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SUMMARY

We report here that in chronic lymphocytic leukemia (CLL), the propensity to generate clonal B cells has been
acquired already at the hematopoietic stem cell (HSC) stage. HSCs purified from patients with CLL displayed
lymphoid-lineage gene priming and produced a high number of polyclonal B cell progenitors. Strikingly, their
maturation into B cells was restricted always to mono- or oligo-clones with CLL-like phenotype in xenogeneic
recipients. These B cell clones were independent of the original CLL clones because they had their own
immunoglobulin VDJ genes. Furthermore, they used preferentially VH genes frequently used in human
CLL, presumably reflecting the role of B cell receptor signaling in clonal selection. These data suggest that
HSCs can be involved in leukemogenesis even in mature lymphoid tumors.

INTRODUCTION

Malignant transformation can occur through a multistep acquisi-
tion of critical somatic mutations. Therefore, the precursor of
malignant stem cells should have a long life span to accumulate
such mutations. In human hematopoiesis, genetic abnormalities
for transformation should be accumulated in self-renewing hema-
topoietic stem cells (HSCs). HSCs can continuously produce
a number of progenitors with the same genetic alteration, which
are also potential targets for additional mutations (Rossi et al.,
2008). Such HSCs or downstream progenitors finally become
leukemia stem cells that possess self-renewal but lack normal
differentiation activity (Huntly et al., 2004; So et al., 2003). This
notion of leukemia development has been well accepted to
explain acute myeloid leukemia (AML) development, and AML-
initiating cells capable of reconstituting human leukemias in

xenogeneic hosts have been purified (Bonnet and Dick, 1997)
as a potential therapeutic target (Jin et al., 2006, 2009; Kikushige
et al., 2010; Majeti et al., 2009; Saito et al., 2010). However, in
lymphoid malignancies, leukemia or lymphoma cells usually
have monoclonal immunoglobulin or T cell receptor gene rear-
rangements, suggesting that lymphoid malignant stem cells
originate after cells have committed to the lymphoid lineage.
Recent studies have shown that acute lymphoid leukemia (ALL)-
initiating cells upon xenogeneic transplantation are composed of
multiple genetically distinct subclones (Anderson et al., 2011;
Notta et al., 2011). These data clearly show that lymphoid cells
can easily accumulate genetic abnormalities, presumably because
they can persist longer than myeloid cells, and are capable of
clonal expansion simulating self-renewal (Luckey et al., 2006).
Because of such property of lymphoid cells, the involvement of
HSCs in lymphoid leukemogenesis has never been underscored.

Significance

HSCs capable of self-renewal should be the main target for accumulatmg mutatlonal events to develop hematologlcal :
malignancies. This paper shows that HSCs play such a’role also in mature }ymphmd mahgnanc:es Mosi ‘human CLL cases
have a precursor phase, called monoclonal B lympho is ,(MBL), that i is asymptomatlc monoclonai or ohgoclonal prohf»
eration of B cells. HSCs from patients with CLL but not normal HSCs' developed monoclonal orohgoclona! Beells smu!ahng
MBL after xenogeneic transplantation. Acquisition of chromosomal. abnormal Hes appeared 1o be secondary events to
transform MBL into clinical CLL. Thus, evenin CLL, accumuiatxon of oncogemc events starts at the HSC stage Our xeno-
graft model might be very useful to understand the pathogenesxs of human CLL '
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Chronic lymphocytic leukemia (CLL), the most common
leukemia in adults in western countries, is a mature B cell malig-
nancy (Chiorazzi et al., 2005). It is characterized by accumulation
of clonal B cells in the blood, the bone marrow, and the lymphoid
tissues. The consistent clonal expansion of mature B cells
frequently expressing CDS5 is the major phenotype of patients
with CLL. Unfortunately, the development of its xenograft
models by transplanting primary CLL cells into immunodeficient
hosts has failed because the engraftment was extremely ineffi-
cient (Dirig et al., 2007; Hummel et al., 1996). Thus, the search
for CLL-initiating cells has never been successful.

Human CLL cells have functional B cell receptors (BCRs) on
their surface as a result of productive rearrangement of immuno-
globulin genes (Caligaris-Cappio and Ghia, 2008; Chiorazzi et al.,
2005; Stevenson and Caligaris-Cappio, 2004). CLL has been
divided into two subgroups based on the presence of somatic
hypermutations within the variable regions of immunoglobulin
heavy-chain (IGHV) genes, which normally occurs in the germinal
center during naive to memory B cell transition. The group of
CLLs with mutated BCRs has a more favorable prognosis than
those with unmutated BCRs (Hamblin et al., 1998). However,
recent studies suggest that both types of CLLs originate from
self-reactive B cell precursors and that the status of somatic
hypermutations does not indicate their origin (Hervé et al.,
2005; Klein et al., 2001; Rosenwald et al., 2001). Interestingly,
CLL cells preferentially use the IGHV genes, such as VH1,
VH3, and VH4 regions (Chiorazzi and Ferrarini, 2003; Fais
et al., 1998), and express a restricted BCR repertoire including
antibodies with quasi-identical complementarity-determining
region 3 (CDR3) (Ghiotto et al., 2004; Messmer et al., 2004; Tobin
et al., 2003, 2004; Widhopf et al., 2004), suggesting specific
antigen recognition by GLL cells (Chiorazzi and Ferrarini, 2003;
Stevenson and Caligaris-Cappio, 2004).

