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Neurosurgery Simulation

In their neurosurgery simulation technology review, Malone
et al' address an important yet largely unaddressed surgical area
that can significantly benefit from the availability of an effective
simulation-based surgical training system. Further, they touch on
a number of relevant aspects of developments that will underpin
their work on a pedicle screw placement simulator. We would like
to add some additional thoughts here, which are based our work
over the past several years in developing both a hard-tissue (burr
hole) drilling simulator prototype for the US Army as well as
a generalized soft-tissue simulation and bleeding system for
general surgical resident training.

The authors have correctly identified that the foundational step
in developing a system that provides clinically useful surgical skills
training is to isolate the subtasks that will benefit most from
simulation. Minimizing effort devoted to already mastered or
commonly acquired skills and, instead, focusing on critical skill
areas that are not well addressed with currently available approaches
is critical to producing a simulator that meets unmet needs. To
build simulations for those subtasks, the movements and loads
experienced by the surgeon during both expected and unexpected
actions in the procedure need to form the basis for the mathe-
matical modeling and haptic device interfaces that will be de-
veloped. We have also found that, as the authors note, these
movements and loads are often not known/available, and we have
had to obtain this information ourselves as well. Measuring how
actions are done wrong is just as important, if not more so, as
measuring when they are done correctly, because an effective
simulator must provide learners with the complete range of possible
interactions. Learning what happens when something is done right
often occurs in the context of learning what happens when things
are done wrong,

Also important at the earliest stage of planning a simulator is
defining objective, quantitative metrics of performance that can
be used to measure atrainment of proficiency of the skills being
learned. This enables the simulator to be designed to provide
reliable, appropriate metrics of performance that can stand up to
rigorous evaluation and professional scrutiny.

The authors mention the limitations of current haptic devices
and illustrate with the results in their work on measuring the
loads encountered in pedicle screw placement. Current,
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commercially available haptic devices typically provide about 1 Ib
of force, whereas approximately 15 [b of force are experienced
during screw placement in the authors’ work. Qur research in
drilling fresh frozen cadaver skulls showed that forces as high as
30 Ib can be experienced. To approach the forces and torques we
measured, however, we needed to develop a custom haptic device
using augmented off-the-shelf haptic devices. We expect that the
availability of haptic devices having sufficient force/torque
capacity and adequate range of movement and orientation will
remain a major challenge for simulators that focus on high-load
situations such as bone drilling.

A final consideration is the mixture of soft-tissue-centric
lower-force actions with bone-centric high-load actions in the
same simulation. Typically, soft-tissue simulations are modeled
with finite-element methods centered on deformation and
transection, whereas bone-centric simulations are done with
voxel-based techniques in which the goal is often to remove
bone through an energy-based methodology that represents the
action of drill or saw blades. These techniques are quite dif-
ferent from one another, as are the haptic interface require-
ments. To our knowledge, no simulator has been produced to
date that supports interaction with both soft tissue and bone in
the same user experience. This limitation calls for attention to
how procedural subtasks are deconstructed if combined soft-
tissue~bone actions are encountered, which is not uncommon
in spinal procedures.

Malone and colleagues are to be congratulated for taking on an
important and largely unaddressed area. Much work lies ahead in
the years to come, however, before the potential of such simu-
lators is realized.

Dwight Meglan
Howard R. Champion
Silver Spring, Maryland

1. Malone HR, Syed ON, Downes MS, D’Ambrosio AL, Quest DQ, Kaiser MG.
Simulation in neurosurgery: a review of computer-based simulation environments
and their surgical applications. Newrosurgery. 2010;67(4):1105-1116.
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In Reply:

We appreciate the remarks of Drs Meglan and Champion of
SimQuest, LLC. They are right to emphasize the limirations of
many available haptic interfaces in reproducing the torques
and loads encountered in the operative theater. The difficulty
of simultaneously modeling finite-element~based soft-tissue
deformation and voxel-based bone (hard-tissue) drilling,
a challenge inherent to spine surgery simulation, is also ad-
dressed. Collaboration with simulation firms like SimQuest
that possess the technical expertise to customize standard
haptic interfaces and merge tissue deformation modalities is
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essential to the continued evolution of computer-based neu-
rosurgery simulation.

Hani Malone

Omar Syed

Michael Kaiser

New York, New York
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Relationship Between Decompressive Craniectomy
and Hydrocephalus
To the Editor:

We read with great interest the article by Rahme et al' in which
the authors reviewed the records of 17 patients with stroke-related
increased intracranial pressure who underwent decompressive
craniectomy (DC). The authors described a 0% rate of shunting
after DC and concluded that hydrocephalus does not frequently
occur after DC. On the other hand, in the series of Waziri et al,*
hydrocephalus developed in 15 of 17 patients after DC, and 5
required shunting after cranioplasty. Rahme et al! speculated that
the explanation for this discrepancy might lie in the definition of
hydrocephalus and the indications for shunting.

We completely agree with the viewpoint of Rahme et al';
however, we wish to provide further comment on this issue.
Bogousslavsky and Reg,__,li3 reported that, in 60 cases of internal
carotid artery occlusion, the occurrence of ventricular dilation was
related to the volume of infarction. Additionally, Barber et al*
reported that hydrocephalus was present in 22% of patients who
had a large middle cerebral artery infarction, and they received
conventional medical therapy (without surgery).

Therefore, we believe that the possibility of hydrocephalus
developing in the course of a large infarction should be consid-
ered. From this viewpoint, we consider that an additional
explanation for the dlscrepancy between the results of Rahme et
al' and Waziri et al mlght be differences in the area and volume
of the infarction. Indeed, in the Waziri et al series, all 4 patients
with internal carotid artery infarction developed hydrocephalus
after DC (half required shunting), and none of the 7 patients with
middle cerebral artery infarction received shunting, whereas the
Rahme et al series included no patients with internal carotid
artery infarction.”

Satoru Takeuchi

Naoki Otani

Hiroshi Nawashiro
Tokorozawa, Saitama, Japan

1. Rahme R, Weil AG, Sabbagh M, Moumdjian R, Bouchillier A, Bojanowski MW.
Decompressive craniectomy is not an independent risk factor for communicating
hydrocephalus in patients with increased intracranial pressure. Neurosurgery.
2010;67(3):675-678.

2. Waziri A, Fusco D, Mayer SA, McKhann GM 11, Connolly ES Jr. Postoperative
hydrocephalus in patients undergoing decompressive hemicranicctomy for ischemic
or hemorrhagic stroke. Newrosurgery. 2007;61(3):489-493.
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In Reply:

We would like to thank Drs Takeuchi, Otani, and Nawashiro
for their interest in our article." However, we find that the 2
studies they are referring to do not really lend support to their
hypothesis that the divergence between our results and those of
Waziri et al® lies in the difference in patient characteristics,
specifically the extent of infarction.

In the article of Bogousslavsky and Regli,” the authors analyzed
the development of unilateral ipsilateral ventricular dilation and
cortical atrophy in patients with large strokes secondary to in-
ternal carotid artery occlusion or stenosis. There was no mention
of hydrocephalus in their report. It is important to distinguish
between true hydrocephalus, that is, mismatch between CSF
production and resorption, and ventricular dilation or hydro-
cephalus ex vacuo, which is merely a radiological finding caused
by large areas of neuronal loss and encephalomalacia after
a massive infarction.

In their publication, Barber et al? sought to determine early
CT signs predictive of death after large middle cerebral artery
(MCA) infarction in a large cohort of conservatively managed
patients, none of which had undergone decompressive cra-
niectomy. The authors found that moderate or severe hydro-
cephalus was predictive of death on univariate, but not
multivariate analysis. Tt must be noted, however, that these
authors were referring to acute obstructive hydrocephalus,
a complication of cerebral edema-related mass effect in large
ischemic strokes. Conversely, in our study' and that of Waziri
et al,” patients were typically protected against obstructive
hydrocephalus by the wide surgical decompression. Rather, the
incidence of chronic communicating hydrocephalus in
survivors of malignant MCA territory infarction and other
types of stroke was assessed.

To the best of our knowledge, there is no direct relationship
between communicating hydrocephalus and ischemic stroke.
Additionally, in our experience, hydrocephalus is not a frequent
complication of decompressive Lramectomv Therefore, unless
new scientific evidence comes to disprove these findings, we have
no reason to believe that hydrocephalus should be a major concern
in the management of patients with large MCA or internal carotid
artery infarctions.

Ralph Rahme

Alexander G. Weil
Michel W. Bojanowski
Montreal, Quebec, Canada
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Real-time control of a prosthetic hand using human
electrocorticography signals

Technical note

TAKUFUMI YANAGISAWA, M.D., Pu.D.,”>» Masayuki Hirata, M.D., Pu.D.,!

