPC is Accompanied by Upregulation
of Astrocyte Function-Related Genes

The serum-induced astrocyte differentiation of human NPC
elevated the expression of astrocyte function-related genes
(Table 2). Astrocytes express angiotensinogen (AGT) that
plays a role in maintenance of the blood-brain barrier
(BBB) function (Kakinuma et al. 1998). Astrocytes syn-
thesize cathepsin H (CTSH) that acts as a metabolizing
enzyme for neuropeptides and bradykinin (Brguljan et al.
2003). Human astrocytes in culture express complement
factor I (CFI) essential for regulating the complement
cascade (Gordon et al. 1992). Neuronal and glial progenitor
cells secrete meterorin (METRN) that stimulates astrocyte
differentiation in culture (Nishino et al. 2004). Calcineurin-
dependent calcium signals induce the expression of
regulator of calcineurin 1 (RCANT1) in astrocytes, an
endogenous calcineurin inhibitor (Canellada et al. 2008).
Reactive astrocytes express connective tissue growth
factor (CTGF), a TGF-f1 downstream mediator, involved
in glial scar formation (Schwab et al. 2000). Reactive
astrocytes express EGFR in response to various insults, and
produce transforming growth factor alpha (TGFA) that
triggers astrogliosis (Rabchevsky et al. 1998). Reactive
astrocytes in Alzheimer disease brains express collectin
sub-family member 12 (COLEC12), a member of the
scavenger receptor family, which plays a role in amyloid-f
clearance (Nakamura et al. 2006). Reactive astrocytes in
multiple sclerosis brains express annexin Al (ANXA1), a
calcium-dependent phospholipid-binding protein that acts
as an anti-inflammatory mediator (Probst-Cousin et al.
2002). At the site of spinal cord injury, reactive astrocytes
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produce neurocan (NCAN), a member of the CSPG family,
which inhibits axonal regeneration (Jones et al. 2003).
Several serum-responsive genes have implications in
astrocyte oncogenesis. FGF binding protein 2 (FGFBP2) is
overexpressed in astrocytic tumors (Yamanaka et al. 2006).
The expression of regulator of G-protein signaling 4
(RGS4), a negative regulator of G-protein signaling, is
elevated in astrocytic tumor cells with a highly migratory
capacity (Tatenhorst et al. 2004). Both chitinase 3-like 2
(CHI3L2) and neuromedin B (NMB) are identified as an
astrocytoma-associated gene by serial analysis of gene
expression (SAGE) profiles (Boon et al. 2004).

The Serum-Induced Astrocyte Differentiation
of Human NPC is Accompanied by Downregulation
of NPC and Neuronal Function-Related Genes

The serum-induced astrocyte differentiation of human NPC
reduced the expression of NPC and neuronal function-
related genes (Table 3). Neuronal pentaraxin I (NPTX1)
plays a key role in activity-dependent plasticity of excit-
atory synapses (Xu et al. 2003). Protocadherin 8§ (PCDHS)
is a neuronal activity-regulated cadherin involved in long-
term potentiation in the hippocampus (Yamagata et al.
1999). Spinal cord motor neurons express the ionotropic
kainite receptor subunit GRIK1 (GluRS5) (Eubanks et al.
1993). Ryanodine receptors RyR1, RyR2, and RyR3 are
intracellular calcium release channels expressed in sub-
populations of neurons in the human CNS (Martin et al.
1998).

NPC expressing the PDGF o-receptor (PDGFRA) pro-
liferate in response to PDGF-AA associated with induction
of c-fos (FOS) expression (Erlandsson et al. 2001). NPC
express the transferrin receptor (TFRC, CD71) (Sergent-
Tanguy et al. 2006), while oligodendrocyte progenitor cells
express NG2 (CSPG4), an integral membrane chondroitin
sulfate proteoglycan (Chang et al. 2000). NSC and NPC
secrete cystatin C (CST3) into the culture medium, serving
as a survival factor (Taupin et al. 2000). Growth arrest-
specific 1 (GAS1) induced by Wnt signaling is required for
proliferation of progenitors of the cerebellar granule cells
and Bergmann glia (Liu et al. 2001). The HMG-box tran-
scription factor Sox4, expressed in neuronal as well as glial
progenitors, is downregulated in terminally differentiated
neurons or glia (Hoser et al. 2007). Importantly, a recent
study by microarray analysis showed that fetal human NPC
express PDGFRA, CSPG4, DLL3, GAS1, and SOX4
(Maisel et al. 2007), all of which are downregulated in the
serum-treated NPC in the present study.