To trace the origin of genetic aberration in human CLL, it is
important to note the fact that CLL cells are not always mono-
clonal, but more than one CLL clone is found in up to ~14% of
patients with CLL (Sanchez et al., 2003). Furthermore, a recent
cohort study has shown that 44 out of 45 patients with CLL
have a precursor state such as monoclonal B lymphocytosis
(MBL) for 8 months to 7 years (Landgren et al., 2008). MBL repre-
sents asymptomatic proliferation of clonal B cells whose
numbers in circulation are below 5000/pl (Marti et al., 2005). Of
note, human MBL is frequently (20%-70% of total cases)
composed of more than one B cell clone (Dagklis et al., 2009;
Lanasa et al.,, 2010; Nieto et al.,, 2009). More than a half of
such MBL clones express CD5 (Scarfo et al., 2010), and patients
with these CLL-like MBL clones frequently develop into clinical
CLL (Rawstron et al., 2008). Furthermore, like CLL cells, CD5*
MBL clones use a biased set of VH genes, including VH1, 3,
and 4 (Rawstron et al., 2008). The usage of such biased BCR
types found in CLL and its precedent MBL clones strongly
suggests that the antigenic drive contributes to clonal expansion
and/or cell survival also during the transition from MBL to clinical
CLL (Plever et al., 2009).

The question is: If progression from MBL to CLL reflects
stepwise leukemogenesis, at what stage does the first onco-
genic event occur. The existence of oligoclonal B cell clones in
patients with CLL and with those MBL strongly suggests that
the first oncogenic event could at least be traced up to the

progenitor or HSCs that have not rearranged IGH genes. These
data led us to search for CLL-initiating cells within the early
hematopoietic stages utilizing an efficient xenotransplantation
systemn.

RESULTS

Clonal Selection of CLL B Cells Occurs

at the Mature B Cell Stage in Human CLL

To search for the cell population with CLL-initiating activity in
human CLL, we first tried to locate the developmental stage at
which CLL B cell clones appear. Patients’ characteristics are
shown in Table S1 available online.

Figure 1A shows the FACS analysis of the bone marrow of
a patient with CLL. The bone marrow contained CD34*CD38"
HSCs (Bhatia et al., 1997), and the CD34*CD38* progenitor
fraction that contains myeloid and lymphoid progenitors
(Manz et al., 2002). Interestingly, percentages of CD10*CD19*
proB cells in the bone marrow of patients with CLL were high
in most patients: in 12 out of 13 patients with CLL, proB cell
frequency was higher than the average of 7 normal controls,
and the average proB cell frequency in patients with CLL was
higher than that in normal controls by ~5-fold (Figure 1B). In
contrast, frequencies of the CD34*CD38~ HSC population
were equal (Figure 1B). Recent reports have shown that the
CD347CD38~ HSC population can further be divided into
subpopulations including CD90*CD45RA~, CD90~CD45RA™,
and CD90"CD45RA* that mainly contain long-term HSCs
(LT-HSCs), multipotent progenitors (Majeti et al., 2007), and early
lymphoid/myeloid progenitors (Doulatov et al., 2010; Goardon
etal., 2011), respectively. We performed the HSC subpopulation
analysis in six CLL cases, and found that the distribution of
these HSC subpopulations did not differ in normal and CLL
bone marrow, and the majority (~60%) of CD34"CD38™ cells
were the most primitive CD90*CD45RA™ population (Figure 1B).
Thus, we tested whether the expansion at the proB stage reflects
clonal proliferation of CLL precursors by analyzing the rear-
rangement status of the IGH gene.

As shown in Figure 1C, the purified CD34*CD38~ HSC popu-
lation in patients with CLL (CLL-HSCs) presented the germline
configuration, and CD34~CD19* CLL cells had a clonal IGH rear-
rangement. Of note, proB cells in CLL bone marrow exhibited
polyclonal rearrangement of IGH genes, suggesting that CLL
clones are selected in vivo among such expanded polyclonal B
cells. These data clearly show that CD34*CD38~ CLL-HSC
populations do not rearrange the IGH gene, and therefore, are
not contaminated with detectable CLL clones. However,
CLL-HSCs are able to develop a higher number of polyclonal B
cells as compared to normal HSCs, suggesting that develop-
mental potential of CLL-HSCs is skewed toward B cell lineage
probably reflecting their cell-intrinsic abnormality.

Purified HSCs from Patients with CLL Are Able

to Generate Clonal B Cells with CLL-like Phenotype
after Xenogeneic Transplantation

We then tried to identify the CLL-initiating cell population by
transplanting subpopulations of CLL cells into immunodefi-
cient mice. In these experiments, NOD/SCID/IL2rg™" (NSG)
(Ishikawa et al., 2005) newborns or NOD/RAG-1~""IL2rg""
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Figure 1. Hematopoietic Stem and Progenitor Cells in the Bone Marrow of Patients with CLL

(A) Stem and progenitor FACS analysis of the bone marrow from a patient with CLL and a normal control. A representative analysis is shown.

