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Abstract We developed a dual oscillator model to fa-
cilitate the understanding of dynamic interactions be-
tween the parafacial respiratory group (pFRG) and
the preBotzinger complex (preBotC) neurons in the
respiratory rhythm generation. Both neuronal groups
were modeled as groups of 81 interconnected pace-
maker neurons; the bursting cell model described by
Butera and others [model 1 in Butera et al. (J Neu-
rophysiol 81:382-397, 1999a)] were used to model
the pacemaker neurons. We assumed (1) both pFRG
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and preBotC networks are rhythm generators, (2)
preBotC receives excitatory inputs from pFRG, and
pFRG receives inhibitory inputs from preBotC, and
(3) persistent Na* current conductance and synaptic
current conductances are randomly distributed within
each population. Our model could reproduce 1:1 cou-
pling of bursting rhythms between pFRG and pre-
BostC with the characteristic biphasic firing pattern of
pFRG neurons, i.e., firings during pre-inspiratory and
post-inspiratory phases. Compatible with experimen-
tal results, the model predicted the changes in firing
pattern of pFRG neurons from biphasic expiratory
to monophasic inspiratory, synchronous with preBo6tC
neurons. Quantal slowing, a phenomena of prolonged
respiratory period that jumps non-deterministically to
integer multiples of the control period, was observed
when the excitability of preBotC network decreased
while strengths of synaptic connections between the
two groups remained unchanged, suggesting that, in
contrast to the earlier suggestions (Mellen et al., Neu-
ron 37:821-826, 2003; Wittmeier et al., Proc Natl Acad
Sci USA 105(46):18000-18005, 2008), quantal slowing
could occur without suppressed or stochastic excita-
tory synaptic transmission. With a reduced excitability
of preBstC network, the breakdown of synchronous
bursting of preBotC neurons was predicted by simu-
lation. We suggest that quantal slowing could result
from a breakdown of synchronized bursting within the
preBotC.
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1 Introduction

Two putative respiratory rhythm generators, the
parafacial respiratory group (pFRG) (Onimaru et al.
1988; Onimaru and Homma 2003) and the preBotzinger
complex (preBotC) (Smith et al. 1991), exist in the
mammalian brainstem. The two neuronal groups, sepa-
rately identified, are thought to play important roles in
the generation and maintenance of respiratory rhythm
(Feldman and Janczewski 2006; Onimaru and Homma
2006; Oku et al. 2007) at least in the neonatal period,
although the primary site of the respiratory rhythm
generation is still controversial (Feldman and Del
Negro 2006). There are a number of neuronal behaviors
that characterize the respiratory network in brainstem
spinal cord preparations of neonatal rodents. First,
the firing pattern of preinspiratory (Pre-I) neurons,
a subset of neurons within pFRG, typically consists
of three phases: (1) firing preceding the inspiratory
phase, (2) suppression of firing during the inspiratory
phase, originally referred to as inspiration-related in-
hibition of the Pre-I firing (IIPI), and (3) firing dur-
ing the post-inspiratory phase, which is not seen in
preBotC preinspiratory neurons (Smith et al. 2007).
Second, IIPI consistently disappears after removing
chloride-mediated inhibition, resulting in overlapping
of Pre-1 neuronal firing and inspiratory neuronal firing
(Onimaru et al. 1990). Third, opioids do not affect
Pre-I neurons but depress preBo6tC inspiratory neu-
rons (Gray et al. 1999). As a consequence of dynamic
interactions between pFRG and preB&tC, respiratory
periods jump non-deterministically to integer multiples
of the control period, and the phenomenon was re-
ferred to as quantal slowing (Mellen et al. 2003; Barnes
et al. 2007). Synaptic connections and interactions be-
tween the neuronal groups to explain the characteristic
behaviors have been proposed (Onimaru et al. 1990;
Ballanyi et al. 1999). Specifically, the observation of
quantal slowing has led to a hypothesis that two rhyth-
mically active networks interact to generate respiratory
rhythm and quantal slowing results from transmission
failure from pFRG to preBotC networks (Mellen et al.
2003). However, in such a complex dynamic system,
it is imperative to evaluate descriptive assumptions by
simulating phenomena using a computational model.
In the present study, we demonstrate a compu-
tational model consisting of two groups of bursting
neurons, representing pFRG and preBo6tC neuronal
groups. We assume that pFRG provides excitatory in-
puts to preBo6tC and preBotC provides inhibitory con-
nections to pFRG (Onimaru et al. 1990; Ballanyi et al.
1999). We then analyzed the influences of changes in
strengths of excitatory and inhibitory synaptic connec-
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tions between the two neuronal groups on the coupling
pattern of bursting activities in these groups. Finally,
we evaluated the effects of reducing excitability of
preBotC neurons on the respiratory period, and consid-
ered the mechanism that causes non-deterministic jump
of respiratory period to integer multiples of the con-
trol periods. Interestingly, we found that the quantal
slowing occurs without assuming suppressed excitatory
synaptic transmission.

Similar attempts to simulate quantal slowing phe-
nomenon by dynamic interactions between the two
rhythm generating networks has been made by Joseph
and Butera (2005) and Wittmeier et al. (2008) earlier.
In both studies, pFRG and preBotC were repre-
sented by only a pair of pacemaker neurons, pre-
suming that any ‘lumped’ effects of the interaction
should apply at the full-blown network level (Wittmeier
et al. 2008). Joseph and Butera (2005) used a simple
canonical model of pacemaker neurons to represent
the pFRG and preBo6tC. However, it is difficult to
correlate cellular properties with model parameters
in such a canonical model. Further, in their result,
quantal slowing accompanied abrupt changes in firing
pattern of Pre-lI neurons, i.e., emergence of post-
inspiratory burst that was absent in the control pe-
riod, which is inconsistent with experimental findings
(Mellen et al. 2003). Wittmeier et al. (2008) adopted
a Hodgkin-Huxley type realistic neuronal model de-
scribed by Butera et al. (1999a) and substituted sto-
chastic synaptic transmission for the deterministic
excitatory synaptic inputs to preBotC from pFRG to
simulate quantal slowing. However, there is no phys-
iological basis supporting that opioids cause stochas-
tic synaptic transmission. Moreover, if the stochastic
nature of synaptic transmission is essential for pro-
ducing quantal slowing then the phenomenon is not
entirely a characteristic of the model under consider-
ation but also of a undefined additional mechanism
resulting in stochastic dynamics of the synaptic trans-
mission. In the present study, we have conducted a
large scale simulation by modeling both pFRG and
preBotC as groups of 81 pacemaker neurons to test
whether the essential features of the activity of a
rhythm generating network may be adequately cap-
tured by replacing it by a single pacemaker neuron,
and more specifically, to test whether the quantal slow-
ing phenomenon requires stochastic dynamics of the
synaptic transmission. Our simulation predicted that
the reduction of excitability in preBotC network could
result in intermittent failure of preB6tC neurons to
produce synchronized bursting and could cause quantal
slowing even if we did not assume stochastic dynam-
ics of the synaptic transmission. We suggest that the
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quantal slowing phenomenon is an intrinsic character-
istic of the rhythm-generating network and stochas-
tic synaptic transmission is unnecessary to explain the
quantal slowing phenomenon. Our results are in agree-
ment with the general conception that quantal slowing
phenomenon results due to general loss of sensitivity
within the preBotC group but, more importantly, they
suggest towards the possibility of a different mechanism
for its cause.

2 Methods
2.1 Formulation of dual oscillator model

The model consists of two neuronal groups of burst-
ing neurons, NeuronGroupl and NeuronGroup2; rep-
resenting the pFRG and preBo6tC rhythm generating
networks, respectively. We assume that both pFRG and
preBotC independently constitute rhythm-generating
networks, and pFRG network excites preBotC net-
work, and preBotC network inhibits pFRG network
(Fig. 1(a)). In our model, we assume that bursting
neurons within each of NeuronGroupl and Neuron-
Group2 are mutually coupled by excitatory synaptic
connections to form a rhythm generating network.
Therefore, the constituent neurons of NeuronGroup2
are excitatory neurons. It is unrealistic to assume that

NeuronGroupl

(pFRG)

NeuronGroupl
(pFRG)

NeuronGroup2
(preBotC)

NeuronGroup2
(preBétC)

(A) (B)

Fig. 1 (a) Dual Oscillator Model: NeuronGroupl (pFRG) pro-
vides excitatory synaptic input to NeuronGroup2 (preBotC) and
NeuronGroup2 provides inhibitory synaptic input directly to
NeuronGroupl. (b) Three neuronal group model: Similar to Dual
Oscillator Model except that an inspiratory interneuron group,
NeuronGroup3 is added. NeuronGroup3 receives excitatory in-
puts from NeuronGroup2 and inhibit NeuronGroupl. Open and
closed circles represent excitatory and inhibitory synaptic connec-
tions, respectively

the excitatory neurons of NeuronGroup2 inhibit Neu-
ronGroupl. A more realistic model would be a three
neuronal group model as depicted in Fig. 1(b); the third
neuronal group, NeuronGroup3,is formed of inhibitory
neurons, which receives excitatory synaptic input from
NeuronGroup2 and provides inhibitory synaptic input
to NeuronGroupl (Kuwana et al. 2000). However, for
simplicity, if we assume that the bursting dynamics of
NeuronGroup3 follow the bursting activities of Neu-
ronGroup?2, then the NeuronGroup3 in Fig. 1(b) essen-
tially becomes a copy of NeuronGroup2. Thus, the need
of explicitly incorporating NeuronGroup3 is eliminated
and computational effort required is minimized. There-
fore, we use the model depicted in Fig. 1(a) as our Dual
Oscillator Model.