Youicui Sarron, M.D., Pu.D.,! TeErsu Goro, M.D., Pu.D.,!

Harunixko Kisaiva, M.D., Pu.D.,! Ryoner Fukuma, M.S.,23 Hirosui Yokoi, Pu.D.,*
Yukivasu Kamitant, Pa.D.,%? aNp Tosuik1 YosHIMINE, M.D., Pu.D.!

'Department of Neurosurgery, Osaka University Medical School, Osaka; 2ATR Computational Neuroscience
Laboratories, Kyoto; *Nara Institute of Science and Technology; and *Department of Precision Engineering,
University of Tokyo, Japan

Object. A brain-machine interface (BMI) offers patients with severe motor disabilities greater independence
by controlling external devices such as prosthetic arms. Among the available signal sources for the BMI, electro-
corticography (ECoG) provides a clinically feasible signal with long-term stability and low clinical risk. Although
ECoG signals have been used to infer arm movements, no study has examined its use to control a prosthetic arm in
real time. The authors present an integrated BMI system for the control of a prosthetic hand using ECoG signals in a
patient who had suffered a stroke. This system used the power modulations of the ECoG signal that are characteristic
during movements of the patient’s hand and enabled control of the prosthetic hand with movements that mimicked
the patient’s hand movements.

Methods. A poststroke patient with subdural electrodes placed over his sensorimotor cortex performed 3 types
of simple hand movements following a sound cue (calibration period). Time-frequency analysis was performed
with the ECoG signals to select 3 frequency bands (1-8, 25-40, and 80-150 Hz) that revealed characteristic power
modulation during the movements. Using these selected features, 2 classifiers (decoders) were trained to predict the
movement state—that is, whether the patient was moving his hand or not—and the movement type based on a linear
support vector machine. The decoding accuracy was compared among the 3 frequency bands to identify the most
informative features. With the trained decoders, novel ECoG signals were decoded online while the patient performed
the same task without cues (free-run period). According to the results of the real-time decoding, the prosthetic hand
mimicked the patient’s hand movements.

Results. Offline cross-validation analysis of the ECoG data measured during the calibration period revealed that
the state and movement type of the patient’s hand were predicted with an accuracy of 79.6% (chance 50%) and 68.3%
(chance 33.3%), respectively. Using the trained decoders, the onset of the hand movement was detected within 0.37
+ 0.29 seconds of the actual movement. At the detected onset timing, the type of movement was inferred with an
accuracy of 69.2%. In the free-run period, the patient’s hand movements were faithfully mimicked by the prosthetic
hand in real time.

Conclusions. The present integrated BMI system successfully decoded the hand movements of a poststroke pa-
tient and controlled a prosthetic hand in real time. This success paves the way for the restoration of the patient’s motor
function using a prosthetic arm controlled by a BMI using ECoG signals. (DOI: 10.3171/2011.1 JNS101421)
brain-machine interface *

Key WorDs  * prosthetic hand -«

electrocorticography signal ¢

to a loss of muscle control without disruption of
the patients’ cognitive abilities. These include
amyotrophic lateral sclerosis, brainstem stroke, spinal
cord injury, muscular dystrophy, and cerebral palsy.
Brain-machine interface technology can offer these pa-

T HERE are several diseases and conditions that lead

Abbreviations used in this paper: BMI = brain-machine interface;
ECoG = electrocorticography; EEG = electroencephalography;
EMG = electromyography; FFT = fast Fourier transform; MEG =
magnetoencephalography; SVM = support vector machine.
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real time

support vector machine

tients greater independence and a higher quality of life,
providing the individual with control of external devices
with which to communicate with others and manipulate
their environment according to their will.?

Several signal platforms could be used as input sig-
nals for BMIs in a clinical setting: EEG,*® MEG,” neu-
ronal ensemble activity recorded intracortically (single
units)®*2® and/or local field potentials,* and ECoG.!82!
Each type of signal has proven to be useful for BMIs,
although each has advantages and disadvantages regard-
ing utility in an applied setting. Although EEG and MEG
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signals can be measured noninvasively,* they have low
spatial resolution compared with the other signals and are
susceptible to artifacts from other sources.” Single-unit
recordings have been shown to convey large amounts of
information for the successful control of a prosthetic arm
in a self-feeding task of monkeys.?® This type of BMI sys-
tem has already been applied to paralyzed patients,’ but
the clinical implementation of intracortical BMIs is cur-
rently impeded by difficulty in maintaining stable long-
term recordings and the substantial technical require-
ments of the recordings.®? Electrocorticography has a
higher spatial resolution and better signal-to-noise ratio
than EEG or MEG. Its signals have been used to control
the movement of a cursor on a computer screen,? to re-
construct the trajectory of a 2D arm movement,”® and to
decode a single finger movement.'* Moreover, ECoG re-
cordings have superior long-term stability than intracorti-
cal single-unit recordings, as well as lower technical dif-
ficulty and clinical risk.* Even though ECoG signals have
been shown to be useful for BMI systems, they have not
been used to control the movement of a prosthetic hand.
Here, we propose an integrated BMI system to control
the movement of a prosthetic hand using ECoG signals
generated while the patient moved his hand.

Previously, we developed a system in which a pa-
tient’s EMG signals were used to control the movement
of a prosthetic hand.”>7 This system records the EMG
signals and converts them into a power spectrum to clas-
sify some simple movements. The user can control the
prosthetic hand by performing or attempting to perform
simple hand movements, such as hand grasping, hand
opening, and making a scissor shape. By combining
such simple movements, an amputee was able to use the
prosthetic hand for writing by holding a pen, cooking by
grasping a kitchen knife, and other activities of daily liv-
ing.?? In the present study, we removed the EMG sensors
and control unit from this system and attached a new unit
that records and classifies ECoG signals to control the
prosthetic hand. The new integrated system was designed
to classify some simple movements using only 3 frequen-
cy power bands of the ECoG signals.

With the new integrated system, the ECoG signals
of a stroke patient were recorded when he performed 3
types of hand movements. Time-frequency analysis of
the signals demonstrated that 3 frequency power bands
contained the characteristic features relating to the move-
ments. With these features, the state and the type of
movement were inferred by 2 decoders. The decoding
accuracy was compared among the 3 frequency bands to
identify the most informative band. With the 2 decoders,
the freely performed movements were inferred so that the
prosthetic hand faithfully mimicked the individual’s hand
in real time.

Methods
Patient

This 64-year-old man with thalamic pain on the left
side of his body participated in this study. He had incom-
plete left hemiparesis due to a right thalamic hemorrhage
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7 years earlier. He was barely able to perform simple
hand movements (grasping, opening, and making a scis-
sor shape). Subdural electrodes had been implanted on
the right sensorimotor cortex to reduce intractable pain
by delivering electrical stimulation.'® First, 2 sheets of a
30-electrode array were temporarily implanted on a broad
cortical area around his hand motor strip to determine an
optimal stimulation site where the maximum reduction
of his pain was achieved. The number and location of the
electrodes were chosen to stimulate the cortical area cor-
responding to the body parts with pain. These electrodes
were implanted for 2 weeks. Then, after the optimal site
was determined, an array of 4 electrodes was implanted
at the optimal site for chronic stimulation to reduce the
pain. The patient participated in our study during the
2 weeks of temporary electrode placement. He was in-
formed of the purpose and possible consequences of this
study, and written informed consent was obtained. The
ethics committee of Osaka University Hospital approved
the present study.

Prosthetic Hand

The prosthetic hand was an experimental anthro-
pomorphic hand developed by Dr. Yokoi.'? The general
movement mechanisms and degrees of freedom of the
hand mimicked those of a human hand. The hand was
equipped with 8 DC motors to independently actuate 8
individual tendons of the hand. The 8 tendons work in a
coordinated manner to accomplish flexion or extension of
each individual finger. The commands to the hand were
updated by the host computer system every 200 msec.

Recording Methods

Sixty planar-surface platinum grid electrodes (2
sheets of a 5 x 6 array, Unique Medical Co.) were placed
over the patient’s right sensorimotor cortex (see Fig. 2A).
The electrodes had a diameter of 3 mm and a center-to-
center interelectrode distance of 7 mm. Video recording
was performed during experiments. Electromyography
recordings of the contralateral flexor digitorum superfi-
cialis muscle were collected at the same time. The video
and EMG recordings were not used for the decoding but
were used to identify the onset of the actual movement
during offline analysis.

The location of the implanted electrodes was identi-
fied by standard neurosurgical techniques, both anatomi-
cally and electrophysiologically. After induction of gener-
al anesthesia, we performed a frontoparietal craniotomy
over the sensorimotor cortex. The location of the central
sulcus was estimated using preoperative MR imaging and
confirmed by the phase reversal of the N20 component of
the intraoperative somatosensory evoked potentials.