(B) Frequencies of CD347CD38™ HSCs and CD34*CD38*CD19" pro B cells in 13 patients with CLL and 7 normal controls (upper panels), and frequencies of HSC
subpopulations including CD34*CD38~CD80*CD45RA™, CD34*CD38~CD90"CD45RA™, and CD34*CD38~CDI0~CD45RA* fractions in 6 patients with CLL
analyzed (lower panels) are shown. Note that the CLL bone marrow contains a higher number of CD34*CD38*CD10"CD18™ proB celis than the normal bone
marrow does (p < 0.05) (see also Table S$1), whereas percentages of HSC fractions do not differ in normal and CLL bone marrow. The distribution of these HSC

subfractions is unchanged in patients with CLL.

(C) IGH rearrangement status of HSC, proB, and B cell fractions in the bone marrow of a patient with CLL. HSCs did not rearrange IGH (germline), whereas proB

cells showed polyclonal IGH rearrangement.

(NRG) (Pearson et al., 2008) adult mice were used as recipients
(Table 1).

CD19" CLL cells were purified from the blood or the bone
marrow of patients 1-8, and 0.2 to 1 x 107 cells were trans-
planted. However, even until 6 months after transplantation,
human CD45" cells were never found in any of the 15 recipients
analyzed (Figure S1). These data strongly suggest that CLL cells
are incompetent for expansion to recapitulate human CLL in
immunodeficient mice. We also transplanted 10% CD34*CD38*
CD10"CD19™ proB cells in these patients, but none of ten recip-
ients was engrafted 12 weeks after transplantation (not shown).
These data led us to analyze the engraftment potential of
CLL-HSCs in the xenogeneic transplantation system. Purified
3.3 x 10%t0 6.5 x 10* CD34*CD38~ HSCs or 5.0 x 10%t0 1 x
10* CD34*CD38~CDY0* LT-HSCs from 16 independent patients
with CLL were transplanted into 25 mice (Table 1; Table S2), and
~10% CD34*CD38~ cells from 11 normal controls were trans-
planted into 29 mice.

Previous xenogeneic transplantation studies have shown that
normal HSCs are able to reconstitute multilineage hematopoietic

248 Cancer Cell 20, 246-259, August 16, 2011 ©2011 Elsevier Inc.

cells, and polyclonal B cells are normally developed in NOD-
SCID or NSG mouse bone marrow and spleen (Hiramatsu
et al., 2003; Ishikawa et al., 2005; Kolar et al., 2004; Matsumura
et al., 2003; Rossi et al., 2001). As shown in Figures 2A and 2B,
both CLL-HSCs and normal HSCs gave rise to secondary CD34"*
CD38™ HSCs, CD34*CD38"* progenitor cells, CD34-CD19" B
cells, and CD34~CD33* myeloid cells in the bone marrow. Of
note, the percentage of CLL-HSC-derived human proB cells
was significantly higher than that of normal HSC-derived ones
(Figure 2C), as we found in the bone marrow analysis of patients
with CLL and normal controls (Figure 1B), suggesting again that
differentiation of CLL-HSCs skews toward B cell lineage. Inter-
estingly, CLL-HSC-derived CD19* B cells in the bone marrow
frequently coexpressed CD5 (Figure 3B and Table 1), which is
a characteristic of de novo human CLL cells. Normal human
HSCs generated mainly CD5™ and very rare (<1%) CD5" B cells
in the bone marrow in all 29 recipients. In total, 5 out of 25
mice transplanted with CLL-HSCs developed both CD5* and
CD5™ B cell clones, 9 mice developed only CD5* B cell clones,
and the remaining 11 mice developed only CD5™ B cell clones
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Table 1. Results of Xenogeneic Transplantation Assays of CLL-HSCs

No. of Cells CD5" B Cell CD5* B Cell
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Figure 2. The Bone Marrow Cell Analysis in Mice Transplanted with the CD347CD38™ HSC Population Purified from Normal Controls and
Patients with CLL

(A and B) IGH rearrangement status of HSC, proB, and B cell fractions and in the bone marrow of mice transplanted with normal HSCs (A) and CLL-HSCs (B). In all
analysis, secondary HSCs and proB cells showed germline and polyclonal rearrangement of IGH genes, respectively. However, secondary mature B cells had
clonal IGH only in mice reconstituted with CLL-HSCs but not in those transplanted with normal HSCs. These results suggest that B cell clones derived from
CLL-HSCs were selected in vivo.

(C) Frequencies of proB cells in the bone marrow of mice transplanted with CLL-HSCs and normal HSCs. A representative xenogeneic transplantation result of

CD19* CLL cells is shown in Figure S1.

(Table 1). These CD5* B cells derived from CLL-HSCs expressed
surface IgM, CD20, and CD23 (Figure 3C) but lacked CD10, like
original CLL cells in patients.

CLL-HSC-Derived B Cell Clones Had IGH-VDJ
Combination Independent of the Original CLL Clones,
and Used Preferentially the VH1, VH3, and VH4 Genes
IGH rearrangement status of CLL-HSC-derived B cells was then
tested by PCR analysis. In the mouse bone marrow transplanted
with normal HSCs (Figure 2A), secondary CD34*CD38~ HSCs
did not rearrange IGH, and both proB and CD5™ mature B cells
had polyclonal rearrangement, indicating that control HSCs nor-
mally develop polyclonal B cells in this system. Similarly, in mice
reconstituted with CLL-HSCs, secondary HSCs retained the
germline, and the expanded proB cell population displayed poly-
clonal IGH rearrangement (Figure 2B). However, to our surprise,
mature B cell progeny appeared to have monoclonal or oligoclo-
nal IGH rearrangement, suggesting that clonal selection of

250 Cancer Cell 20, 246-259, August 16, 2011 ©2011 Elsevier Inc.

B cells occurred even in xenogeneic recipients (Figures 2B and
3B).