2.2 Formulation of neuronal groups

Both neuronal groups, NeuronGroupl and Neuron-
Group2, were modeled as groups of 81 interconnected
pacemaker neurons. The mathematical model of burst-
ing cells described by Butera and others (model 1 in
Butera et al. 1999a) were used to model the pace-
maker neurons in our model. We assume that each
cell receives excitatory and inhibitory synaptic inputs.
Therefore, the rate of change in membrane potential
(V) of a cell is modified from the original model as:

C—d[— = '_INaP — Ina — ]K - I~ Isyn(e) - Isyn(i) (1)

where C is the whole cell capacitance (pF), V is mem-
brane potential (mV), ¢ is time (ms), Ingp 1S a persistent
Na* current, In, is a fast Na* current, Ik is a delayed-
rectifier K* current, I is a passive leakage current,
Iy is the sum of excitatory synaptic currents, and
Iyyngy is the sum of inhibitory synaptic currents. C is
set to 21 pF (Smith et al. 1992; Butera et al. 1999a).
Equations and parameter sets to compute intrinsic
membrane currents (Inap, Ina, Ik and Ip) are those
presented in the previous paper (Butera et al. 1999a)
unless otherwise noted.

We assume that each neuron receives excitatory
synaptic inputs from other neurons belonging to the
same group L as well as from neurons belonging to a
different group M:

Loyne) = (Z glsyndnn 'Sfm) (V = Egne)

lel

+ (Z glsl)l/n(ext) ' Sg:it) (V - ESYn(C)) (2)

meM
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where Egne) (= 0 mV) is the reversal potential of non-
NMDA excitatory amino-acid receptors. gfsyn(mt) and
Seyn(exy are the synaptic conductances for input from

neurons / € L and m € M, respectively. s, and s7, are
synaptic gating variables for these synaptic inputs. To
reduce computational costs, we assumed that synaptic
conductances g’syn(m) and g¢i, ) i Eq. (2) are uncorre-
lated to the corresponding synaptic gating variables s/ .
and s7,,, respectively. Consequently, we simplify Eq. (2)

as:

]syn(c) = (gsyn(int) . Eint + gsyn(ext) . §ext) (V - Esyn(e)) (3)

where Zoyninty and gsynexyy are overall synaptic conduc-
tance for inputs from neurons/ € L and m € M, respec-
tively. The values of gsyn(inty and Zsyncexyy Were randomly
assigned from a uniformly distributed probability den-
sity function ranging between 0 and 10 nS and be-
tween 0 and geyn(ext) max, respectively. The rationale for
using uniformly distributed probability density function
for synaptic conductance is discussed in Section 4.3. 5y,
and Sy are mean synaptic gating variables for these
synaptic inputs, which are expressed as:

- l -
Sint = Zsint ) Sext = Z Sext 4)

lel meM

Similarly, synaptic inputs from an inhibitory neuronal
group N are expressed as:

Isyngy = &syn(inhy * Sinn (V' — Ec1) §))

where gsynanny is the overall synaptic conductance
for inputs from neurons n € N, 5§, are the mean
synaptic gating variable for inhibitory inputs, and E¢
(= —90mV) is the equilibrium potential of CI~. The
values of goyninhy Were randomly assigned from a uni-
formly distributed probability density function ranging
between 0 and gsyn(inh) max-

Presynaptic action potentials activate synaptic gating
variables. We applied the same, fast (decay time con-
stant 7, = 5 ms) kinetics to all synaptic gating variables
(Butera et al. 1999b):

dsi  [(1—s5;) 500 (Vi) = 5i]
dr Ty

(6)

Soo (V;) determines the steady-state postsynaptic recep-
tor activation based on the membrane potential of
presynaptic neuron i:

1
Soo (Vi) = m (7

(o2

where § = —10mVando = -5 mV.
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In the present model, Inop produces a slowly de-
polarizing current and endows cells with a bursting
property. The inherent burst frequency of a single
bursting neuron is changed by the persistent Na*t cur-
rent conductance, gnap, with a fixed value of the rever-
sal potential of passive leakage current Ep, (—59 mV).
Bursting activity does not occur for gn.p < 2.45 nS
(Butera et al. 1999a). In order to simulate an inhomoge-
neous distribution of inherent burst frequency within a
group, the values of gnap were randomly assigned from
a uniformly distributed probability density function
ranging between (gnap max — 0.5 nS) and gnap max. Con-
sequently, the inherent burst frequency of the neuronal
group depends on gnap max. Lhe firing of Pre-I neurons
always precedes the inspiratory burst recorded from the
fourth cervical ventral root of the spinal cord (C4VR),
although Pre-I burst sometimes does not accompany
the inspiratory C4VR burst (Okada et al. 2007). In
order to simulate this situation, the inherent burst fre-
quency of NeuronGroupl must be greater than that of
NeuronGroup2. Subsequently, in the present model, we
set gNaP_max = 4.0 nS for NeuronGroupl and gnap max =
3.0 nS for NeuronGroup2. For these values of gnap max
for NeuronGroupl and NeuronGroup2, their inter-
burst period was, respectively, found to be 2.69
0.13 s and 4.99 £ 0.42 s (computed from 9 simulation
results).

We set gynexy =0 nS for NeuronGroupl and
&syniinh) = 0 nS for NeuronGroup2. Sy, of Neuron-
Groupl was calculated from membrane potentials of
NeuronGroup2 neurons and Sey of NeuronGroup2
was calculated from membrane potentials of Neuron-
Groupl neurons. To evaluate the effects of changes
in strengths of excitatory and inhibitory synaptic con-
nections on the coupling pattern between pFRG and
preBotC bursting activities, we varied Zsyn(nhy max Of
NeuronGroupl ranging between 0 and 6 nS and
&synext) max  Of NeuronGroup2 ranging between 0
and 2 nS.

2.3 Computational details

The differential equations were solved numerically us-
ing the fourth-order Runge-Kutta equation with a step
size of 0.05 ms. However, the neuronal states were
saved at an interval of 0.5 ms, which was sufficient
to capture every action potential spikes of bursting
neurons, to keep the stored files to manageable size.
All algorithms were implemented in double precision
routine in C4.NET language and run on Pentium-based
Windows XP computers. We waited for initial 60 s
of simulation time for the behavior of the network to
stabilize and then the simulated data were saved.
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3 Results

As mentioned earlier, in the dual oscillator model, Neu-
ronGroupl and NeuronGroup?2 represents pFRG and
preBotC, respectively. However, during the presenta-
tion of results and discussion, we restrict the terms Neu-
ronGroupl and NeuronGroup?2 to refer to the modeled
pFRG and preBotC, respectively. Further, throughout
the present model study, we define the period where
preBotC/NeuronGroup2 neurons burst synchronously
as the inspiratory phase, and the rest of period where
a majority of preBotC/NeuronGroup2 neurons are qui-
escent as the expiratory phase.

3.1 Coupling pattern between pFRG and preBotC

We observed different patterns of coupling between
NeuronGroupl and NeuronGroup2 depending on
strengths of excitatory and inhibitory synaptic con-

Monophasic Synchronous

(A)

2:1 (with inhibition) ~ 2:1 (no inhibition)

nections (Zsyn(extymax and  gsynginh) max, respectively).
Figure 2(a) depicts typical raster plots for various cou-
pling modes observed. Horizontal segments in Fig. 2(a)
represent bursting periods of all the 2 x 81 neurons
constituting the NeuronGroupl and NeuronGroupZ.
For each burst of each neuron, the bursting period
is defined as the period beginning from the instant
when the membrane potential of the neuron rises above
—20 mV while delivering the first spike of the burst to
the instant when the membrane potential falls below
—20 mV while delivering the final spike of the burst.
Membrane potential trajectories of a typical neuron
within NeuronGroupl and NeuronGroup?2 for the vari-
ous coupling modes are depicted in Fig. 2(c); averaged
population activities of NeuronGroupl and Neuron-
Group?2 are depicted in Fig. 2(b).