Movement Tasks

Experiments were performed in an electromagneti-
cally shielded room approximately 1 week after electrode
placement. The patient was instructed to perform 3 types
of movements with his left hand: a grasping motion, a
hand-opening motion, and a scissor-shape motion (ex-
tension of the second and third fingers). He selected and
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Real-time prosthetic hand control using an ECoG BMI

performed 1 of the 3 hand movements immediately after
the presentation of a sound cue that recurred every 5.5
seconds (calibration period [Fig. 1A]). The sound cue was
delivered from a loudspeaker controlled by Matlab 2007b
(Mathworks), consisting of 3 beeps presented every 1
second. The patient was instructed to move his hand just
after the third sound and to return his hand to a resting
position immediately after the movement. For the resting
position, the patient was instructed to relax his hand while
slightly flexing his fingers. The 3 types of movement were
performed approximately 40 times each. This calibration
period took approximately 20 minutes with some breaks
in between. During this period, there was no training of
the patient.

After the calibration period with the external cues,
the patient performed the same task at self-paced inter-
vals without any external cues (free-run session [Fig. 1B]).
The free-run session lasted for approximately 20 minutes
with some breaks. Therefore, all of the experiments in
this study took only approximately 1 hour. Notably, the
patient performed the free-run task without training to
control the prosthetic hand; indeed, it was only necessary
to train the decoder to the ECoG signals obtained in the
calibration period (see the Decoding Algorithms section
for details).

Data Collection and Preprocessing

Electrocorticography signals were measured using
a 128-channel digital EEG system (EEG 2000, Nihon
Koden Corp.) and digitized at a sampling rate of 1000
Hz. All subdural electrodes were referenced to a scalp
electrode placed on the nasion. The bandpass filter for the
data analysis was set to 0.16-300 Hz.

At first, during the calibration period, the ECoG sig-
nals of all implanted electrodes were examined for 4000
msec in each session (-2000 to 2000 msec from the cue
onset of each movement). A time-frequency analysis of
the ECoG signals was performed using EEGLAB v5.03.°
The power spectrum of the ECoG signals was analyzed
for each electrode and each type of movement. From the
results of the power spectrum, we identified 3 frequency
power bands with characteristic modulation during the
movement tasks: 1-8, 25-40, and 80-150 Hz

For the decoding analysis, the ECoG signals of all
implanted electrodes were obtained by reference to the 3
beeps. Figure 1A shows the duration of the ECoG signals
used for the decoding analysis: “N,” ECoG signals of 1
second after the first sound; “R,” ECoG signals of 1 sec-
ond after the second sound; and “M,” ECoG signals of 1
second after the third sound. An FFT algorithm was per-
formed for each 1-second signal to obtain the 3 frequency
power bands (1-8, 25-40, and 80—150 Hz). The FFT was
performed using EEGLAB v5.03. For each trial and elec-
trode, the R and M frequency power bands were normal-
ized by dividing them with the corresponding power of N.
The normalized M and R power bands were used as the
input features for the following decoding analysis (Fig.
1A).

In the free-run session, the 1-second ECoG signals
were recorded online every 200 msec. The FFT algorithm
was performed for each 1-second signal to obtain the 3
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frequency power bands for each electrode. The frequency
power bands of each electrode were divided by the cor-
responding power bands of the baseline features (baseline
features were defined as the mean frequency power bands
of N that were obtained by averaging the features of N for
all trials in the calibration period).

Decoding Algorithms

With the features obtained in the calibration period,
we constructed 2 decoders, or linear classifiers, to infer
the patient’s movements on a trial-by-trial basis. The
decoders were trained or calculated using mathematical
algorithms to infer the patient’s movements using only
a novel ECoG signal. The normalized powers of the 3
frequency bands (features) were used to train the 2 de-
coders based on the linear SVM.* Decoder 1 was trained
to classify the movement state R or M, with the features
of R and M (Fig. 1A). Decoder 2 was trained to predict
the types of performed movement with the features of M
(Fig. 1A). The mathematical details of these decoders are
described in the supplementary section and the follow-
ing references (http:/www.cns.atr.jp/dni/en/downloads/
brain-decoder-toolbox).!!*!

The decoding accuracy was compared among the
decoding of each of the 3 frequency bands to identify
the most informative frequency band. The decoding ac-
curacy was estimated by using a 5-fold cross-validation
method (Appendix).

Real-Time Decoding and Prosthetic Hand Control

The 2 decoders trained by the ECoG signals with the
external cues were applied to the novel ECoG signals in
real time. Decoder 1 classified the ECoG signals as either
R or M to infer the onset of movement. When the inferred
state changed from R to the two successive M decoder
results, movement onset was inferred (or defined) as the
time between R and M. Then, Decoder 2 classified the
type of movement using the feature of the second M (Fig.
1B).

According to the decoding results, the prosthetic hand
was controlled to mimic the patient’s movements. When
the decoding result from Decoder 1 was R, the prosthetic
hand was moved to the predefined resting position. When
movement onset was inferred by Decoder 1, then Decoder
2 inferred the type of movement using the current ECoG
signals. Then, the prosthetic hand was moved to the pre-
defined posture of the inferred movement. The posture
was maintained for 1 second, regardless of the decoding
results from Decoder 1. After 1 second, the prosthetic
hand was moved back to the resting position.

Results
Offline Time-Frequency Analysis

During the movements in the calibration period, the
power spectrum of the ECoG signals on the sensorimo-
tor cortex varied consistently. Figure 2B illustrates an ex-
ample of the power spectrum time locked to the external
sound cue during the grasping movement. The signal was
recorded from an electrode on the primary motor cortex
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B integrated BMI system

o

Frequency band powers:
17-8Hz, 25-40Hz, 80-150Hz

v

Decoders:
Decoder 1; ‘R or ‘M’
Decoder 2; movement type

v

Prosthetic hand

Fie. 1. lllustrations of the task and the integrated real-time decoding system. A: The task in the calibration period. The
1-second ECoG signals after each sound were defined as: 1st, “N” for normalization; 2nd, “R” for resting state; and 3rd, “M” for
moving state. Decoders 1-and 2 were trained with the R + M and M ECoG signals, respectively. The representative photographs
of hands show the task movements performed by a healthy individual. ~ B: The task in the free-run period. The 1-second ECoG
signals obtained every 200 msec were classified by Decoders 1 and 2 when the patient performed 1 of the 3 hand movements

with arbitrary timing. ~ C: lllustration of the integrated BMI system.

indicated by a blue arrow in Fig. 2A. As shown in Fig. 2B,
the power reduction of the beta band (25-40 Hz) (event-
related desynchronization) and the power increase of the
theta (1-8 Hz) and gamma (80-150 Hz) bands (event-re-
lated synchronization) were observed around the move-
ment onset. These frequency features, event-related de-
synchronization and event-related synchronization, were
observed consistently on the sensorimotor cortex during
the movement task.

The spatial distribution of these features on the elec-
trodes differed depending on the movement (Fig. 2C).
The increase in the power of the gamma and theta bands
was observed at the localized area of the primary motor
cortex. However, the decrease in the power of the beta
band was observed diffusely around the primary motor
cortex (Fig. 2C). The spatial distribution of each frequen-
cy power band differed among the 3 types of movement,
especially for the gamma and theta bands. We selected
these 3 frequency power bands as the input features for
decoding.

Offline Analysis of Decoding

The patient’s hand movement was inferred by the de-
coders using the frequency features of the ECoG signals
on a trial-by-trial basis. Offline cross-validation analysis
of the ECoG data measured during the calibration period
revealed that the patient’s state and the movement type
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were predicted with an accuracy of 79.6% (chance 50%)
and 68.3% (chance 33.3%), respectively (Fig. 3). Among
the 3 frequency bands, the gamma band power exhibited
the best performance for the decoding of both the states
and types of movement (Fig. 3).

Next, the trained Decoder 1 was tested to determine
whether it could detect the onset of movement on a trial-
by-trial basis. For the calibration period, the 1-second
ECoG signals were classified using Decoder 1 for every
200 msec from -2 to 2 seconds relative to the onset cue.
As shown in Fig. 4 left, the inferred rate of M was low
before the onset cue and high after the cue. When we de-
fined the onset as the time Decoder 1 inferred 2 succes-
sive M results after R, the movement onset was frequently
inferred just after the actual onset cue (Fig. 4 right). Nota-
bly, 88% of the inferred onsets of movement were distrib-
uted between —0.5 to 0.5 seconds from the actual onset of
the cue. For the calibration period, the movement onset
was accurately inferred by the trained Decoder 1.