We then analyzed the usage of the VDJ genes in B cell progeny
to evaluate clonal relationships between patients’ original CLL
cells and B cell clones developed in mice from CLL-HSCs.
When we found clonal bands in the IGH rearrangement analysis,
we evaluated the frequency of B cell clones with specific VDJs by
TA cloning of the IGH gene PCR products (Landgren et al., 2009).
The PCR products were ligated into the vector, transformed in
Escherichia coli, picked up randomly ~35 colonies per CD5* or
CD5™ B cell samples on average, and they were sequenced to
confirm the clonality of BCRs. This analysis was performed in
25 mice reconstituted with 16 patients’ CLL-HSCs (Table S2).

Figure 3 shows the representative VDJ recombination analysis
of B cell progeny in mice reconstituted with normal HSCs from
healthy donors (Figure 3A), or with CLL-HSCs from patients 5,
7, 8, and 13 (Figure 3B). Strikingly, in mice transplanted with
CLL-HSCs from these patients, both CD5* and CD5™ B cells
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Figure 3. CLL-HSCs Give Rise to Monoclonal or Oligoclonal B Cells with CLL-like Phenotype after Xenogeneic Transplantation
(A) FACS and IGH rearrangement analysis of mice transplanted with normal HSCs. CD5™ B cells were rare, and both CD5*CD19* and CD5~CD19* B cell fractions

displayed polyclonal IGH rearrangement.

(B) FACS and IGH rearrangement analysis of mice transplanted with CLL-HSCs. Development of CD5"CD19" B celis was frequently seen in these mice (as
summarized in Table 1). In mouse 13-1, CD5™ B celis were polyclonal, but CD5* B cells were monoclonal. in other mice shown here, both CD5™ and CD5* B cells
are composed of one to three B cell clones. The B cell clones developed in mice always had VDJ genes different from those of the original CLL cells and, therefore,
were independent of the original patients’ CLL clone. VH gene usage and similarity of CDR3 amino acid sequences of these independent B cell clones are shown

in Figure S2.

(C) The CLL-HSC-derived B cell clones expressed CD20, CD23, and IgM. Representative data are shown.

were developed, and each of them was composed of one to
three B cell clones. Importantly, these B cell clones developed
in recipients possessed the VDJ combinations different from
those used in CLL clones in original patients (Figure 3B). In
summary, CD5" B cells were developed in 14 out of 25 mice
transplanted with CLL-HSCs, and these CD5" B cells consisted
always of mono- or oligo-clones (Table 1). Clonal B cell popula-
tions were also found in CD5~ B cell progeny in 16 out of 25 mice
transplanted with CLL-HSCs (Table 1). As a result, in all patients
analyzed, mice transplanted with CLL-HSCs developed B cell
clones either of CD5" phenotype, CD5™ phenotype, or both
(Table 1), whose VDJs were always independent of those in orig-
inal CLL cells (Table S2).

Furthermore, when we transplanted CLL-HSCs from single
patients (patients 7, 9, 10, and 13) into more than two mice simul-
taneously, the B cell progeny of each mouse was again
composed of independent clones with different VDJ recombina-
tion (Table S2). Representative data of patient 10 are shown in

Figure 4A. These data suggest that the clonal selection occurs
within polyclonal B cell progeny in each recipient somewhat in
a stochastic manner.

Table S2 summarized VDJ recombination and amino acid
sequences of CDR3 in CLL-HSC-derived B cell clones. It has
been shown that de novo CLL cells preferentially used VH1,
VH3, and VH4 for IGH rearrangement (Chiorazzi and Ferrarini,
2003; Fais et al., 1998). Interestingly, frequency of VH1, VH3,
and VH4 usage is higher in B cell clones derived from CLL-HSCs
(48 out of 50 clones), as compared to polyclonal B cells devel-
oped from normal HSGs (197 out of 233 clones) (Figure S2).
The difference was statistically significant on Fisher's exact
test (p < 0.05).

The status of SHM was also evaluated. Sequencing results
with less than 98% germline identity were judged as mutated,
whereas those with >98% germline identity were regarded as
unmutated (Damle et al,, 1999; Hamblin et al., 1999). The
majority (45 out of 50) of B cell clones after transplantation
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Figure 4. CLL-HSCs Are Capable of Self-renewal, and Their B Cell Progeny Is Clonally Selected in Xenogeneic Recipients

(A) CLL-HSCs from patient 10 were purified and transplanted into three recipients simultaneously. All recipients developed monoclonal or oligocional B cell
clones. Note that the B cell clones of each mouse were independent and used different VDJ genes.

(B) HSCs were harvested from the bone marrow of a mouse transplanted with CLL-HSCs of patient 7 and retransplanted into the second recipient. B cell clones in
the second recipient were independent of that in the first recipients with different VDJ gene recombination, indicating that CLL-HSCs are capable of self-renewal.

See also Table S3.

possessed mutated IGHVSs, regardless of the SHM status of the
original CLL cells.