The coupling modes were classified visually based
on the averaged population activity. However, since
the population activity and the individual neuron

Intermittent Intermittent (regular)

w
A %
n
o

NeuranGroupl
81 neurons
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Fig. 2 (a) Raster plots of various coupling modes—biphasic
(&syn(extymax = 0.8 nS, gsyn(mh) max = 4.5 nS), monophasic
(gsyn(ext) max = 2.0 nS, 8syn(inh) max = =5.0 nS), Synchronous
(&syn(extymax = 1.2 nS, 8syn(inh)_max = = 0.5 nS), 2:1 coupling (with
inhibition: gsyn(ext) max = 0.8 1S, Zsyntnh) max = 1.5 nS; no
inhibition: Zsyn(ext) max = 0.4 1S, gsyn(mh) max = 0.0 nS), and
intermittent (Zsyncext). max = 2-0 1S, Zsyn(inh) max = 3.0 nS; inter-
mittent regular also corresponds to the same values of synaptic
strengths)—observed by changing the strengths of excitatory

.....

and inhibitory synaptic conductances. The neurons within
each neuronal groups are ranked in ascending order of their
bursting activity initiation timings for better visualization. (b)
Corresponding averaged population activity of NeuronGroupl
and NeuronGroup2 (top and boitom traces, respectively, in
each panel) and (c) Activity of a typical neuron belonging
to NeuronGroupl and NeuronGroup2 (top and bottom traces,
respectively, in each panel)
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activity within the neuronal groups are well correlated,
the coupling mode classification could be based on
the activity of a pair of neurons from NeuronGroupl
and NeuronGroup2 as well (Fig. 2(c)). Nomenclatures
used for classifying the different coupling pattern are as
follows:

e The biphasic mode is characterized by activity pat-
tern of NeuronGroupl neurons resembling Pre-I
neurons—bursting just before inspiratory burst of
NeuronGroup2 neurons, inhibition during inspi-
ratory phase, and post-inspiratory second burst
(Fig. 2(c), Biphasic).

e The monophasic coupling mode is characterized

ing two phases—bursting just before inspiratory
burst of NeuronGroup2 neurons and inhibition dur-
ing inspiratory phase (Fig. 2(c), Monophasic). We
termed this coupling mode as ‘monophasic’ be-
cause it may be thought of as a reduced form of
biphasic coupling where the post-inspiratory sec-
ond burst of NeuronGroupl neurons is missing.
The bursting frequency of both NeuronGroupl and
NeuronGroup2 neurons are high in monophasic
coupling mode; note the magnified time scale used
for monophasic coupling in Fig. 2.

e The synchronous coupling mode is characterized
by simultaneous bursting activity of both Neuron-
Groupl and NeuronGroup2 neurons (Fig. 2(c),

by activity of NeuronGroupl neurons compris- Synchronous).
(A) 2:1 coupling Synchronous Biphasic
gsyn(ezt)_’mam (n8) gsyn(ext)_max (n8) gsyn(ezt)_ma:c (nS)
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Fig. 3 (a) Domain of occurrence of coupling modes as a function
of excitatory and inhibitory synaptic strengths of the dual oscilla-
tor model. For each combination of gsyn(ext) max a0d Zsyn(inh)_max.
seven simulations were performed and the frequency of occur-
rence of various coupling modes are illustrated using the gray
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color scale indicated on the right. (b) Representative domain
of various coupling modes based on maximum occurrence fre-
quency. For simplicity, the occurrence frequency of the two types
of intermittent coupling modes were merged together, since their
occurrence domain overlaps
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o The 2:1 coupling mode is the case where Neu-
ronGroupl and NeuronGroup2 exhibit bursting
activity in 2:1 ratio. 2:1 coupling mode may be
further subclassified as (1) 2:1 with inhibition—
NeuronGroupl neuron activity is similar to that of
biphasic coupling mode except that its post inspira-
tory burst is significantly delayed (Fig. 2, 2:1 (with
inhibition)), and (2) 2:1 without inhibition—
NeuronGroup2 neurons synchronize their bursting
activity with every alternate bursting activity of
NeuronGroupl neurons (Fig. 2,2:1 (no inhibition)).
In both of these 2:1 coupling modes, excitatory
postsynaptic potentials (EPSPs) are observed on
membrane trajectories of NeuronGroup2 neurons
coincident with the NeuronGroupl burst during the
expiratory phase.

e Intermittent coupling mode shows mixed features
of synchronous and monophasic coupling mode but
with irregular variation in burst duration and inter-
burst interval (Fig. 2, Intermittent). Frequently, we
also obtained a more regular coupling between
NeuronGroupl and NeuronGroup2 for identical
values of excitatory and inhibitory synaptic connec-
tions, which we termed as Intermittent (regular)—a
pattern in which synchronous and monophasic cou-
pling patterns are alternating (Fig. 2, Intermittent
(regular)). Since the occurrence domain of Inter-
mittent (regular) overlaps with that of the conven-
tional Intermittent coupling (see Fig. 3, explanation
for which is presented in the following paragraph),
we decided to treat these two patterns collectively
so as to gain some simplicity in the presentation of
results.

Figure 3(a) shows the domain of various cou-
pling modes observed as a function of gsyn(ext) max and
Zsyn(inh)_max- S€ven simulations were done for each com-
bination of Zeyn(extymax and syngnhymax and the oc-
currence frequencies of each coupling mode are also
shown. The boundaries of various coupling mode do-
mains in Fig. 3(a) cannot be precisely determined, be-
cause the coupling modes changed slightly every time
with the assignment of random initial values for the
various synaptic conductance and gnap conductance.
Figure 3(b) shows the domain of various coupling
modes based on their maximum frequency of occur-
rence. It is remarked that occasionally the coupling
patterns obtained in 2:1 coupling domain could not be
meaningfully classified. The values of gsyn(ext) max and
8syn(inh) max are low in this region and thus the burst-
ing behavior of NeuronGroupl and NeuronGroup2 in
some simulations were largely uncoupled.

3.2 Simulating the effects of decrease in preBotC
neuronal excitability

We simulated the effect of decrease in preBotC neu-
ronal excitability by increasing the leak current conduc-
tance g (used for the computation of leakage current

(A) g, = 35208 B) gz =383ns

NeuronGroupl
81 neurons

81 neurons

NeuronGroup2

g
B
(e

T T T T T g T T T T T T

(Q gy =388ns

81 neurons

NeuronGroupl

NeuronGroup2
81 neurons

mV
50 M

50 ;

10s

Fig. 4 Effect of increase in gp value on the coupling mode
between NeuronGroupl and NeuronGroup2. With the successive
increase in g, the coupling mode which is originally biphasic
(Fig. 2(a), biphasic) changes to (a) 2:1 coupling, (b) 3:1 cou-
pling and eventually (¢) quantal slowing—NeuronGroup2 ex-
hibits bursting non-deterministically at fourth or fifth phasic
excitations from NeuronGroupl. In raster plots, the neurons
within each neuronal groups are ranked in ascending order of
their bursting activity initiation timings for better visualization.
(d) Averaged population activity of NeuronGroupl (top trace)
and NeuronGroup2 (bottom trace) corresponding to the quantal
slowing case depicted in (c)
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Fig. 5 (a) Plot depicting the (A)

Bursts at

non-deterministic variation of
interburst interval of
NeuronGroup2 with time.
The vertical separation
between the horizontal grid
lines indicates the interburst
interval of NeuronGroupl.
NeuronGroup?2 exhibits
bursts, non-deterministically,
at the third, fourth, fifth,
sixth, seventh and ninth
phasic excitatory drives

from NeuronGroupl.

(b) Population activities

of NeuronGroupl and
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73s

NeuronGroup?2 for the time
interval depicted by the thick
gray bar in (a). For the above
simulation, the values of

Zsyn(ext)_max> §syn(inh) max and
g1 were 0.8 nS, 4.5 nS and
3.89 nS, respectively

I1, (Butera et al. 1999a)) for the neurons constituting
NeuronGroup2 and studied its effect on the coupling
pattern using the dual oscillator model. We studied
the case when Zyn(exy.max = 0.8 nS and Zsynginh) max =
4.5 nS, which consistently produces a biphasic coupling
pattern in our simulation (Figs. 3 and 2(a)). When
gL is increased, the number of cells with pacemaker
property in NeuronGroup2 decreases (Fig. 10). When
gL is increased beyond 3.4 nS, none of the Neuron-
Group2 neurons show pacemaker property. In this sit-
uation, NeuronGroupl is the sole rhythm generator,
and NeuronGroup?2 is the inspiratory pattern generator
triggered by NeuronGroupl due to the excitatory
synaptic connection from NeuronGroupl to Neu-
ronGroup2 (&synexnmax = 0.8 nS). We observed 2:1
coupling, 3:1 coupling and eventually quantal slow-
ing of bursting rhythms between NeuronGroupl and
NeuronGroup2 (Fig. 4), as the value of g was suc-
cessively increased. In Fig. 4(c), NeuronGroup2 non-
deterministically exhibits bursts at the fourth or fifth
phasic excitations from the NeuronGroupl. Figure 5
depicts the non-deterministic variability in the inter-
burst interval of NeuronGroup2 for a long duration
simulation of quantal phenomenon; the quantal distri-
bution of the interburst interval is readily apparent.