Real-Time Prosthetic Hand Control

Using the trained decoders, the ECoG signals were
decoded in real time when the patient performed the 3
types of hand movement at an arbitrary timing (free-run
period). Decoder 1 detected 61.0% of the movement on-
sets within 1 second from the actual onset of movement
detected by the EMG signals. The mean difference be-
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Fic. 2. Power spectrum of the ECoG signals during movement.  A: Reconstructed MR image of the patient’s brain with
superimposed red circles indicating the position of the 60-channel grid electrodes. The yellow line indicates the location of the

central sulcus.

B: A power spectrum time locked to the external cues (Time 0 corresponds to the onset cue). The signals of

the primary motor cortex (indicated by the blue arrow in A) were obtained during the grasping task. The horizontal black line
shows the normalization period.  C: Contour map of the mean frequency power bands. For each frequency band and each type
of movement, the normalized power at 1 second after the onset of movement was averaged and shown on the location of the
electrodes. The alignment of the electrode is the same as in panel A.

tween the inferred onset and the actual onset of move-
ment was 0.37 + 0.29 msec (+ SD). The majority of the
patient’s hand movements were detected before the actual
onset of movement (Fig. 5 left). However, the actual onset
of movement of the prosthetic hand was delayed from the
inferred onset timing due to the processing time (Video
D).

Vibeo 1. A prosthetic hand (with a white glove) mimicking
the patient’s hand movements. The markers on the patient’s
arm were not used in the present study. Click here to view with
Windows Media Player. Click here to view with Quicktime.

At the detected time, the type of movement was correctly
decoded with an accuracy of 69.2%. The patient’s hand
movements inferred by the 2 decoders were performed
by a prosthetic hand in real time (Fig. 5 right). Notably,
the patient was not trained to control the prosthetic hand.

J Neurosurg / Volume 114 / June 2011

The prosthetic hand was successfully controlled to faith-
fully mimic the patient’s hand movements using only the
ECoG signals without any external cues.

Discussion

We have demonstrated that a BMI system using
ECoG signals can accurately reproduce a patient’s hand
movements without training the patient. The system
learned the features of the ECoG signals, while the post-
stroke patient moved his hand naturally following sound
cues. The real-time decoding of ECoG signals was then
successfully performed for movements without any ex-
ternal cues. This is the first report describing the con-
trol of a prosthetic hand in real-time using a BMI system
with ECoG signals. These successful results with a post-
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stroke patient indicate the feasibility of the clinical use of
ECoG-based BMI.

Control of Prosthetic Hand by Classifying Simple
Movements

Although the movement tasks performed in this
study were simple compared with those in previous stud-
ies,'®? the success of our approach suggests a new way
to restore the motor function of paralyzed patients. The
combination of simple movements generated by the pros-
thetic hand is useful for activities of daily living.* For
example, by classifying some simple hand movements
with EMG signals, an amputee was able to use a pros-
thetic hand to improve her quality of life. This method
of prosthetic control with simple movements may also
be useful for controlling the prosthetic hand with ECoG
signals. In addition, it has been shown that most variance
in human hand postures can be accounted for by a small
number of combined joint movements.?* This means that,
by combining some basic movements, a prosthetic hand
could emulate most of the natural postures of a human
hand. The control of a prosthetic device, by classifying
some simple movements, with ECoG signals will enable
a prosthetic hand to be a practical and useful device in a
patient’s day-to-day life.
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Furthermore, ECoG signals have the potential to be
decoded to infer more sophisticated movements such as
playing the piano. The ECoG signals of epilepsy patients
have been used to decode the movements of individual
fingers.!S Our method of controlling the prosthetic hand
may be improved by using ECoG signals obtained in
patients without motor dysfunction. In addition, the im-
plantation of a high-density electrode array in the central
sulcus may increase the information derived from ECoG
signals. It is necessary to improve ECoG-based BMIs not
only to adjust the control of a prosthetic device for ac-
tivities of daily living but also to improve the ability to
decode human motor representations.

Prosthetic Control by Paralyzed Patients

The clinical candidates for the BMI system are pa-
tients without muscle control of their limbs. Therefore,
our method should be applicable in patients with complete
paralysis. Previously, we showed that ECoG signals could
be neurally decoded in patients with monoplegia.’' Elec-
trocorticography signals from the sensorimotor cortex in
patients with brachial plexus avulsion were successfully
decoded when the patients only intended or attempted to
move their completely paralyzed upper limbs. The inten-
tion of movement was inferred accurately by a decoder

0.5 0.5
time from cue (s)

Fie. 4. Left: Onset timing inferred by Decoder 1 for the calibration period. The rate of M inferred by Decoder 1 using the
1-second ECoG signals sliding by 200 msec from -2 to 2 seconds. The horizontal axis shows the middle time of the 1-s ECoG

signal (Time 0 corresponds to the onset cue). The gray bars correspond to the training data sets of Decoder 1.

of onset inferred by Decoder 1.
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Fic. 5. Real-time decoding and prosthetic hand control with
ECoG. A: The distribution of the actual movement onset timing from
the nearest inferred onset timing by Decoder 1 (free-run period). B:
Representative photographs of the prosthetic hand (with a white glove)
controlled by the poststroke patient’s ECoG signals in real time. A pros-
thetic hand (with a white glove) mimicked the patient’s hand movements.
The markers on the patient’s arm were not used in the present study.

trained by the same method used in the present study. By
using simple and common movements that can be easily
planned by patients, our method may be applicable to a
large number of paralyzed patients as a clinically benefi-
cial device to restore their motor functions.

Usefulness of ECoG Signals From the Gamma Band Power

Decoding analysis of the ECoG signals revealed that
the gamma band power was the most informative in in-
ferring the state and type of hand movement among the 3
frequency bands. This result was consistent with previous
studies in which human movements were inferred using
ECo0Gs.'®?' Moreover, the power increase of the gamma
band correlates with the firing activities of neurons rep-
resenting neural information.””? Thus, the information
contained within the gamma band facilitates the use of
ECoG signals in a clinically applicable BMI system.

Among the currently available signal platforms for
BMI, intracortical recordings have been shown to provide
the largest amount of information to decode movements
by using the firing activities of neurons.?**¢ However, this
method is associated with difficulties in maintaining sta-
ble long-term signals and substantial technical difficulties
in recording the signals. Therefore, clinical application of
these signals is impeded.”® Electrocorticography signals
are superior to intracortical signals with respect to sta-
bility and durability, as demonstrated in monkeys over a
I-year period.* On the other hand, with noninvasive signal
platforms, such as EEG and MEG, it is difficult to record
the gamma band power on a trial-by-trial basis.?’ With
ECoG, the gamma band power is consistently available
to infer movements on a trial-by-trial basis and may be
recorded for a much longer time than intracortical record-
ings. Therefore, although ECoG is an invasive recording
technique, it provides a promising signal that could be
used for a BMI in the clinical setting.
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Conclusions

The real-time decoding of the ECoG signal using the
gamma band power was applied successfully to allow a
paralyzed patient to control a prosthetic hand. This suc-
cess may lead to the development of a clinically feasible
BMI system that uses the safe and stable ECoG signals.
Our method of using the combination of simple move-
ments paves the way for the restoration of motor function
in paralyzed patients using a prosthetic arm controlled by
a BMI through ECoG signals.
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Appendix
Construction of the Decoders

The decoder is a mathematical algorithm used to calculate a
linearly weighted sum of the features x = (x;, X,, =, X)) plus a bias
for each class of movement (“linear detector function,” g,.(x)). In
the equation, x; corresponds to the i-th feature of N features, w, 4, is
the weight of the i-th feature, and wy ., is the bias. Here, each feature
corresponds to a certain frequency band power for each electrode.
That is, 3 (frequency bands) x 60 (electrodes) = 180 features that
were used for this calculation. The weights wy,, and w; ., were
determined for each class of movement such as grasping, opening,
and scissor-shape hands.

= Wy 20
gclass(x) - W().c]uss + j=1 wi,c]ass X Xi

The class with the maximum value of g,.(x) was chosen as
the predicted movement class.''*! In the case of Decoder 1, the class
corresponds to 1 of 2 states: R or M. For Decoder 2, the class corre-
sponds to 1 of 3 types of movement: grasping, opening, and scissor-
shape hand movements. The selected class indicated the predicted
movement state or movement type.

Individual weights and biases for each class were determined
using the linear SVM applied to a training data set. First, the SVM
algorithm was applied to each pair of class. The discriminant func-
tion, g;,(x) for the discrimination of Class i and j, is expressed by a
weighted sum of the features plus the bias. Using a training data set,
a linear SVM finds the optimal weight and bias for the discriminant
function. The pairwise discriminant functions comparing Class i
and the other classes were simply added to yield the linear detector
function:

800= 201 81 (0
The SVM algorithm was implemented using Matlab 2007b.