B Cell Clones Are Derived from CLL-HSCs Capable

of Self-renewal

To confirm that CLL-HSCs that generate clonal B cells in mice
are capable of self-renewal, we performed a serial transplanta-
tion assay in patients 7 and 16 (Table S3). Experiments of patient
7 are shown in Figure 4B. The primary recipient {mouse 7-3 in
Table 1 and Tables $2 and S3) developed two CD5* B cell
clones. We then purified CD347CD38~ HSCs from the bone
marrow of the primary recipient and retransplanted into the
secondary recipient. The secondary recipient again developed
two CD5" B cell clones, indicating that CLL-HSCs are capable
of self-renewal. The VDJ recombination analysis showed that
all four B cell clones were independent and had their own VDJ
combination different from the original CLL clone. The serial
transfer experiment was performed also in patient 16, and the
secondary recipient gave rise to two clones independent of the
one developed in the primary recipient (Table S3). These data
collectively suggest that self-renewing CLL-HSCs but not normal
HSCs are able to develop monoclonal or oligoclonal B cells as
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a result of in vivo selection, and that the pathogenesis of CLL
could be traced up to the self-renewing HSC stage.

CLL-HSCs Do Not Have Chromosomal Abnormalities
Related to CLL Pathogenesis

CLLs frequently have aberrations in a few chromosomal regions,
including del13g14, del11g23, trisomy 12, and del17p (D&hner
et al., 2000), and some of these appear to be directly involved
in pathogenesis of CLL (Cimmino et al., 2005; Klein et al.,
2010; Ouillette et al., 2008). Therefore, we tested whether
CLL-HSCs have such abnormal karyotypes. Results are shown
in Table 2. Purified CD19* CLL cells in patients 2 and 11
possessed del13g14, and patients 1 and 3 had both del13q14
and del11g23 by FISH analysis. However, purified CD34*CD38™~
CLL-HSCs and CD33* myeloid cells did not have such abnor-
malities in any patients, suggesting that these chromosomal
abnormalities are acquired at the mature B cell stage.

To exclude the possibility that the very minor population
having such abnormal karyotypes within the CD347CD38~
CLL-HSC fraction gave rise to CLL cells, we evaluated the karyo-
type of B cell clones developed from purified CLL-HSCs. Purified
CLL-HSCs in patients 1-3 and 11 were transplanted into
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Table 2. FISH Analyses of Purified CLL Fractions and Secondary B Cell Clones

Patients’ CLL Bone Marrow

CLL-HSC-Derived B Cell Clones

VDJ Gene Abnormal Karyotypes (%) VDJ Genes Abnormal Karyotype (%)
Patient No.  of CLL Clone FISH Target B Cell Myeloid HSC  of B Cell Clone FISH Target  hCD45+ Cell
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immunodeficient mice. In all cases, recipients again developed
clonal B cell populations with VDJ recombination independent
of original CLL. cells, but such B cell clones have normal karyo-
types: they were free from any abnormal karyotypes that original
CLL cells had (Table 2). Thus, oncogenic events resulting
from these chromosomal abnormalities are not required for
CLL-HSCs to generate clonal B cells, suggesting that these
abnormalities are acquired at the mature B cell stage as an addi-
tional leukemogenic event to transform into clinical CLL.

Single CLL-HSCs Prime Lymphoid

Lineage-Related Genes

The fact that the CLL-HSC always generates monoclonal or
oligoclonal B cell populations strongly suggests that the
CLL-HSC possesses cell-intrinsic abnormalities to exhibit this
phenotype. We and others have shown that priming of lineage-
associated genes reflects the developmental potential of hema-
topoietic stem and progenitor cells (Akashi et al., 2003; Hu et al.,
1897; Miyamoto et al., 2002). Therefore, we analyzed the expres-
sion profile of lineage-related transcription factors in
CD34*CD38™ CLL-HSCs. Conventional quantitative PCR of
mRNA purified from 1000 cells showed that CLL-HSCs ex-
pressed IKZF1 (IKAROS), an early lymphoid transcription factor
(Georgopoulos et al., 1992), and early B lymphoid ones including
TCF3 (E2A) and IRF8 at significantly higher levels, as compared
to normal CD34*CD38™ HSCs (Figure S3). Other relatively late B
lymphoid-related genes including EBF, PAX5, IGLL1, DNTT, and
VPREB3 were not detected in either CLL-HSCs or normal HSCs
(data not shown). In contrast the expression levels of myeloid-
related RUNX-1 and CEBPA, myeloid/B lymphoid-related
PU.1, and T lymphoid-related NOTCH1 were not different
between CLL-HSCs and normal HSCs (Figure S3). Thus, tran-
scription factors required at a very early stage of B cell develop-
ment appeared to be primed in the CLL-HSC.