Q Springer

ie® 00°%0%
: : ; %6 ©
00500 %0000 © o 0 0g00 6%0goR 0%

Non-dimensional interburst period
£

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1
Leak current conductance gz (nS)

Fig. 6 Interburst interval of NeuronGroup2 as a function of g.
The interburst interval of NeuronGroup2 is non-dimesionlized
to remove the variability in interburst interval of NeurnGroup2
caused by variability in the interburst interval of NeuronGroupl.
A new simulation is performed for each value of gp. For
gL <3.84 nS, we observed single bursting frequency of Neuwron-
Group2. Quantal slowing was observed in the range 3.84 nS <
gL < 4.0 nS; multiple data points corresponding to the same
value of gy, in this range depicts the multiple interburst intervals
observed. For example, the two solid squares depicts the the
two interburst interval of NeuronGroup2 obtained for the case
81, = 3.88 nS shown in Fig. 4(c)
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Fig. 7 Quantal slowing ( A)
observed when gnap max of
NeuronGroup2 was reduced
to 2.09 nS (gsyn(ext)_max =

0.8 nS, g'syn(mh)_max =4.5 nS).
(a) Raster plots depicting the
bursting activity of neurons
within NeuronGroupl and
NeuronGroup2, and (b)
Averaged population activity
within NeuronGroupl and
NeuronGroup?2 (top and
bottom trace, respectively). In
raster plot, the neurons
within each neuronal groups
are ranked in ascending order
of their bursting activity
initiation timings for better
visualization

(B)

Fig. 8 Histograms showing
the number of cells in
NeuronGroup2 exhibiting
simultaneous bursting during
the quantal slowing case
depicted in Fig. 4(c)
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However, the quantal slowing phenomenon was not
observed in every simulation; the occurrence rate was
about 70%; in the rest of the cases we obtained reg-
ular 4:1 or 5:1 coupling between NeuronGroupl and
NeuronGroup2, similar to the regular 3:1 coupling de-
picted in Fig. 4(b). This was because, for every sim-
ulation, we assigned different random values to gnap,
Zsyn(int)> 8syn(ext) and Zeynnhy; the occurrence of quan-
tal slowing was sensitive to the variability in bursting
property of constituent neurons and distributions of the
synaptic conductances.

Figure 6 depicts the interburst interval of Neu-
ronGroupZ2 as a function of gr. To make the quan-
tal slowing effect apparent, the interburst interval of
NeuronGroup2 is non-dimensionalized with the in-
terburst interval of NeuronGroupl. There is some
variability in the interburst interval of the Neuron-
Groupl due to their random initialization. Since,
at elevated values of g for neurons in Neuron-
Group2, only NeuronGroupl is thythm generator and
NeuronGroupZ2 bursts under the influence of excitatory
phasic drives from NeuronGroupl, the variability in the
interburst interval of NeuronGroupl is translated to
variability in the interburst interval of NeuronGroup?2.
Non-dimensionlization eliminates this variability de-
pendence and makes the quantal slowing effect
pronounced.

The decrease in preBotC excitability is also sim-
ulated by reducing gnap max value of NeuronGroup2.
When pursued this course, setting gsyn(ext) max = 0.8 nS
and gsyngnhy max = 4.5 1S in the dual oscillator model,
we observed similar changes in coupling mode be-
tween NeuronGroupl and NeuronGroup2 as depicted
in Fig. 4 as the gnap max value was lowered; the coupling
pattern successively changed from initial biphasic mode
to 2:1 coupling, then to 3:1 coupling which eventually
lead to quantal slowing. Figure 7 depicts a typical case
of quantal slowing obtained by reducing gnap max value.

To gain insight into mechanism causing quantal slow-
ing, further investigations were made. The histograms
in Fig. 8 show the number of cells in the Neuron-
Group2 simultaneously bursting during the quantal
slowing case depicted in Fig. 4(c). Almost all cells
in NeuronGroupl showed synchronized activity and
hence their activity is not shown. Note that a small
fraction of neurons in the NeuronGroup2, variable in
number, exhibited bursting by excitatory phasic drives
from NeuronGroupl in the interval between succes-
sive synchronized NeuronGroup2 bursting. Next, we
removed the interconnections within NeuronGroup2,
and investigated the number of neurons that exhibit
bursting by phasic drives from NeuronGroupl under
such condition. To do this, we set gsyneext) max = 0.8 nS
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and gsyn(inh) max = 0 1S, and for all NeuronGroup?2 cells,
we set gsyn(nt) = 0.

Consequently, the dual oscillator model was
modified as follows: (1) NeuronGroupl remains
unchanged, (2) NeuronGroup2 becomes essentially
a group of unconnected 81 neuroms, and (3) the
excitatory synaptic connection from NeuronGroupl to
NeuronGroup2 is present (gsyn(exty max = 0.8 nS) but the
inhibitory synaptic connection from NeuronGroup2
to NeuronGroupl is absent. Subsequently, we
successively increased the value of g for neurons in
NeuronGroup2 and studied the time history of neurons
exhibiting bursting in NeuronGroup2 quantitatively.
Figure 9 depicts the details of one representative study
when g =3.85 nS for neurons in NeuronGourp2.
For the elevated value of g = 3.85 nS, none of the
neurons in NeuronGroup2 possess pacemaker property
(Fig. 10). However, under the influence of excitatory
phasic drives from NeuronGroupl, a total of 19 (out
of 81) neurons in NeuronGroup2 exhibit bursting
at various instances. Moreover, not all 19 neurons
in NeuronGroup2 exhibit simultaneous bursting;
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Fig. 9 Variability in the number of neurons in NeuronGroup?2
exhibiting bursting under the influence of excitatory phasic drive
from NeuronGroupl. The neurons in NeuronGroup2 are uncon-
nected (Zsyngnyy = 0 nS for all neurons in NeuronGroup2) and
Zsyn(ext) max = 0.8 nS and Zsyn(inhy max = 0 nS. In raster plot, the
neurons within NeuronGroupl are ranked in ascending order of
their bursting activity initiation timings for better visualization
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Fig. 10 Typical decrease in the number of neurons with pace-
maker property in NeuronGroup2 as gp value is increased

the histograms in Fig. 9 show the variation in the
number of neurons that exhibit simultaneous bursting
at each excitatory phasic drive from NeuronGroupl.
A maximum of 12 and a minimum of 4 neurons
in  NeuronGroup2 exhibit simultaneous bursting,
indicating that there is considerable variability. The
number of neurons in NeuronGroup2 that exhibit
bursting with the influence of excitatory phasic drives
from NeuronGroupl for different values of gr, is shown
in Fig. 10.

4 Discussion

4.1 Coupling modes of pFRG and preBotC
rhythm-generating networks

Our model could produce 1:1 coupling of bursting
rhythms between pFRG and preBotC with the char-
acteristic biphasic pre-inspiratory and post-inspiratory
firing pattern of pFRG neurons. Post-inspiratory burst
of NeuronGroupl neurons during biphasic coupling,
characteristic of Pre-I neurons, is the consequence
of recovery from In,p inactivation during inspiration-
related inhibition of the Pre-I firing in our model
(post-hyperpolarization rebound bursting (Butera et al.
1999a)).

Our results indicated that the coupling modes de-
pend on the strengths of synaptic connections between
the two networks. When we view the coupling modes
as a function of the strengths of excitatory input from
NeuronGroupl to NeuronGroup2 (8syn(ext) max) and in-
hibitory input from NeuronGroup2 to NeuronGroupl
(&syn(inh) max), three major domains are recognized: (1)
synchronous coupling domain with a low inhibitory

strength, (2) biphasic coupling domain with a high in-
hibitory strength and low/moderate excitatory strength,
and (3) monophasic coupling domain with high ex-
citatory and high inhibitory strengths (Fig. 3). The
changes in coupling mode by the inhibitory synaptic
strength are consistent with experimental results. When
a GABA antagonist (bicuculline or picrotoxin) or a
glycine antagonist (strychnine) is given to the perfusate
of brainstem spinal cord preparations, IIPI becomes
absent or negligible, and the activity of Pre-I neurons
overlaps with the C4VR inspiratory activity (Onimaru
et al. 1990). These findings are in agreement with
the model prediction when the strength of inhibitory
connection from NeuronGroup2 to NeuronGroupl is
reduced.

Between the synchronous and biphasic major do-
mains, there exists the domain of 2:1 coupling ‘with
inhibition’ for moderate values of Zsyngnhy max (Fig. 3).
The 2:1 coupling ‘with inhibition’ may be viewed as a
precursor to biphasic coupling as the coupling mode
transits from synchronous to biphasic with an increase
in inhibitory strength. In the case of 2:1 coupling ‘with
inhibition’, the inhibitory strength is not strong enough
to cause an immediate post hyperpolarization rebound
bursting of NeuronGroup2 as in biphasic coupling;
the bursting of NeuronGroup?2 is considerably delayed.
We observed EPSPs in NeuronGroup2 neuronal mem-
brane trajectories coincident with the rebound bursts
of NeuronGroupl. These EPSPs could not evoke Neu-
ronGroup2 burst because of two reasons: (1) low value
of Zsyn(exty max, and (2) the timing of excitatory inputs
to NeuronGroup?2 from its previous burst is too close.
With an increase in the value of gsyn(ext) max, €Xcitatory
inputs to the neurons of NeuronGroup2 increase, caus-
ing it to burst every time the pFRG bursts, thus trans-
forming the 2:1 coupling to the intermittent coupling
mode (Fig. 3).

Likewise, the 2:1 coupling ‘without inhibition’, which
is primarily found to the left of the synchronous cou-
pling domain and for extremely low values of inhibitory
strength, may be viewed as a precursor to synchro-
nous coupling. In 2:1 coupling ‘without inhibition’, the
excitatory strength is not strong enough to cause a
synchronized bursting of NeuronGroup2 at each phasic
excitation from NeuronGroupl, instead it synchro-
nizes at every alternate phasic excitation from Neuron-
Groupl. 1t may be noted that the cases of 2:1 coupling
‘with’ and ‘without inhibition’ presented in Fig. 2 lie at
the two extremities of the 2:1 coupling domain marked
in Fig. 3(b); thus, the difference between them is readily
evident. However, the transition from ‘without inhibi-
tion’ form of 2:1 coupling to ‘with inhibition’ form is
extremely smooth; therefore, we merged the two cases
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together while determining the coupling domains in
Fig. 3.