Fivefold Cross-Validation

To test the generalization of the decoders, we used 5-fold
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cross-validation as a performance measure.>* We randomly divided
the trials into 5 blocks, using 4 for training and 1 for testing. We
then used all of the training data to train the classifier and evaluated
its performance on the test data. This routine was repeated 5 times,
and the averaged correct percentage over all runs is presented as a
measure of decoder performance.
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Patients with Parkinson’s disease (PD) reportedly show deficits in sensory processing in addition to motor
symptoms. However, little is known about the effects of bilateral deep brain stimulation of the subtha-
lamic nucleus (STN-DBS) on temperature sensation as measured by quantitative sensory testing (QST).
This study was designed to quantitatively evaluate the effects of STN-DBS on temperature sensation
and pain in PD patients. We conducted a QST study comparing the effects of STN-DBS on cold sense
thresholds (CSTs) and warm sense thresholds (WSTs) as well as on cold-induced and heat-induced pain
thresholds (CPT and HPT) in 17 PD patients and 14 healthy control subjects. The CSTs and WSTs of
patients were significantly smaller during the DBS-on mode when compared with the DBS-off mode
(P<.001), whereas the CSTs and WSTs of patients in the DBS-off mode were significantly greater than
those of healthy control subjects (P <.02). The CPTs and HPTs in PD patients were significantly larger
on the more affected side than on the less affected side (P <.02). Because elevations in thermal sense
and pain thresholds of QST are reportedly almost compatible with decreases in sensation, our findings
confirm that temperature sensations may be disturbed in PD patients when compared with healthy per-
sons and that STN-DBS can be used to improve temperature sensation in these patients. The mechanisms
underlying our findings are not well understood, but improvement in temperature sensation appears to
be a sign of modulation of disease-related brain network abnormalities.

© 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

1. Introduction

nize sensory disturbances because they can lead to even more
serious complications and diminish quality of life.

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is
effective in treating patients with advanced-stage Parkinson's
disease (PD) [10,11]. It is particularly effective for improving motor
functional impairment, a deficit that originates from altered
peripheral feedback or abnormal central processing [2,9]. In addi-
tion to motor symptoms, sensory disturbances are part of the clin-
ical picture of PD. PD patients frequently experience pain,
numbness, and decreased proprioception, all of which are thought
to result from deficient gating of sensory information due to basal
ganglia dysfunction [8]. These sensory disturbances could be fac-
tors contributing to motor deficits [7,16]. It is important to recog-

* Corresponding author at: Department of Neurosurgery, Osaka University
Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel.:
+81 6 6879 3652; fax: +81 6 6879 3659.

E-mail address: saitoh@nsurg.med.osaka-u.ac.jp (Y. Saitoh).

Little is known about the effects of STN-DBS on sensory symp-
toms and the mechanisms by which STN-DBS alleviates sensory
symptoms in PD. The effects of treating PD patients are usually as-
sessed using the Unified Parkinson's Disease Rating Scale (UPDRS).
Although the UPDRS allows appropriate evaluation of motor symp-
toms and functional disability, it is not suitable for evaluating sen-
sory symptoms. Recently, sensory dysfunction has been measured
for pain symptoms in PD patients using quantitative measurements
[3], by electrophysiological methods, and by recording laser-evoked
potentials [20]. In particular, quantitative measurement has increas-
ingly been used for assessment of sensory thresholds in epidemiol-
ogic, clinical, and research studies [4]. Differences in thermal
quantitative sensory testing (QST) are also reportedly compatible
with elevations in temperature sense thresholds and pain thresh-
olds [6]. We were therefore interested in quantitatively evaluating
temperature sensations as well as pain in PD patients with the use

0304-3959/$36.00 © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
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of thermal QST studies. The aim of our study was to quantitatively
evaluate the effects of STN-DBS on temperature sensations and pain,
in hopes of improving the diagnosis and treatment of PD patients.
Thus, we conducted a QST study to assess the effects of STN-DBS
on both temperature sensation and pain in PD patients compared
with healthy control subjects.

2. Methods
2.1. Subjects

Our study involved 2 groups of subjects: 17 patients with
idiopathic PD diagnosed based on the diagnostic criteria of the
UK Parkinson’s Disease Society Brain Bank (6 men, 11 women;
mean age: 65.7 + 3.8 years, range: 55 to 73 years) and 14 healthy
control subjects (7 men, 7 women; mean age: 54.8 + 14.0 years,
range: 28 to 74 years). The latter were selected from healthy vol-
unteers free of central nervous system disease. All patients who
underwent bilateral STN-DBS at Osaka University Hospital during
the period from 2001 through 2009 were included in this study.
For STN-DBS, standard surgery inclusion/exclusion criteria were
applied to all cases. At the time of enrollment in the study, most
patients had normal intelligence as defined by a Mini-Mental State
Examination score >25 and correct language comprehension.
UPDRS motor scores had been obtained for all patients during
DBS-on and DBS-off states. Cold sense thresholds (CSTs), warm
sense thresholds (WSTs), cold pain thresholds (CPTs), and heat pain
thresholds (HPTs) were determined on the palms of the subjects’
hands. Both the more affected and the less affected sides were as-
sessed in PD patients. Thus, the side more affected by the disease
was the side with the higher UPDRS score in the PD patients. In
addition to age and sex, the following clinical variables were as-
sessed for each patient: disease duration, Hoehn and Yahr disease
stage, UPDRS motor scores during DBS-on and DBS-off states, and
the DBS amplitude at study enrollment. The Ethics Committee of
Osaka University Hospital approved this study, and informed con-
sent was obtained from all participants (approval number: 09213).

2.2. QST protocol

QST was performed with a thermal sensory analyzer (PATHWAY
Pain and Sensory Evaluation System; Medoc Ltd, Ramat Yishai,
Israel). The computer driven PATHWAY system contains a metal
contact plate (30 x 30 mm) that can be cooled and heated by an
external Peltier element and is used to assess sensory thresholds.
Peltier devices can change temperature at a predictable rate and
can be used to test CSTs, WSTs, CPTs, and HPTs.

CSTs, WSTs, CPTs, and HPTs were examined in all study subjects
by 1 of 2 examiners (T.M. or K.H.) who followed a standardized pro-
cedure. The testing was performed in a quiet room kept at a con-
stant temperature (21°C to 25°C), with each subject resting
comfortably in a sitting position. The 9-cm? Peltier probe was
placed on the palm of the hand on the tested side and fastened with
an elastic Velcro strap. The baseline temperature of the probe was
32°C, and the temperature was set to change at a rate of 1°C/s until
a minimum temperature of 0°C or a maximum temperature of 51°C
was reached, or until the subject pressed a response button held in
their opposite hand [14,18,24]. For safety reasons, a maximum tem-
perature of 51°C and a minimum temperature of 0°C were chosen to
prevent cutaneous burns. The method of limits was used to deter-
mine all thresholds [18]. To determine CSTs, WSTs, CPTs, and HPTs,
the subjects were asked to press a response button held in the
opposite hand to that being tested, when cold or warm sensations
and cold or hot pain sensation were respectively first perceived,
starting from a baseline temperature of 32°C [23,25]. The CST and

WST thresholds were defined as the absolute value of the temper-
ature change from the baseline of 32°C at which subjects indicated
their first cold or warm sensations, respectively. The CPTs and HPTs
were also defined as the absolute value of the temperature change
from baseline at which subjects indicated the point where a respec-
tive cold or warm temperature became painful. For each of the 4
types of threshold, the test was repeated 4 times in a uniform man-
ner. Threshold tests began with temperature sensory thresholds for
cold then warm, followed by pain thresholds for cold then heat.
QSTs were first performed on the right hand and then on the left
hand. The mean value from the 4 tests was taken as the threshold
value. For PD patients, each test was performed bilaterally in both
the DBS-on and the DBS-off state, the latter being undertaken
approximately 30 minutes after the stimulator was switched off
(Fig. 1). For healthy control subjects, each test was performed twice
with a 30-minute interval between tests to examine the effects of
repetitive QST on normal subjects.

Threshold values are expressed in degrees Centigrade. The low-
er the temperature (below 32°C) to which a subject responded, the
greater the CST or CPT; the higher the temperature (above 32°C) to
which a subject responded, the greater the WST or HPT. After the
maximum or minimum temperature was reached or the subject
indicated a sensory threshold by pressing the response button,
the temperature automatically returned to the baseline of 32°C.
The temperature was set to return at a rate of 2°C/s for tempera-
ture sensation thresholds and 8°C/s for pain thresholds. To prevent
possible modulation of thermal receptors, in the case of tempera-
ture threshold measurements, the metal contact plate remained
at the baseline temperature for 5 seconds before temperatures in-
creased or decreased. In the case of pain threshold measurements,
this interval was 10 seconds [24]. Before the actual tests, all sub-
jects participated in a short training session to make sure they
understood the test procedure.