To directly assess the frequency of lymphoid-primed
CLL-HSCs within the CD34*CD38" fraction of patients with
CLL, we performed the single-cell gene expression assay
of CLL-HSCs, as well as of HSCs, common lymphoid progeni-
tors (CLPs) (Galy et al., 1995), and proB cells from normal
controls. Figure 5A shows the representative PCR data of
CLL-HSCs from two patients and of normal HSCs from a control.
The summary of data of six patients with CLL and normal
controls is shown in Figure 5B. The data showed that only
~16% of normal HSCs expressed IKAROS, whereas ~60% of
single CLL-HSCs expressed IKAROS at a detectable level in

this assay system. The frequency of IKAROS-expressing cells
gradually increased as normal HSCs differentiated into CLPs
and then into proB cells. Similarly, cells expressing E2A and
IRF8 began to appear at the CLL-HSC stage, but frequencies
of cells expressing these molecules increased in CLP and proB
cells. Cells expressing TDT, VPREB3, and PAX5 appeared on
and after the CLP stage. In contrast, IKAROS expressing single
CLL-HSCs frequently coexpressed early myeloid transcription
factors such as GATA-2 and CEBPA that were progressively
shut off in CLP or proB cells, reflecting their multipotency
(Figures 5A and 5B). These data suggest that a considerable
fraction of CLL-HSCs has activated early lymphoid transcription
factors, presumably reflecting their cell-intrinsic priming into the
lymphoid lineage.

DISCUSSION

In the present study, we showed evidence that self-renewing
HSCs are involved in pathogenesis of CLL, a mature B cell
neoplasm. In the xenogeneic transplantation system, both
CLL-HSCs and normal HSCs showed multilineage differentia-
tion, but only the former gave rise to clonal B cells. Such B cell
clones frequently expressed CD5 and CD23 surface antigens,
which are the typical phenotypic characteristics of de novo
CLL. These CLL-HSC-derived B cells were monoclonal or oligo-
clonal but were independent of the original patients’ CLL clones
confirmed by VDJ recombination analyses. In contrast, normal
HSCs always produced polyclonal B cells. Furthermore, patients
with CLL had ~5-fold higher numbers of polyclonal proB cells as
compared to normal individuals, and CLL-HSCs frequently dis-
played the primed expression of early lymphoid transcription
factors including IKAROS and E2A at the single-cell level. After
transplantation into xenogeneic recipients, CLL-HSCs produced
higher numbers of polyclonal proB cells than normal HSCs. CLL-
HSCs did not have abnormal karyotypes frequently detected in
CLL (Table 2). These data suggest that the CLL-HSC possesses
cell-intrinsic abnormalities for enhanced production of poly-
clonal B cell progenitors, and among whose progeny, B cell
clones with CLL or MBL phenotype selectively expand in vivo.
In human the CD34"CD38~ population in the bone marrow
contained most, if not all, of HSCs (Bhatia et al., 1997; Terstap-
pen et al., 1991). In HSC subpopulation analysis (Figures 1A and
1B), more than 90% of the CD34*CD38™ cells consisted
of CD90"CD45RA™ LT-HSCs (~60%) and CD90 CD45RA™
multipotential progenitors (~30%) (Majeti et al., 2007), and the
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(M) Single-cell quantitative gene expression analyses of CLL-HSCs, and of normal HSCs, CLP, and proB cells. Each lane represents the analysis of single cells.
IKAROS, E2A, and IRF8 were more frequently expressed in CLL-HSCs as compared to normal HSCs. IKAROS was expressed in >50% of single CLL HSCs, but
only in 15% of single normal HSCs, suggesting that CLL-HSCs are primed to the lymphoid lineage. in contrast, other myeloid or T-lymphoid transcription factors
including CEBPA, RUNX1, PU.1, and NOTCH1 did not differ between normal HSCs and CLL-HSCs. Representative results are shown. Conventional quantitative

PCR analyses of lineage-related genes in CLL-HSCs and normal HSCs are shown in Figure S3.
(B) The summary of frequencies of cells expressing the listed genes in stem and progenitor cell fractions (control n = 6, CLL. n = 6).

CD90~CD45RA* population that was reported to initiate lym-
phomyeloid differentiation (Doulatov et al., 2010; Goardon
et al., 2011) constituted only a minor (<10%) population in both
normal and CLL bone marrow. Furthermore, quantitative digital
PCR analysis showed that the expression pattern of major tran-
scription factors in single cells in the CD347CD38™ HSC or
CLL-HSC fractions appeared to be homogeneous, and among
>200 single cells analyzed, none of them expressed relatively
late lymphoid molecules such as TDT, VPREB3, and PAXS5 that
were expressed in the majority of CLP and proB cells (Figure 5).
Thus, the vast majority of the CD34*CD38~ population is uncom-
mitted stem or progenitor cells. However, it was still possible that
the purified CD34*CD38~ CLL-HSC population contained a few
original CLL clones with recombined VDJ genes, from which the
B cell clones were expanded to become visible after transplan-
tation. This possibility was excluded based on results of the
following experiments. First, CLL-HSCs as well as CLL-like B
cell clones developed in xenogeneic recipients did not have
karyotypic anomaly such as del13q14 and del11g23 that the
original CLL cells had. Second, the CLL-HSC purified from
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a single patient always produced independent B cell clones in
muitiple recipients (Figure 4A). Third, purified CLL-HSCs were
capable of self-renewal as shown in the serial transplantation
experiment (Figure 4B), and the secondary recipient developed
B cell clones independent of those in the primary recipient (Table
83). Collectively, the CLL-HSC fraction is the self-renewing pop-
ulation not contaminated with B cell clones. Our hypothesis on
development of CLL is schematized in Figure 6.