As 2:1 ‘with inhibition’ coupling mode transits to
intermittent coupling mode with increase in the value
of Zsyn(ext) max, Diphasic mode transits to monopha-
sic coupling mode with increase in the value of
Zsyn(exy)_max- For the biphasic coupling mode, the value
Of Zsyn(ext) max 18 relatively low. Consequently, the EP-
SPs provided by NeuronGroupl at the time of its post
inspiratory burst to NeuronGroup2 is not sufficient
to make it burst again. However, for higher values
Of Zeyn(ext) max> a8 in the case of monophasic coupling,
the post-inspiratory burst of NeuronGroupl provides
high enough EPSPs to NeuronGroup2, causing it to
burst again (Fig. 2, Monophasic). Since the interval
between pre-inspiratory and post-inspiratory bursts of
NeuronGroupl is very small, the frequency of bursts
in monophasic coupling mode is high. It may be ob-
served that the excitation-inhibition cycle (excitation
of NeuronGroup2 by NeuronGroupl and inhibition of
NeuronGroupl by NeuronGroup2) continues infinitely
in monophasic coupling, whereas in case of intermit-
tent coupling, the excitation-inhibition cycle intermit-
tently breaks and restarts again. This suggests that the
excitation-inhibition cycle is more stable when both
gsyn(ext)_max and g syn(inh)_max are high.

To illustrate the predictive capability of dual oscilla-
tor model, it was remarked earlier in this section that
biphasic and synchronous coupling modes are experi-
mentally observed cases. In the same regard, it may also
be of significance to note that the 2:1 coupling ‘with
inhibition” as depicted in Fig. 2 and the 2:1 coupling
depicted in Fig. 4(a) are also observed in experimen-
tal conditions (Okada et al. 2007), which adds to the
predictive capability of the model.

4.2 Mechanisms of quantal slowing

During quantal slowing, subthreshold phasic drives to
preBotC inspiratory neurons are observed coincident
with the timing of skipped inspiratory burst. Based on
this observation together with non-deterministic jumps
of the bursting period to integer multiples of the control
period, Mellen et al. (2003) have suggested that opioid-
induced quantal slowing results from transmission
failure from unaffected Pre-I neurons to depressed pre-
Bo6tC networks. In addition, they have also mentioned
that noisy mutual coupling between the rhythmically
active preBo6tC and the pFRG networks could be an
alternative explanation of quantal slowing. Following
this, Wittmeier et al. (2008) simulated the quantal
slowing phenomenon by incorporating stochastic exci-
tatory synaptic transmission from pFRG to preB&tC
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and reducing its (mean) conductance by 12.5% of
control. Thereby, they reinforced the suggestion that
quantal slowing results from both transmission fail-
ure and noisy mutual coupling between pFRG and
preBotC.

In the present study, however, quantal slowing was
observed without assuming transmission failure or
noisy interactions. Here we use the term ‘transmission
failure’ specifically as a suppression of excitatory synap-
tic transmission from pFRG to preBo6tC. The results
of the present study are both new and simple; ‘simple’
in the sense that the basic dual oscillator model by
itself is adequate to simulate quantal slowing without
incorporating any additional hypothesis like transmis-
sion failure or noisy mutual coupling. Nevertheless,
under some experimental conditions, these processes
may contribute secondarily to the primary mecha-
nism of quantal slowing as explained in the following
paragraph.

The quantal slowing phenomena stems from the fact
that the synchronized bursting of NeuronGroup2 is
governed by the states of a small fraction of neurons
in it that exhibit bursting by phasic excitatory drives
from NeuronGroupl under elevated values of gp or
decreased values of gnap max fOr neurons in Neuron-
Group2 (Fig. 10). These small fraction of neurons pro-
vide excitatory inputs to the other quiescent neurons
of NeuronGroup2 and help them to burst. If the to-
tal number of neurons in NeuronGroup2 exhibiting
bursting exceeds a ‘critical value’, it results in a self-
sustained chain of events where progressively larger
number of neurons of NeuronGroup2 exhibit burst-
ing and eventually all the neurons in NeuronGroup2
exhibit synchronized bursting. On the other hand if
the number of bursting neurons in NeuronGroup2
falls short of the critical value, then the neurons in
NeuronGroup2 do not exhibit synchronized bursting.
Figure 9 depicted variability in the number of neu-
rons in NeuronGroup2 exhibiting bursting by excita-
tory phasic drives from NeuronGroupl. Though, the
case presented in Fig. 9 corresponds to unconnected
neurons in NeuronGroup?2, it is likely that similar vari-
ability, albeit to a different degree, exists even when the
neurons in NeuronGroup2 are interconnected through
chemical synapses. This is evident if one compares the
similarity in the bursting activity of a small fraction of
NeuronGroup2 neurons in the interval between syn-
chronized bursting in Fig. 8 (and Fig. 7) with that of
the uncoupled neurons in NeuronGroup2 depicted in
Fig. 9. Consequently, the number of bursting neurons
in NeuronGroup2 exceeds the critical number inter-
mittently and synchronized NeuronGroup2 bursting oc-
curs. This results in quantal slowing of synchronized
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bursting of NeuronGroup2. From our simulation study,
we observed that a maximum of about 15 neurons in
NeuronGroup2 exhibit bursting when NeuronGroup2
fails to exhibit synchronized bursting. Thus, the ‘critical
number’ of bursting neurons that necessarily be sur-
passed for synchronized NeuronGroup2 bursting may
be greater than 15 (out of 81) neurons. The critical
number is expected to be fuzzy rather than precisely
defined. The fuzziness stems from the fact that the
distribution of gnap and Zgyn(ny among NeuronGroup2
neurons is randomly assigned. Moreover, the critical
number is a function of the network topology as well
(see Section 4.3). For a neuronal group where the
constituent neurons are interconnected in a different
way than what we have considered here, the critical
number is different. However, the qualitative aspects
of the results, such as intermittent failure of Neuron-
Group?2 to exhibit synchronized bursting, are generally
expected and could be an underlying mechanism of
quantal slowing.

Quantal slowing was not observed in 30% of the
simulations. In these cases, the distributions of random
values of gnap and Zsyngny Within NeuronGroupZ2 are
such that its constituent neurons are relatively better
synchronized. This was evident from visual observa-
tion of the raster plots obtained for these cases, which
resembled the regular coupling pattern in Fig. 4(b).
Consequently, there is no intermittent failure of
NeuronGroup2 to exhibit synchronized bursting and
hence no quantal slowing is observed. In such cases, the
activity of the neuronal groups, both NeuronGroupl
and NeuronGroup2, may be essentially captured by
replacing each of them with a single pacemaker neuron.
This probably explains why Wittmeier et al. (2008)
could not simulate quantal slowing phenomenon with
their simplified model unless they incorporated sto-
chastic synaptic transmission. The simplified model
lacks the complexity necessary to capture the essen-
tial source of (apparent) non-determinism resulting the
quantal slowing phenomenon (as discussed in the pre-
vious paragraph), which is intrinsic in the neuronal
population model that we have considered. It is im-
portant to realize that the non-determinism associated
with the occurrence of quantal slowing simulation is
an ‘apparent’ one—the dual oscillator model used to
simulate quantal slowing is deterministic; it is the non-
linearity present in the bursting behavior of individual
neurons within the neuronal groups that result in non-
deterministic-like intermittent synchronized bursts of
NeuronGroup2. Thus, our results also hint toward the
fact that quantal slowing may not necessarily be derived
from any stochastic processes but may actually be a
deterministic phenomena.

Figures 5 and 6 suggests that the interburst dura-
tions of NeuronGroup2 while exhibiting quantal slow-
ing are not integer multiples of the control period but
are instead fractional multiples. Interestingly, this was
elucidated by Wittmeier et al. (2008) as well, though
they achieved it by incorporating a stochastic synaptic
transmission. Consequently, it may be inferred that the
fractional nature of quantal slowing is primarily a char-
acteristic of dual oscillator models and is independent
of the mechanism inducing the non-determinism.

4.3 Relation of preBotC neuronal network topology
to quantal slowing

We have assumed that each neuron of Neuron-
Group?2 is synaptically connected to every other neuron
within NeuronGroup2 (“all-to-all” connectivity). Con-
sequently, the intra-neuronal group synaptic current
Tgyngny for individual neurons of NeuronGroup2 (the
first term on the right hand side of Eq. (2)) is:

I syn(int) = (Z géyn(int) ' ant) (V - ES)’D(G)) (8)

leL

where L is NeuronGroup2. However, we subsequently
reduced the above equation to

I syn(int) = gsyn(int) ' §int (V - Esyn(e)) (9)

(refer Section 2.2, in particular the reduction of Eq. (2)
to Eq. (3)) and then randomly assigned values to Zsyn(iny
from a uniformly distributed probability density func-
tion ranging between 0 and 10 nS. Since, Sin is the
same for all the neurons, it is primarily the variability
in the values of Zgn(iny across the neurons in Neu-
ronGroup2, which contributes to the variability in the
intra-neuronal synaptic currents for individual neurons
of NeuronGroup2. From synchronization perspective, a
neuron with low value of gsyniny may be considered as
weakly connected to rest of the neurons within Neuron-
Group?2 and vice versa.