2.3. Statistical analysis

A descriptive statistical analysis was performed on all data.
Median values were used for all variables to indicate thermal
thresholds. A Dunnett multiple comparisons test was used to ana-
lyze differences in test results between the PD patients and the
healthy control subjects. For the PD patient group, differences in
temperature sense thresholds and pain thresholds between the
DBS-off and DBS-on states and between the more affected and less
affected sides were analyzed with a 2-factor repeated-measures
analysis of variance (ANOVA). The 1-way repeated-measures
ANOVA was used to test for correlations between clinical variables
and QST scores. A value of P <.05 was considered statistically sig-
nificant. SPSS for Windows 17.0 was used for all statistical analyses
(SPSS Inc., Chicago, IL, USA)

3. Results
3.1. Clinical assessment

QST data were obtained for all 17 PD patients and all 14 control
subjects. Clinical characteristics of the 17 PD patients are shown in
detail in Table 1. The mean duration of PD at the time of testing
was 15.5 + 5.4 years. Hoehn and Yahr stages ranged from 2 to 3.
The mean UPDRS motor score was 22.0 + 7.8 during the DBS-on state
and 36.3 £ 11.8 during the DBS-off state. All patients treated with
STN-DBS, levodopa, and dopamine agonists showed marked
improvement in UPDRS motor scores. There were no significant cor-
relations between the sensory threshold values and patient charac-
teristics (age, sex, Hoehn and Yahr stage, disease duration, UPDRS
score, or DBS amplitude).
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Fig. 1. Diagram of the QST protocol. For each type of threshold, the test was repeated 4 times, first on the right hand then on the left hand, and the mean value from the 4 tests
was taken as the threshold value. For patients with PD, each test was performed both in the bilateral DBS-on state and DBS-off state (30 minutes after switching the
stimulator off). CPT, cold pain threshold; CST, cold sense threshold; DBS-on, deep brain stimulation on; DBS-off, deep brain stimulation off; HPT, heat pain threshold; PD,

Parkinson's disease; WST, warm sense threshold.

3.2. Differences in sensory thresholds between PD patients and control
subjects

CSTs and WSTs of the PD patients and control subjects are
shown in Fig. 2 and Table 2. CSTs were significantly greater in PD
patients in the DBS-off state than in control subjects (27.5 £ 0.8°C
[less affected side] vs 30.9 + 0.2°C [control], P=.010; 25.6 £ 1.0°C
[more affected side] vs 30.9 + 0.2°C [control], P <.001). However,
CSTs did not differ significantly between PD patients in the DBS-
on mode and control subjects (29.7 + 0.3°C [less affected side] vs
30.9 £ 0.2°C [control], NS; 29.0 £0.6°C [more affected side] vs
30.9 £0.2°C [control], NS). WSTs were significantly greater in PD
patients in the DBS-off state than in control subjects (36.2 + 0.6°C
[less affected side] vs 33.9 +0.3°C [control], P=.013; 36.7 £0.8°C
[more affected side] vs 33.9 + 0.3°C [control], P=.002). However,
WSTs did not differ significantly between PD patients in the DBS-
on state and control subjects (34.5 + 0.3°C [less affected side] vs
33.9 +£0.3°C [control], NS; 34.5+0.3°C [more affected side] vs
33.9 +£0.3°C [control], NS). There were no significant differences
in either CPTs or HPTs between PD patients (in both DBS-on and
DBS-off states) and control subjects.

3.3. Differences in sensory thresholds between DBS-on and DBS-off
modes

There were no significant differences in any of the thresholds of

the healthy control subjects over the 2 sessions with a 30-minute

Table 1
Patients with PD clinical characteristics.

interval in between (Table 3). In the patient group, there were sig-
nificant differences in CSTs and WSTs between the DBS-on and
DBS-off states. CSTs were significantly lower during the DBS-on
state than during the DBS-off state (DBS-on 29.4°C vs DBS-off
26.6°C, P <.001), with a significant difference between the more af-
fected and less affected sides (less affected side 27.3°C vs more af-
fected side 28.6°C, P=.020) (Fig. 3, Table 3). WSTs were
significantly lower during the DBS-on state than during the DBS-
off state (DBS-on 34.5°C vs DBS-off 36.5°C, P < .001), with no signif-
icant difference between the more affected and less affected sides
(less affected side 35.6°C vs more affected side 35.4°C). CPTs and
HPTs did not differ significantly with respect to the DBS mode;
however, CPTs (P=.011) and HPTs (P=.016) were significantly
lower on the less affected side than on the more affected side.

4. Discussion

Our 2 main findings were that, firstly, significantly greater
CSTs and WSTs were observed in PD patients when compared
with healthy control subjects, indicating that temperature sensa-
tion is indeed impaired in PD patients. Secondly, in our patients,
CSTs and WSTs were significantly reduced during the DBS-on
state when compared with the DBS-off state, suggesting that
STN-DBS improves temperature sensation impairments in PD
patients. To our knowledge, this is the first study to quantitatively
document the effects of STN-DBS on temperature sensation in PD
patients.

Patient no.  Age (y) Sex Disease Duration since STN H&Y Medication UPDRS motor score MMSE DBS mode  DBS amplitude
duration DBS implant (mo) stage (LEDD mg/d)
¥)
DBS-on DBS-off Rt Lt
1 62 F 10 42 2 100 25 30 28 Bipolar 2.6 2.8
2 60 F 11 22 2 300 20 26 30 Monopolar 2.5 2.5
3 55 M 15 30 2 150 5 21 30 Monopolar 3.5 35
4 73 F 28 64 3 900 31 40 25 Monopolar 3.0 3.2
5 73 F 21 24 2 300 35 58 25 Bipolar 3.7 38
6 71 M 8 20 2 400 15 25 27 Monopolar 2.0 2.1
7 70 F 19 7 3 450 10 25 30 Monopolar 3.5 35
8 63 F 18 78 2 500 10 29 28 Monopolar 2.4 24
9 73 M 6 18 3 300 5 9 27 Monopolar 2.4 1.7
10 58 M 9 24 2 150 10 25 28 Monopolar 2.2 22
11 70 F 8 6 2 150 15 20 29 Monopolar 2.4 22
12 63 F 14 70 2 500 21 53 26 Monopolar 2.3 2.3
13 71 F 14 18 2 200 12 38 28 Monopolar 2.2 1.8
14 68 M 8 12 2 500 16 67 28 Monopolar 2.3 3.6
15 73 M 18 87 3 600 33 45 21 Monopolar 3.0 3.1
16 60 F 22 3 2 500 15 32 28 Monopolar 1.3 1.5
17 62 F 14 5 2 400 25 30 28 Monopolar 2.1 2.2
Means+SD  65.7 £3.8 155+54 31.1£21.8 24+04 406195 220+7.8 363118 27%2 25+05 26+06

LEDD, levodopa-equivalent daily dose; PD, Parkinson's disease”; H&Y, modified Hoehn and Yahr scale score”; STN, subthalamic nucleus; L-dopa, levodopa; UPDRS, unified
Parkinson's disease rating scale; DBS, deep brain stimulation; MMSE, mini-mental state examination.
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Fig. 2. Sensory thresholds in PD patients in the DBS-on state and DBS-off state compared with healthy control subjects. CSTs and WSTs were significantly greater in PD
patients in the DBS-off state than in the healthy control subjects. Sensory threshold values are expressed in degrees Celsius. Mean values are shown (error bars represent
SEM). A P value of <.05 was considered statistically significant (*P <.05; **P <.01; ™P < .001; NS, P >.05). CPT, cold pain threshold; CST, cold sense threshold; DBS-on, deep
brain stimulation on; DBS-off, deep brain stimulation off; HPT, heat pain threshold; PD, Parkinson’s disease; WST, warm sense threshold.

Sensory disturbances, which can either accompany or precede
PD-associated motor disorders, are part of the clinical picture of
PD and are most frequent in PD cases with motor complications
[21]. It has been recommended that thermal QST for temperature
sensation and pain are incorporated into routine neurological
assessments [23]. QST of thermal modalities has been reported
suitable for the screening and long-term evaluation of sensory
function and useful for advancing somatosensory research [26].
In response, we hypothesized that QST for thermal thresholds
may be useful for evaluating the sensory symptoms of PD. Patients
with PD (in comparison to normal subjects) have been reported to
show sensory impairment, with increased sensory thresholds for
vibration [15] and increased 2-point discrimination thresholds in

proprioception [17]. In a more recent study, PD patients showed
sensory disturbances with decreased pain thresholds for cold and
heat [3]. Thus, our CST and WST findings (Fig. 2) are consistent
with previously reported studies demonstrating increased temper-
ature sensory thresholds in PD patients [12].