It has been shown that virtually all patients with CLL have
a precuujsor state such as MBL before it develops into clinically
evident CLL (Landgren et al.,, 2009). Around 20%~70% of
patients with MBL have more than one B cell clone (Dagklis
et al., 2009; Lanasa et al., 2010; Nieto et al., 2009), whereas
only ~10% of patients with CLL have two or more CLL clones
(Sanchez et al., 20083). Progression into CLL is seen in a fraction
of patients with MBL. A previous cohort study reported that
during this process, one of the MBL clones was selected to
develop into CLL (Landgren et al., 2009). B cell clones that arose
from CLL-HSCs in our system appeared to resemble MBL, rather
than CLL: more than one B cell clone was present in 13 out of 25
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Figure 6. Schematic Presentation of Human CLL Development Based on the Xenogeneic Transplantation Model

CLL-HSCs have accumulated genetic abnormalities that might play a role in amplified B cell differentiation, and produce a high number of polycional B cells
carrying the same genetic aberrations. B cell clones are selected, and expanded in response to BCR signaling driven presumably by xeno-antigens, simulating
progression of MBL. Additional abnormalities such as aberrant karyotypes might play a role in progression from MBL into human CLL. This final step was not

recapitulated in the xenograft model.

(~50%) mice analyzed in our experiments (Table 1). Importantly,
such B cell clones developed as short as 3 months after xenoge-
neic transplantation, and they did not have chromosomal abnor-
malities that original patients had. Somatic mutation status of B
cell clones also implies their MBL-like characteristics. It has been
shown that ~90% of MBL clones carry IGHV genes with somatic
mutation, whereas ~60% of CLL clones have mutated IGHV
genes. In the present study 13 out of 16 patients with CLL had
CLL cells with mutated IGHVs, whereas after transplantation,
45 out of 50 B cell clones developed from CLL-HSCs had
mutated IGHVs. The frequent usage of mutated IGHV in B cell
clones again suggests that these B cell clones developed in
mice might correspond to de novo MBL. Collectively, xenoge-
neic transplantation of CLL-HSCs in immunodeficient mice
could recapitulate at least the progression into the MBL, sug-
gesting that the primary genetic abnormality to cause MBL might
be acquired already at the long-term self-renewing CLL-HSC
level.

It is still unknown as to how such MBL clones are expanded,
and are selected in vivo to become CLL. Interestingly, MBL
clones that progress into CLL use a biased set of VH genes
including VH1, 3, and 4, which de novo CLL cells preferentially
use (Landgren et al., 2009; Rawstron et al., 2008). It is also known
that CLL cells express a restricted BCR repertoire, including
antibodies with quasi-identical CDR3 (Ghiotto et al., 2004;
Messmer et al., 2004; Tobin et al., 2003, 2004; Widhopf et al.,
2004). The striking degree of structural restriction of the entire
BCR in CLL suggests that common or similar antigens are recog-
nized by CLL cells, and supports the hypothesis that an antigen-
driven process contributes to CLL pathogenesis (Zenz et al.,
2010). Such antigens may include autoantigens, partly because

CLL clones frequently produce autoreactive antibodies (Borche
et al., 1990; Broker et al., 1988; Sthoeger et al., 1989). In this
context it is possible that human CLL cells could not engraft
into mice because the BCR of patients’ CLL cells cannot recog-
nize xeno-antigens in mice.

Similarly, in our xenogeneic transplantation analysis,
CLL-HSC-derived B cell clones but not normal HSC-derived
polyclonal B cells preferentially used the VH1, VH3, and VH4
(Table S2), indicating that propensity of biased usage of VH
genes is preserved in CLL-HSCs, but not normal HSCs. The
possible explanation for this phenomenon is that B cell clones
with these VH genes were preferentially selected by BCR signals
triggered by antigens, or that CLL-HSCs possess some cell-
intrinsic defects in recombining other than these VH genes. Inter-
estingly, CDR analysis of CLL-HSC-derived B cell clones
showed that >65% of CDR3 amino acids between clonal B cells
in mice 10-3 and 12 were identical, and three independent B cell
clones in mice 3, 7-3, and 12 shared >60% of CDR3 amino acids
(Figure S2 and Table S2). These independent B cell clones corre-
spond to the moderate level of CDR3 homology defined by
a previous study (Tobin et al., 2004), suggesting that the BCR
of these B cell clones may recognize common xeno-antigen to
expand, and antigen-driven process may play a ctitical role in
clonal B cell development even in our xenogeneic transplanta-
tion model.

Previous data have shown that chromosomal abnormalities
often found in patients with CLL, such as del13q14 and
del11g23, are directly linked to the leukemogenesis of CLL.
For example deletion of 13q14 causes loss of miR15a and
miR16-1 that target Bcl-2, resulting in the upregulation of Bol-2
(Cimmino et al., 2005) and proliferation of CLL celis (Klein
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et al., 2010). Our data clearly show that expansion of B cell
clones does not require such signaling caused by chromosomal
aberration (Table 2). Thus, the acquisition of abnormal karyo-
types is not necessary for MBL-like clonal B cell development
but might play a role in progression from MBL into clinical CLL
(Figure 6).