In summary, we identified 45 serum-upregulated and 23
serum-downregulated genes in human NPC in culture by
analysis with a whole human genome-scale microarray.
The serum-induced astrocyte differentiation of human NPC
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is characterized by a counteraction of ID family genes on
Delta family genes.
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13 1p22  EVI5 510735781 G 038 2212107 1.23(1.12-1.50) 60510 % 117 (1.05-4.301 2011072 1.08 (1.01-1.16) 335107 11 (106118 193%10% 333x10°%
14 1022 EVIS  88B05T8 T Q35 348x1077 123111480 4BEIOT 1A7 (1051310 136x1077 1.09 (1.01-1.16) 500X107° 111 (102147 218072 42ix1p0
15 12p13 KLRBY 4763655 A 038 455x107% 1.5 (0001320 216%i07 119 {1.07-1.33) 1.83x10°2 100 {1.01-1.16) 685107 1.1G 11.040.17) 261x10°¢ 765%10°2
16 3313 CBLB rs12487065 T 073 765x107° 1.22 {105-141} 409<10°% 128 {1.14-1.46} 353x10°7 108 {1.00-1.16} 543x10°? 1.09{1.05-1.16; 1.14x107" 232x1072
17 1g3t  PDE4B 1320172 € 049 8772107 11210981275 957x10°" 1.15 (1.04-1.28} 3895%10°2 107 (1.01-1.14) GUEX102 1.08 {1.021.14, 238%107' 2.18%107

ernRary

BARAMSIZIEBIRHEL 0
i HE—
ZHERFREN. HAOBETEELBERTOBAERIC
SURESFEEEINS, B OEBEEBEFSI(SNP) 1
BRTUBBENE BEEISHLEL, LPALIOLS
GONPsERBEFHIERAFETI L. ZEELTOERE
{phenotype) ©EHEH T h 3, HEOHMRTH., BEHEE2AL
LPET3RR(BBRARHE2E)2ZHREL, T1708F5
1 be—H— (&5 /7 LTEAE) ZHEEICERSEFE@
KZ27>3.0) € AET 5B (linkage analysis) FER T
Hoft, BROERDVECHREBENiED, 5 /. SNP (3
ILBEFOBEMEVT LILOBEM% )5 / L EHICES
BEILLGEERTS /LATEEREI L. Y1707 L105%BL
LOTNA RN =T oy PRI~ LGN EEEE Y, F I LTA

FORGERH A BRH L G-/ KMETEI-0 v/ RIEL X
NIy TAAMSERBEDRE ALY > T CHETENEHA
% =8 TGWARRAT % 1Tu . IL2RA, IL7RAMSNP & MSO)ER] &
Ru# L LA URAEE QB4 Onon-MHC SNPsEpfii H
S<. BE5ESERHeHmis ns,

MSHBREZREL. ZEERETEH 3 DEMSINEY
BREEBCEZINLDY. TH—LFRRECERTAESRER &
EZ 503, RHIETIERRMS, SPMS, PPMS, CIS(MRI T8
BE - OB SR - AVMIC2BRBEI M E B L TMSE LAY, o
1 5 Al — Dgenetic background# B T3 WA T EF L Xt
TV, EMAQPALE £ BIE L T AL /25, neuromyelitis
oplica (NMO);iZADBIREM A BETEH L, LN 2 THTY
N—THOCWAR NI E L 55, E-SNPTLIVEBED A
157 (ethnic differences) # EH T 5 &, AMROEREHARA
MSIZILEEEEEDR S,
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