It is remarked that the reduction of Eq. (8) to Eq. (9)
modifies the intrinsic homogeneity present in “all-to-
all” network connectivity. If we randomly assign val-
ues to giyn(im) from a uniformly distributed probability
density function of any appropriate range, and perform
the summation shown in Eq. (8), the variability in the
individual values of géyn (nty Will be equalized resulting in
almost homogeneous distribution of Jsy,gnry across the
neurons of NeuronGroup2. Homogenous distribution
of Iyn(iny Within NeuronGroup2 would imply that each
neuron is connected equally strongly to rest of the
neurons within NeuronGroup2. Since this is unlikely
to be the case in the real preBo6tC, we presume that
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our way of introducing variability in the distribution of
Lsynny across the neurons of NeuronGroup?2 is quali-
tatively more realistic. The significance of the usage of
uniformly distributed probability density functions for
randomly assigning the values to gsynexty and Zsyn(inny i
the model may be interpreted similarly.

Now, since in our simulations, quantal slowing is
observed primarily due to intermittent failure of Neu-
ronGroup?2 to exhibit synchronized burst, it is remarked
that the ability of NeuronGroup2 to exhibit synchro-
nized bursts is intrinsically dependent on its network
topology, in particular, the distribution of ynng across
the neurons of NeuronGroup2. In the quantal slow-
ing simulation, Fig. 4(c) for example, we observe that
NeuronGroup2 mostly exhibits synchronized bursts at
every fourth phasic excitation from NeuronGroupl but
frequently it skips the fourth phasic excitation from
NeuronGroupl and bursts at the fifth phasic excita-
tion. Thus, once NeuronGroup2 has exhibited a syn-
chronized burst, there is an element of (apparent)
non-determinism whether it will exhibit its next syn-
chronized bust at the fourth phasic excitation from
Neurongroupl or not. However, in experimentally
observed quantal slowing, preBotC elucidates non-
determinism in its busting at each phasic excitation of
PFRG (Mellen et al. 2003). We reason that this discrep-
ancy is probably due to the difference in the neuronal
network topology of real preB6tC as compared to the
one we have incorporated in NeuronGroup2.

Thus, it is remarked that the highlight of the present
simulation study of quantal slowing is only its essential
qualitative feature—the (apparent) non-determinism
associated with bursting of preBotC—and the po-
tential mechanism causing it. The quantitative fea-
tures of quantal slowing may only be simulated by
incorporating a more realistic network topology for
NeuronGroup?2.

4.4 Some additional simulation studies

In the model presented above, we introduced variabil-
ity in bursting frequencies of the constituent neurons of
NeuronGroupl and NeuronGroup2 by providing vari-
ability in the allocated value of persistent Na* current
conductance gnap of neurons. The variability in burst-
ing frequencies may also be introduced by providing
variability in the leakage current conductance g of
neurons keeping the gnap value fixed. We pursued
this course too and verified that all the qualitative
features presented above remains unchanged. For this
study, we randomly assigned gp to neurons of each
neuronal group from a uniform probability distribution
function ranging from 2.3 to 2.8 nS; we set gnup =
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3.5 nS for all neurons of NeuronGroupl and gn.p =
2.5 nS for that of NeuronGroup2, so that the burst-
ing frequency of NeuronGroupl is higher than that of
NeuronGroup?2.

Further, we used a Gaussian distribution (with a
standard deviation of 0.3 nS about the mean values of
gnap = 3.5 nS for NeuronGroupl and gngp = 2.45 nS
for NeuronGroup2) instead of the uniform distribution,
for allocating the values of gnap to individual neurons.
Again the qualitative features of results obtained were
essentially the same as presented above. Thus, it is sug-
gested that the results presented in the manuscript are
independent of the mode of introducing the variability
in bursting frequencies of the constituent neurons of the
neuronal groups.

5 Model justification

We assumed that the intrinsic bursting frequency of
PFRG is faster than that of preB6tC. This is a prereq-
uisite for the consistent firing of pFRG neurons before
the burst of preBotC neurons. To our knowledge, this
assumption has never been tested experimentally. The
intrinsic bursting rhythm of pFRG neurons, separated
from preB&tC can be monitored from the facial nerve
rootlet, however, the inherent bursting frequency of
the pFRG is difficult to determine because the rhythm
is suppressed by pons or other brain regions with the
facial nerve attached (Onimaru et al. 2006). In the dual
oscillator model, we simulated by reversing the bursting
frequencies of NeuronGroupl and NeuronGroup2, that
is by setting gnap max = 3.0 nS for NeuronGroupl and
8NaP max = 4.0 1S for NeuronGroup2. We did not obtain
the characteristic biphasic coupling for any combina-
tion of excitatory and inhibitory synaptic strengths (the
range of synaptic strengths considered for this study
was the same as that in Fig. 3).

We assumed that the persistent Na‘t current is re-
sponsible for rhythmic bursts of pFRG and preBo6tC
neurons. This assumption has been recently contra-
dicted. Pace et al. (2007a) have demonstrated that
Inap does not contribute to inspiratory drive potential
generation in the vast majority of preB6tC neurons.
Another intrinsically bursting neuronal group has been
identified in the preBotC, which is dependent on a
calcium-activated nonspecific cationic current (Ican)
(Pefia et al. 2004). However, the relative contribution
of pacemaker properties and synaptic inputs to rthythm
generation is likely to be dynamic (Johnson 2007). For
example, during hypoxia, the respiratory pattern gen-
erator is more dependent on pacemaker properties and
produces gasping behavior (Paton et al. 2006). Further
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recent data of Koizumi et al. (2008) from neonatal
rats contradict the data of Pace et al. (2007b) from
mice, and show that inspiratory rthythm generation can
be Inap-dependent in the isolated preBotC network in
vitro. Therefore, although we did not consider Ican,
the breakdown of synchronized burst could still be the
underlying mechanism of quantal slowing in certain
conditions.

It has been shown that glutamatergic excitatory
synaptic inputs are required to evoke the Ican-
dependent inspiratory drive potentials (Pace et al.
2007b), suggesting that the rhythmic burst is generated
by a “group pacemaker” mechanism (Feldman and Del
Negro 2006) in which rhythm generation is an emer-
gent property of the network. Recently, Rubin et al.
(2009) proposed a mathematical model of the neurons
exhibiting “group pacemaker” mechanism. However,
this model lacks the post-hyperpolarization rebound
bursting dynamics which is essential for producing the
post-inspiratory burst of pFRG, and thus we cannot
use this neuronal model to simulate and study quantal
slowing.

We simulated the opioid-induced reduction of ex-
citability in preBotC bursting neurons both by increas-
ing g1 and by reducing gnap max. However, we do not
know how opioids depress preBotC neurons. Opioids
activate a G-protein-coupled inwardly rectifying potas-
sium conductance known as Gy, resulting in the hyper-
polarization of neurons throughout the central nervous
system (Williams et al. 1982; Wimpey and Chavkin
1991). Therefore, the depressant effect of opioids on
preBotC may be reasonably simulated by an increase
in gr. On the other hand, it is unlikely that opioids di-
rectly affect gnap max because pFRG bursting neurons,
which are Ingp-dependent (Onimaru et al. 1997), are
not affected by opioids (Takeda et al. 2001; Janczewski
et al. 2002).

Since the two putative rhythm-generating networks
are embedded hierarchically in the central respira-
tory pattern-generating network in more intact animals
(Smith et al. 2007), dynamic interactions among neu-
ronal groups must not be so simple. Opioid-induced
quantal slowing has been observed in juvenile (Mellen
et al. 2003) and adult (Vasilakos et al. 2005) rats in vivo.
These observations can be interpreted as the manifesta-
tion of dynamic interactions between fundamental-level
networks. However, it has been reported that eupnea
of in situ intra-arterially perfused rats persists following
the blockade of the two burst-generating currents, Inazp
and Ican (St.-John 2008). Therefore, whether the dual
oscillator configuration is the fundamental-level net-
work component of eupnea or that of gasping remains
to be clarified.