The physiological mechanisms by which STN-DBS might im-
prove temperature sensations in PD patients remains unclear;
however, several hypotheses have been reported. Firstly, STN stim-
ulation may lead indirectly to the activation of the somatosensory
cortex and thereby lead to improved temperature sensation. In a
previous FDG-PET study of bilateral STN-DBS, it was shown that
during the DBS-on state, the regional cerebral metabolic rate of
glucose consumption increased significantly in the midbrain, basal

Table 2
Sensory threshold in patients and control subjects.
CSTs WSTs CPTs HPTs CSTs WSTs CPTs HPTs
Control subjects 309 iAO.Z 339103 16.0+23 430+19
More affected side Less affected side
PD patients in DBS-on 29.0+0.6 34503 17.7£15 44.0+0.9 29.7+03 345+03 21.1+1.8 425+1.1
PD patients in DBS-off 256+1.0 36.7+0.8 16.2£20 45.0+1.1 275+0.8 36.2+0.6 18.7+2.1 432+12
P value® NS NS NS NS NS NS NS NS
P value® <.001"" 002" NS NS .010° 013" NS NS

P>.05 by Dunnett multiple comparisons test. CST, cold sense threshold; WST, warm sense threshold; CPT, cold pain threshold; HPT, heat pain threshold; PD, Parkinson’s
disease; DBS-on, deep brain stimulation on; DBS-off, deep brain stimulation off; NS, not significant.

# Comparison between PD patients in the DBS-on mode and healthy control subjects.

b Comparison between PD patients in the DBS-off mode and healthy control subjects.

" P<.05.
" P<.01.
" P<.001.
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Table 3

Sensory thresholds in patients with PD.

CSTs WSTs CPTs HPTs

Control subjects 30.9+0.1 33.9+0.1 16.0+1.7 430+1.1
Control subjects (after the interval of 30 minutes) 30.7 0.1 34.0£0.3 159+2.2 428+18
P value NS NS NS NS
DBS-on (PD patients) 294+08 345107 19.4+£16 43.2+1.0
DBS-off (PD patients) 26.6+0.8 36.5+0.7 174+1.6 441+1.0
P value® <.001™" <0017 NS NS
More affected side (PD patients) 273038 35.6%0.7 169+1.6 445+1.0
Less affected side (PD patients) 28.6+0.8 35.4+0.7 199+1.6 428+1.0
P value® 020" NS 011" 016"

NS =P>.05. CST, cold sense threshold; WST, warm sense threshold; CPT, cold pain threshold; HPT, heat pain threshold; PD, Parkinson’s disease; DBS-on, deep brain

stimulation on; DBS-off, deep brain stimulation off; NS, not significant.
2 Comparison between PD in the DBS-on mode and PD in the DBS-off mode.

b Comparison between the less affected side and the more affected side in PD patients.

© P<.05.
" p<.01.
" p<.001.

ganglia area, frontal cortex, temporal cortex, and parietal cortex
[5,22]. It has been determined that the posterior parietal region re-
ceived afferents from prefrontal regions, the sensory cortex, and
multiple thalamic relay nuclei [19]. Thus, STN-DBS may activate
not only the frontal but also the parietal cortex, and a contribution
of STN to sensory function, as well as to its roles in associative, lim-
bic, and basal ganglia circuits, has been confirmed [5]. This meta-
bolic change may result in an altered temperature sensation that
is associated with parietal and basal ganglia circuits. Secondly,
STN-DBS might normalize brain network abnormalities related to
temperature sensation and pain perception. PD reportedly involves
a generalized dysfunction of the entire neuronal network, probably

Thresholds in DBS-ON and DBS-OFF mode

< 0.001%%%

“““““ ki

:
'
¢
s

Temperature (C)

p <0001

CST WST

resulting from impaired basal ganglia function, although the pre-
cise mechanism is not well understood {17].

In this study, we have used the method of limits for performing
QST. It has been reported that sensory thresholds are dependent on
a subject’s reaction time in the method of limits [18]. Thus we may
need to take into account the result of biased reaction times as a
result of possible motor impairment, especially when undertaking
QST on the less affected side of PD patients, because this may intro-
duce a delayed response when they click the response button with
their opposite and more affected side hand. If this was to have a
significant impact on the final results, we would expect lower
thresholds for CSTs and WSTs of the less affected hand. Despite this
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Fig. 3. Differences in sensory thresholds in patients with PD. CSTs and WSTs were significantly lower during the DBS-on state compared with the DBS-off state. CPTs and HPTs
did not differ significantly between the DBS-on and DBS-off states. CPTs and HPTs were significantly lower on the less affected side than on the more affected side. A 2-factor
repeated measures analysis of variance (ANOVA) was used to analyze differences. Error bars represent SEM. A P value of <.05 was considered statistically significant (*P < .05;
“*P<.01; **P<.001; NS, P>.05). CPT, cold pain threshold; CST, cold sense threshold; DBS-on, deep brain stimulation on; DBS-off, deep brain stimulation off; HPT, heat pain

threshold; PD, Parkinson's disease; WST, warm sense threshold.
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possible bias, this was not the case. As was stated previously, the
more affected hand was found to have lower thresholds for CSTs
and WSTs. This would indicate that motor performance probably
has little effect on the significance of the QST results in our study.

QST can be adversely affected by consecutive repeated tests.
CSTs, WSTs, CPTs, and HPTs reportedly changed significantly with
repeated testing [13]. Thus, researchers must be cautious when
assessing the importance of changes in thermal sense thresholds.
With this in mind, we performed a control experiment involving
repeated QSTs with a 30-minute interval in between in 14 healthy
control subjects. As a result, we found no significant differences be-
tween these 2 sessions separated by the interval of 30 minutes
(Table 3). This result indicates that the sensory thresholds, CSTs
and WSTs in particular, are probably not affected by repetitive
QSTs separated by an interval of 30 minutes.

Only a few studies have addressed the effects of levodopa and
dopamine agonists on sensory disorders in PD patients. Levodopa
significantly reduced pain-induced activation in the posterior insu-
la and anterior cingulate cortex in PD patients [1]. Our study did
not include a baseline condition in which patients were completely
free of antiparkinsonian medication. Indeed, the effect of levodopa
on temperature sense thresholds may have influenced our results.
However, it was not ethically possible for us to withdraw these
medications from participating patients. It should, however, be
noted that we consider the effects of drugs on our final results in
this study to be minimized because DBS-on and DBS-off state tem-
perature sensory thresholds and pain thresholds were compared in
the same patients with all QST measurements being conducted
within 1 hour of each other.

Our findings provide new insights into the mechanisms by
which DBS improves sensory impairments, that is, via modulation
of the disease-related brain network abnormality. Our findings
suggest that STN-DBS can be used to modulate sensory pathways
and improve temperature sensations in PD patients. Studies
involving larger groups of patients are needed to show whether
our findings reflect a general principle underlying the effect of
STN-DBS on sensory information processing.
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ORIGINAL ARTICLE

Electrocorticographic Control of a
Prosthetic Arm in Paralyzed Patients

Takufumi Yanagisawa, MD, PhD,™? Masayuki Hirata, MD, PhD,’
Youichi Saitoh, MD, PhD,"> Haruhiko Kishima, MD, PhD,’ Kojiro Matsushita, PhD,"
Tetsu Goto, MD, PhD,’ Ryohei Fukuma, MS,?2 Hiroshi Yokoi, PhD,*
Yukiyasu Kamitani, PhD,?? and Toshiki Yoshimine, MD, PhD'

Objective: Paralyzed patients may benefit from restoration of movement afforded by prosthetics controlled by
electrocorticography (ECoG). Although ECoG shows promising results in human volunteers, it is unclear whether
ECoG signals recorded from chronically paralyzed patients provide sufficient motor information, and if they do,
whether they can be applied to control a prosthetic.
Methods: We recorded ECoG signals from sensorimotor cortices of 12 patients while they executed or attempted to
execute 3 to 5 simple hand and elbow movements. Sensorimotor function was severely impaired in 3 patients due to
peripheral nervous system lesion or amputation, moderately impaired due to central nervous system lesions sparing
the cortex in 4 patients, and normal in 5 patients. Time frequency and decoding analyses were performed with the
patients’ ECoG signals.
Results: In all patients, the high gamma power (80-150Hz) of the ECoG signals during movements was clearly
responsive to movement types and provided the best information for classifying different movement types. The
classification performance was significantly better than chance in all patients, although differences between ECoG
power modulations during different movement types were significantly less in patients with severely impaired motor
function. In the impaired patients, cortical representations tended to overlap each other. Finally, using the
classification method in real time, a moderately impaired patient and 3 nonparalyzed patients successfully controlled
a prosthetic arm.
Interpretation: ECoG signals appear useful for prosthetic arm control and may provide clinically feasible motor
restoration for patients with paralysis but no injury of the sensorimotor cortex.