In summary, we developed a dual oscillator model
to understand the dynamic interactions between pFRG
and preBo6tC neurons. Our model essentially assumes
(1) both pFRG and preBotC networks are rhythm
generators, (2) preBotC receives excitatory inputs from
pFRG, and pFRG receives inhibitory inputs from pre-
BotC, and (3) persistent Nat current conductance
and synaptic current conductances are randomly dis-
tributed. Our model could produce the characteristic
behaviors observed experimentally in neonatal brain-
stem spinal cord preparations. The coupling mode de-
pended on the strengths of excitatory and inhibitory
connections of the oscillator. In contrast to the earlier
suggestions, quantal slowing was observed without
transmission failure (suppressed excitatory synaptic
conductance) or noisy mutual interactions between the
neuronal networks of the oscillator. Our study suggests
that quantal slowing may actually be a deterministic
phenomena and the non-determinism associated with
it may only be an ‘apparent’ one. We suggest that
quantal slowing results from inhomogeneous properties
of individual cells within the oscillator and subsequent
breakdown of synchronized bursting within the pre-
Bo6tC oscillator.
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Detection and Visualization Method of Dynamic
State Transition for Biological Spatio-Temporal
Imaging Data

Fumikazu Miwakeichi*, Yoshitaka Oku, Yasumasa Okada, Shigeharu Kawai, Yoshiyasu Tamura, and
Makio Ishiguro

Abstract—In the statistical analysis of functional brain imaging
data, regression analysis and cross correlation analysis between
time series data on each grid point have been widely used. The re-
sults can be graphically represented as an activation map on an
anatomical image, but only activation signal, whose temporal pat-
tern resembles the predefined reference function, can be detected.
In the present study, we propose a fusion method comprising inno-
vation approach in time series analysis and statistical test. Autore-
gressive (AR) models were fitted to time series data of each pixel
for the range sufficiently before or after the state transition. Then,
the remaining time series data were filtered using these AR param-
eters to obtain its innovation (filter output). The proposed method
could extract brain neural activation as a phase transition of dy-
namics in the system without employing external information such
as the reference function. The activation could be detected as tem-
poral transitions of statistical test values. We evaluated this method
by applying to optical imaging data obtained from the mammalian
brain and the cardiac sino-atrial node (SAN), and demonstrated
that our method can precisely detect spatio-temporal activation
profiles in the brain or SAN.

Index Terms—Biomedical optical imaging, brain mapping, inno-
vation approach, time series analysis.

I. INTRODUCTION

ECENT progress in techniques to record biological sig-
nals offers detailed spatio-temporal information in the
brain through various methods, e.g., functional magnetic res-
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onance imaging (fMRI) and optical recording. The structure of
fMRI data is four-dimensional, three of them are for space and
one is for time axis. In other words, a time series corresponds to
each spatial three-dimensional grid (voxel). The statistical sig-
nificance of the brain activation can be evaluated by regression
analysis or cross correlation analysis between the time series on
each voxel and the reference function. This method is imple-
mented in statistical parametric mapping (SPM) and has been
widely used as a standard tool for analysis [1]. Then the distribu-
tion of test values such as ¢-values corresponding to regression
coefficient or correlation coefficient is expressed on a certain
slice of an anatomical image.

An optical imaging technique using a voltage-sensitive dye
enables us to measure membrane potential changes in excitable
tissue. The technique converts membrane potentials of cells
to intensities of fluorescence emitted from the cells. Then the
changes in fluorescence on the surface of certain regions of a
brain preparation can be recorded using a high-speed high-sen-
sitivity camera [2]-[4]. The structure of optical imaging data
is three-dimensional, two of them are for space and one is for
time axis. Although the structure of optical imaging data is
similar to that of fMRI data, there has been no widely used
method for data analysis. Respecting to this situation, Oku ef
al. [2], [3] and Okada et al. [4] applied time-lagged correlation
analysis to optical imaging data to elucidate the mechanism
of respiratory rthythm and pattern generation in the rat and
frog brainstem. In the studies of rat brainstem [2], [4], they
used fouth cervical spinal cord ventral root (C4VR) output
signals that are equivalent to phrenic inspiratory burst activity
as the reference function, and found appearances of earlier
and simultaneous activities relative to the output signals in the
regions of respiratory rhythm generators.

The advantage of regression analysis or cross correlation
analysis is that the significance of the coefficients can be statis-
tically evaluated. Moreover, the test values can be mapped on
an anatomical image and it gives spatial information. However,
still there have been several problems in these analyses. The
regression or correlation analysis evaluates only the morpho-
logical resemblance between a time series and a reference
function. If there is some activation pattern that does not
resemble the reference function, then it cannot be detected.
More seriously, in the case that the reference function cannot
be defined, the data can hardly be analyzed by these methods.

In the field of time series analysis, innovation approach
has been efficiently applied to detect the changes in signal
dynamics. The dynamical properties of stationary time series,

0278-0062/$26.00 © 2011 IEEE
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whose statistical properties, e.g., mean value and variance,
do not depend on time, can be identified using mathematical
models such as autoregressive (AR) model and autoregressive
moving average (ARMA) model. Let us suppose that we pre-
pare two time series; one is used as a test time series for model
identification, and the other is for filtering with the identified
model. If new time series is filtered through the identified
model, unpredictable signals remain in residuals. The residuals
are called innovations. If the amplitude of innovations of filter
output becomes significantly higher than the innovation of test
data, the state is detected as a phase transition of dynamics in
the system. This approach has been applied in various fields,
e.g., plant monitoring system [6]-[10].

In the present study, we applied the innovation approach to
optical imaging data obtained from the mammalian brain and
the cardiac sino-atrial node (SAN), and attempted to detect bio-
logical activation in innovations. In addition, we propose a new
method of statistical evaluation for the data set that is recorded in
repeated measurement and a method for visualizing spatio-tem-
poral distribution of the statistical test values.

II. METHODS

A. Innovation Approach

The autoregressive (AR) model for a time series 7(t), ¢ =

1,...,5, is defined as a linear combination of the past values
with a prediction error £(¢) and a constant 3
P
-B8= Z a(i)n(t —1) +&(t) 1)
i=1

where p denotes the model order and «(7) are AR coefficients.
The linear dynamic properties of the system can be identified
with a parameter vector ¢ = {a(1),...,a(p), 3,02}, here o2
is a variance of ¢(¢). The innovations result from the residual
time series can be estimated as

P
e(t) =n(t) — () = n(t) - (Z a(i)n(t —1i) + /3) @
i=1
and the signals that cannot be predicted by the linear AR process
remain in the innovations. In other words, innovations are filter
outputs through a linear AR process.
Considering an exogenous input (%), t = 1,..., 5, the AR
model can be generalized to an AR model with exogenous in-
puts (ARX) denoted as

n(t) — B = Z t—z)-l—Zgb

Suppose the measurement points of the imaging data are on the
two dimensional pixel that are labeled by an index v = (I, m)
and only the influences of nearest neighbor upon each pixel are
considered as exogenous inputs, the ARX model will be spe-
cialized as

(it —34)+e(t). 3)

Za (On?(t —1)
+ > Z(S”

wEN(v) j=1

n°(t) -

“t—7)+ev(t) @
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where N(v) is a set of indices of the neighbor pixels to the pixel
at v = (I,m). Suppose neighbor pixels are restricted to the
pixels, which contact with the edge of the pixel at the point v, a
set of indices of neighbor pixels will be

N(v)={({+1,m),(,m—-1),(I,m+1),(l—1,m)}. (5

The ARX model with the restricted neighbor pixels will be re-
ferred as nearest neighbor autoregressive model (NNAR) in this
paper. The innovations for the pixel at v

(t)” =n"(t) — 7°(¢)
P
=7°(t) = { Yo (@n*(t - i)
=1
+ > Z&“ “t—4)+ 8" (©6)
u€N(v) j=1

contain the signals which cannot be predicted by a linear AR
process even though the spatial influences from the neighbors
are taken into consideration.

B. Statistical Evaluation of Innovations and Graphical
Representation

In the case imaging data are repeatedly recorded, we ob-
tain multiple time series 7*(¢), ¢ = 1,..., 9, for each pixel
(w = (I, m,n), l and m are the indices of a pixel, n is the index
of the repetition, 1 < n < N) (Fig. 5). Suppose the NNAR
model is identified with a limited period ¢; < ¢ < t9, any arbi-
trary selected other period ¢ < ¢ < ¢, can be filtered through
the identified NNAR model. Let the innovations corresponding
to the period for the NNAR model identification and for fil-
tering e1*(¢) and €% (¢), respectively. The amplitude level of
e2®(¢') will increase at the time point ¢ when the unpredictable
signals arise. Then the statistical significance can be evaluated
by com%anng the mean value between the innovations at ¢/,

g2 (mn) () and Whole innovations within the pe-
nod o< i < ta, (N(ta — t1)) "1 00, SN ebmon) (g
by some statistical test. In this study, we employed standard
t-test for this purpose. By shifting time point ¢/, time-depen-
dent ¢-values can be computed. Then time-dependent activation
t-map, which shows dynamic state transition, can be obtained
by repeating this procedure for all pixels.

This method detects not only biological activation as dynamic
state transition but also some artifact inevitably. Some proce-
dure for artifact discrimination has to be considered. There are
mainly two types of artifacts. One is stationary oscillatory noise
such as those caused by electric power supply (hum noise) and
mechanical vibration of measurement system. This sort of arti-
facts can be identified by AR-type model, and then £2*(¢) will
be close to Gaussian white noise. Therefore the oscillatory noise
will not appear in €% (¢'), because these artifacts consist of pre-
dictable signals. The other is caused by nonstationary sporadic
noise, and it will appear in e*(¢') because it cannot be pre-
dicted by the identified AR-type model. This sort of artifact can
be partly removed from final results such as activation ¢-map by
setting a threshold for spatial cluster size and/or duration.
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C. Time-Lagged Cross Correlation Analysis

The time-lagged cross correlation analysis provides temporal
information of the appearance of the signals in the imaging data
whose wave forms resemble predefined reference function [2].
Suppose 7”(t) is a time series of imaging data for a pixel v =
(I,m) and o(t) is a predefined reference function, the lagged
cross correlation can be denoted as

R (r) = o (t)elt — )\ PP ™

where 7 is a relative time lag. A lagged correlation coefficient
can be straightforwardly converted to a ¢-value. Then time de-
pendent correlation ¢-map can be obtained if this procedure is
repeated for all pixels. In the case 7 = 0, it will be ordinary
cross correlation analysis.

D. Simulation

We intended to illustrate the effectiveness of the proposed
method in this section with simulated data. The simulated data
consist of sinusoidal and triangle waves that represent phys-
iological activations superposed on a background oscillation.
The background oscillation is generated by AR process defined
as (1). The model order p, AR coefficients, constant level 3
and sampling frequency Fs are set to p = 2, a(l) = 1.84,
a(2) = —0.98, 8 = 0 and F's = 50 [Hz|, respectively, in order
to generate 3 Hz background oscillation that can be observed in
actual data sets. The sinusoidal wave is defined as a cosine curve
—0.5 - cos(2mf - (t — 6)/Fs) + 0.5 (f = 0.5Hz, 6§ = 1.0s5,
1.0 s < t < 2.0 ), which imitates the C4VR respiratory ac-
tivity [Fig. 4(c)], and was used as the reference function for the
time-lagged cross correlation analysis. The triangle wave is for
an example of the signal whose waveform does not resemble the
reference function. The onset time of triangle wave was set on
the origin of the time axis, and the offset time was set on 0.52 s,
the onset and offset time of sinusoidal wave were seton 1.0's and
3.0s, respectively [Fig. 1(a) and (b)]. We prepared 30 simulated
data with generating different background oscillation. Fig. 1(c)
and (d) show one of the simulated data with different values of
the variance of prediction error in (1) (¢ = 0.0025 and 0.0256,
respectively).

The AR model was identified on the period between —5.0 s
and —3.0 s (101 time frames). Subsequently, the period be-
tween —1.0-4.24 s (263 time frames) was filtered through the
identified AR model. Fig. 3 shows the temporal transition of
the amplitude of innovations for all repetitions. The area A is
a set of the innovations within the period for model identifi-
cation (¢1*(t)) and the line B is a set of innovations of filter
output (¢%¥(¢')) at the time ¢'. We evaluated the statistical sig-
nificance of the difference of mean amplitude of the innovations
in the area A and on the line B using standard ¢-test, and re-
peated the same procedure for the simulated data instead of the
innovations. Fig. 2(a) and (c) displays the temporal transition
of ¢-values of simulated data and innovations, respectively. The
horizontal line in each figure corresponds to the significance
level (p = 0.05).

In case the variance of prediction error is sufficiently small
(02 = 0.0025), the t-values correspond to the triangle and si-
nusoidal waves exceed the significance level for both the sim-

(2) (b)
20 2,0
1.0 1.0 J\
o0 N 0
-10 -20 -1.0 0 10 20 30[s] -10 -20 -10 0 10 20 30[s]
© (d)
¢’=2.5x10" 62=2.56x10"
5.0
20
o 0
-5.0
-2.0
-20 -1.0 0 10 20 30]s] -20 -10 0 106 20 30[s]

Fig. 1. The sinusoidal wave (a) and triangle wave (b) representing physiolog-
ical activations. The simulated data with sinusoidal and triangle waves were
superposed on the background oscillation generated by AR processes with dif-
ferent values of the variance of the prediction error (c), (d) (¢ = 0.0025 and
0.0256, respectively).

Number of repetition

Uy
10 20

07740 =30 20 1040

Fig. 2. Temporal transition of the amplitude of innovations for all simulated
data (30 repetitions). The area A is the set of the innovations within the period
of model identification and the line B is the set of the innovations of filter output
at the time ¢’. The mean amplitude of innovations for each repetition was nor-
malized between —1 to 1.

ulated data and innovations. As the variance of the prediction
error is raised to 0.0256, the t-values of simulated data, which
even do not correspond to these waves exceeds significant level,
that is, it causes false positive error (Fig. 3(a) right). On the con-
trary, the ¢-values of innovations only which correspond to these
waves exceed significance level (Fig. 3(c) right). It can be said
that the false positive rate is well controlled in the ¢-test with the
innovations.

The results of the time-lagged correlation analysis between
averaged simulated data and the predefined reference function
[Fig. 1(a)] are shown in Fig. 3(b). Since a correlation coefficient
can be computed with a relative time lag, the time axis indicates
the relative time lag 7 rather than the absolute time. And itis a
natural consequence that the ¢-values have a maximal peak with
7 = 0. The t-values have also another peak at —1.74 s, which
corresponds to the peak of the triangle wave. However it does
not exceed the significance level, that is, it causes false negative
error.

These algorithms were implemented in MATLAB 2006a
and run on Windows XP computer (CPU: Intel Core2 Extreme
Q6850 3 GHz, RAM: 3.25 GB). The computation time is about
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Fig. 3. Temporal transition of ¢-values for simulated data with different values
of the variance of the prediction error (a), correlation coefficient with time lags
(b), and innovations (c). The horizontal lime in each figure corresponds to the
significance level of p = 0.05.

30 minutes for innovation approach and about 10 minutes for
cross correlation analysis with actual imaging data, except for
the process for graphical representation.

III. DATA ACQUISITION

We selected the same imaging data set from 2 day and 0 day
old rats (corresponding to datal and data2 respectively in this
study) that was used in the study of developmental aspects of the
respiratory neuronal activation in the rat brainstem [2] in order
to evaluate our method by comparing its outputs with those of
the time-lagged cross correlation analysis. Additionally, we an-
alyzed the imaging data set from the rabbit cardiac sino-atrial
node (SAN) as an example of the application of our method to
other types of preparations (data3). These data were taken from
the article that reported inhomogeneous action potential charac-
teristics as a cause of pacemaker shift in the SAN [5].

The recording chamber was mounted on a fluorescence
macro zoom microscope (MVX-10, Olympus Optical, Tokyo,
Japan). Preparations stained with a voltage-sensitive dye were
illuminated with a tungsten-halogen lamp (150 W) through a
band-pass excitation filter (A = 480-550 nm). Epifluorescence
through a long-pass barrier filter (A > 590 nm) was detected
with a CMOS sensor array (MiCAM Ultima L-camera, Brain-
Vision; 100 pm x 100 pm pixel size, 100 x 100 pixel array).
Optical signals were sampled at 50 Hz (20 ms/frame) for datal
and data2, 500 Hz (2 ms/frame) for data3.

Analog signals of raw and integrated C4VR activities were
recorded at 1 kHz for datal and data2. The analog signal of
electrical field potential of the SAN was recorded at 10 kHz
for data3 with a pair of fine metal electrodes placed on both
edges of the preparation. These analog signals were amplified
and digitized, then stored in a hard disk together with optical sig-
nals. Analog signals were window-discriminated to yield tran-
sistor-transistor logic (TTL) pulses and used to trigger the op-
tical recording system. Total number of recorded time frames
were 1024/256/1024, the recording was started at 768/64/768
frames before the trigger signal, and repeated 30/34/71 times
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Fig. 4. (a) Ventral brainstem area for optical imaging (surrounded by the red
square). (b) Schematic representation of anatomical structure of the brainstem
and the recorded area. (c) Raw output signal from C4VR. (d) Integrated C4VR
output signal.

for datal/data2/data3, respectively. Among these repetitions, 29
and 27 repetitions, which were contaminated with relatively
small artifacts, were selected for datal and data2, respectively.
In the case of data3, all repetitions had high enough quality, be-
cause SAN generated signals with high S/N ratio resulted from
its highly synchronized activation. In order to set similar num-
bers of repetitions for all data sets, 30 repetitions were selected
among 71 repetitions for a fair comparison with datal and data2.

The change in fluorescence intensity (A F') relative to the ini-
tial intensity of the fluorescence (Fp) in each pixel was cal-
culated. To normalize the difference in the amount of mem-
brane-bound dye and illumination within the preparation, back-
ground fluorescence intensity at each pixel was divided by the
maximum background fluorescence, and then the ratio of AF to
the normalized background fluorescence intensity (F), i.e., the
fractional change in fluorescence intensity (AF/F), was cal-
culated at each pixel in each frame. If F was less than 0.25,
then AF/F was set to be zero [2]-[5]. Then the linear trend
of imaging data associated with photobleaching was eliminated
and z-transformed.

Fig. 4 shows the recorded area in the brainstem, which con-
tains two putative rhythm generators reported as the para-fa-
cial respiratory group (pFRG) [12] and the pre-Botzinger com-
plex (preBo6tC) [13]. Inspiratory-related respiratory activity was
monitored from the C4VR with a suction electrode. The raw
nerve signal was amplified, band-pass filtered from 15 Hz to 3
kHz, full-wave rectified, and integrated with a decay time con-
stant of 100 ms. This integrated signal was used as the reference
function for the cross correlation analysis.

IV. RESULTS

Background stationary oscillations were identified by a
NNAR model on the period sufficiently before or after the
respiration onset. In this study four neighboring pixels, which
contact with edge of a pixel of interest were employed for the
NNAR model for saving the computational cost. The parame-
ters in the NNAR model were estimated using the least square
method. Then the rest part of the data was filtered through the