ANN NEUROL 2012;71:353-361

Paralyzed patients and amputees would benefit from However, it is unclear whether these findings are applica-

cortically controlled prosthetics in the form of a ble to paralyzed patients, whose sensorimotor cortices

brain—computer interface (BCI). Among the possible
cortical signals available for BCI, electrocorticography
(ECoG) offers one of the most clinically feasible options,
having superior long-term stability and lower technical
difficulty compared with other invasive signals."? Evi-
dence from studies with nonparetic patients with epilepsy
shows that some movements or movement intentions can
be inferred from ECoG signals accurately enough to

. 3-6
control external devices such as a computer cursor.”™

may have undergone extensive reorganization after de-
efferentation and deafferentation of the paralyzed body
parts.

Paresis-associated cortical reorganization may mod-
ify ECoG signals of the sensorimotor cortex. Cortical
reorganization occurs in the sensorimotor cortex of
individuals with spinal cord injuries,”” limb amputa-

10--1

. 2 1315 @ . .
tions, and stroke.'”™” Such cortical reorganizations

have been shown to alter functional activations in the
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TABLE 1: Clinical Profiles

Patient Age, Diagnosis

No. yr/Sex

N1 34/F R intractable epilepsy

N2 14/M R intractable epilepsy

N3 20/F L intractable epilepsy

N4 22/F R intractable epilepsy

NS5 13/M L intractable epilepsy

P1 49/M R putaminal hemorrhage
P2 GG6/F R subcortical infarction
P3 64/M R thalamic hemorrhage
P4 65/M Ruptured spinal dAVFE

S1 31/M L brachial plexus avulsion
S2 49/M L brachial plexus avulsion
S3 47/M Amputation below L shoulder

"Post transplantation of intercostal nerve.

Duration of
Disease, yr

3]

dAVF = dural arteriovenous fistula; F = female; L = left; M = male; MMT = manual muscle test; R = right.

Paresis in Sensation in
Affected Limb Affected Limb
(MMT)

None Normal
None Normal
None Normal
None Normal
None Normal
Slightly spastic (5—)  Hypoesthesia
Spastic (4) Hypoesthesia
Spastic (4) Hypoesthesia
Spastic (4) Hypoesthesia
Complete (0)* Anesthesia

Severe (1)* Severe hypoesthesia

No arm None

cortices and affect motor function,' sensation, and rec-
ognition of body parts.'”'"'® However, quantitative data
are lacking on altered functional activations of the senso-
rimotor cortex after cortical reorganization and subse-
quent modification of ECoG signals.

We examined ECoG signals of nonparalyzed patients
and patients with different levels of motor dysfuncrions to
quanticatively address 3 questions: (1) Do the ECoG sig-
nals of patients with chronic motor dysfuncrions show
preservation of spatiotemporal patterns of activation even
after reorganization? (2) How much are ECoG activation
maps for different motor tasks modified in the reorganized
sensorimotor cortex? and (3) Can ECoG activation be
applicable to controlling a prosthetic arm?

Patients and Methods

Patient Population

Twelve patients (4 female, 8 male; age range, 13-66 years) with
subdural electrodes participated in this study. The patients had
different degrees of motor dysfunctions and sensory disturban-
ces (Table 1). Five patients (N1-N5) with epilepsy had no
motor dysfunctions; 4 patients (P1-P4) had spastic paresis and
weakness in their upper limbs due t strokes without damage
to the sensorimotor cortex (moderate motor dysfuncrion); and
3 patients (S1-S3) had severely impaired sensorimotor function
of their limbs due to brachial plexus root avulsion or amputa-
tdon (severe motor dysfunction; Supplementary Methods).
Patients S1-S3 differed in their ability to imagine movement of

354

their affected limbs (Table 2). All participants or their guardians
gave written informed consent to participate in the study, which
was approved by the ethics committee of Osaka University
Hospital.

All patients had been implanted with subdural electrode
arrays that covered a broad sensorimotor cortical area, including
the hand motor strip. These arrays were kept in place for 2
weeks to determine either the epileptic foci or the optimal stim-

17 At the end

ulation sites to achieve maximum pain reducrion.
of these 2 weeks, the arrays were removed. In impaired patients,
4 permanent electrodes were then placed at the sites where

stimulation provided optimal pain control.

Movement Tasks

Experiments were performed in an electromagnetically shielded
room approximately 1 week after electrode placement. The first
session was designed to train the decoder on the ECoG signals
(decoder training session). Patients performed 1 of 3 possible
movement tasks that differed by the set of movement types that
were executed: (1) grasping, thumb flexion, and elbow flexion
(P1, P2, S1-83); (2) grasping, pinching, hand-opening, elbow
flexion, and tongue protrusion (P3); or (3) grasping, pinching,
hand-opening, elbow flexion, and elbow extension (N1-NS5,
P4). For movement task 3, the patients were first instructed to
perform the 3 hand movements. Then, after a free-run session
in which patients undertook movements at their own pace, if
they were able to undertake additional sessions without fatigue,
they were instructed to perform 5 movements, preferably ones
involving the elbow. Grasping and elbow flexion were com-
monly performed among all patients, although we selected the

Volume 71, No. 3

— 136 —



Yanagisawa et al: ECoG Control of Prosthetic Arm

TABLE 2: Summary of the Decoding Results
Patient No. Ability to % Correct  Mean = SD % Correct Mean * SD
Imagine (grasp vs (move vs rest)
Movements elbow)
N1 92.9 92.5 = 34 (p < 0.05) 96.6 93.6 = 4.4 (NS)
N2 98.2 94.5
N3 90.7 86.0
N4 90.5 94.2
N5 90.0 96.4
P1 86.7 89.2 = 5.8 (NS) 95.7 95.6 = 4.5 (NS)
P2 85.7 100.0
P3 97.9 89.5
P4 86.7 97.3
St Easy 90.3 71.3 £ 17.0 (p < 0.05) 982 93.2 = 4.6 (NS)
S2 Slightly difficule  57.3 92.2
S3 Difficule 66.3 89.2
NS = not significant; SD = standard deviation.

3 types of movement tasks to adjust the way patients could
control the prosthesis.

The patients selected and performed one of the move-
ments within a presented task after being cued with auditory
beeps (Fig 1A). The patients were instructed to execute move-
ments immediately after the third beep and then return their
hands or elbows to a resting position. For the resting position,
patients were instructed to relax their hands or elbows with
slightly flexed joints. Each type of movement was performed
approximately 30 to 100 times. Patients $1-S3 were instructed to
attempt the movements of their affected limbs immediately after
the auditory cue. The movement instructions were delivered
using a PC monitor controlled by ViSaGe (Cambridge Rescarch
System, Rochester, UK) placed in front of the patients. The de-
coder training session was open loop. The patients were not
informed of the classifier results and therefore did not have an
opportunity for learning or improving their performance.

After the decoder training session, 4 patients repeated the
same task they had performed during the session, but at self-
paced intervals without external cues (free-run session, see Fig
1B). These patients had recently performed the task and were
able to continue without extensive fatigue. Without receiving
further training, they were instructed to control the prosthetic
arm by performing their hand and elbow movements. Patient
N1 could not control the elbow of the prosthetic arm due to
mechanical problems of the prosthesis.

ECoG Recording and Preprocessing
For each patient, 15 to 60 planar-surface platinum grid electro-
des were placed over the sensorimotor cortex and within the
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central sulcus (intrasulcal electrodes)'t

(see  Supplementary
Methods). Video recording and electromyographic (EMG elec-
trode; Nihon Koden, Tokyo, Japan) recordings of their hands
and arms were performed solely to identify the performed
movements.

ECoGs were recorded and digitized at a sampling rate of
1,000Hz. During the decoder training session, the ECoG sig-
nals were obtained time-locked to the cue signal. In the free-
run session, l-second duration ECoG signals were recorded
online at 200-millisecond intervals. A fast Fourier transforma-
tion (FFT; EEGLAB v5.03) was performed for each 1-second
signal to obtain the power of each of the 3 frequency bands
(2-8, 8-25, and 80-150Hz) for each electrode. We used FFT
to complete the online decoding over the 200 milliseconds.
The 3 frequency bands were chosen based on our previous

.19
studies.”

Decoding Algorithms and Prosthetic Hand
Control

To infer, or decode, the movement types executed or attempted
by the patients, we constructed a linear classifier trained by a
linear support vector machine, the SVM decoder (see Supple-
mentary Methods).'®***! The trained SVM decoder was input-
ted with the ECoG signals to outpur an inferred movement
type. A 5-fold cross-validation was used to test how well the de-
coder could generalize.

To apply the SVM decoder to the free-run sessions with-
out external cues, we developed another decoder (GPR decoder;
see Supplementary Methods). The trained GPR decoder was
also inputted with the ECoG signals to output an estimated

— 137 —