Thus, the propensity to progress into CLL is acquired already
at the HSC level. HSCs in patients with CLL are able to produce
a high number of B cells. Such B cells should carry the genetic
abnormality identical to HSCs, which might play a role in clonal
expansion after they differentiate into B cells presumably collab-
orating with BCR signaling in response to auto-antigens. Further
accumulation of genetic alteration(s) such as chromosomal
abnormalities might cause transformation of a fraction of MBL
clones into clinical CLL. Accordingly, our results suggest that
the blockage of BCR signaling, by Syk inhibitors (Friedberg
et al., 2010; Suljagic et al., 2010), for example, might be useful
to inhibit development of human MBL, or its progression into
CLL. Our xenogeneic transplantation experiments may not reca-
pitulate the full picture of CLL progression, but they do recapitu-
late the development of MBL starting from human HSCs of
patients with CLL (Figure 6). Our data suggest that even in
human CLL, the primary leukemogenic event involves multipo-
tent, self-renewing HSCs. Identification of the intrinsic abnor-
mality of HSCs in patients with CLL should be the key to finding
the ultimate therapeutic target in human CLL.

EXPERIMENTAL PROCEDURES

Clinical Samples

Diagnostic and follow-up bone marrow or blood samples of 16 patients with
CLL were used in this study. All cases were immunophenotyped as previously
described (Chiorazzi et al., 2005) and met the diagnostic criteria of the National
Cancer Institute Working Group (NCI-WG) (Hallek et al., 2008). Table S1 lists
the patient characteristics. Human age-matched adult bone marrow and
peripheral blood cells were obtained from healthy donors or purchased from
AliCells Inc. (Emeryville, CA, USA). Informed consent was obtained from all
patients and controls in accordance with the Helsinki Declaration of 1975
that was revised in 1983. The Institutiona! Review Board of Kyushu University
Hospital approved all research on human subjects.

Antibodies, Cell Staining, and Sorting

Human HSCs, progenitors, and other hematopoietic cells were stained and
sorted by FACS Aria (BD Biosciences, San Jose, CA, USA). The bone marrow
mononuclear cells (MNCs) were concentrated by standard gradient centrifu-
gation, and the CD34™* cells were enriched from MNCs by using the Indirect
CD34 MicroBead Kit (Miltenyi Biotec, Bergisch-Gladbach, Germany). The
HSC population used for xenotransplant or PCR analyses purified as
CD34'CD38~ cells from the fraction does not express lineage antigens as
described below. In some cases CD34*CD38"CD90" cells were used for the
xenotransplantation assay (Table 1). Briefly, for the FACS analysis or sorting
of human bone marrow cell fractions, cells were stained with a Cy5-PE- or
PC5-conjugated lineage cocktail, including anti-CD3 (HIT3a), CD4 (RPA-T4),
CD8 (RPA-T8), CD10 (HI10a), CD19 (HIB19), CD20 (2H7), CD11b (ICFR44),
CD14 (RMO52), CD56 (NKH-1), and GPA (GA-R2). Cy5-PE-conjugated
CD10, CD18, and CD20 monoclonal antibodies were excluded from lineage
cocktail in the B-lymphoid progenitor assay. Cells were further stained with
FITC-conjugated anti-CD10 (852/36), anti-CD34 (8G12) or anti-CDS0 (5E10),
PE-conjugated, anti-CD19 (HIB19), APC-conjugated anti-CD34 (8G12) or
anti-CD38 (HIT2), PE-Cy7-conjugated anti-CD5 (L17F12), anti-CD19
(8J25C1), anti-CD34 (8G12) or anti-CD38 (HIT2), Pacific Blue-conjugated
anti-CD45RA (H1100), and biotinylated anti-CD38 (HIT2). For analysis of human
cells developed in the immunodeficient mice, FITC-conjugated anti-CD5
(UCTH2), anti-CD33 (HIM3-4) or anti-human IgM (G20-127), PE-conjugated
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anti-CD5 (UCHT2), anti-CD20 (L27), anti-CD23 (EBVCS-5), or anti-CD45
(HI30), APC-conjugated anti-CD45 (J.33) monoclonal antibodies were used.
Streptavidin-conjugated APC-Cy7 or PE-Cy7 was used to visualize biotiny-
lated antibodies (BD PharMingen, San Jose, CA, USA). Nonviable cells were
excluded by propidium iodide (Pl) staining. Appropriate isotype-matched,
irrelevant control monoclonal antibodies were used to determine the level of
background staining. The sorted cells were subjected to an additional round
of sorting using the same gate to eliminate contaminating cells and doublets.
For single-cell assays an automatic cell-deposition unit system (BD Biosci-
ences, San Jose, CA, USA) was used.

FISH Analysis

FISH analysis was performed on interphase nuclei from the bone marrow or
blood cells. The probe sets detect 13g- (D13S319 at 13g14 and LAMP1 at
13g34), 12 (D12Z3 at CEN12), and 11g- (ATM at 11923 and D11Z1 at
CEN11). The specimens in this study were analyzed in a random order, by
blinded observers. Intact, nonoverlapping nuclei were scored. A total of
1000 nuclei were analyzed for each probe set for each patient.

Xenogeneic Transplantation

NRG mice (stock #7798) (Pearson et al., 2008) (purchased from The Jackson
Laboratory) and NOD.Cg-Prkdcs®IL-2rg™/Sz (NSG) mice (Shultz et al.,
2005; Ishikawa et al., 2005) were used for xenogeneic transplantation assays.
Mice were housed in a specific pathogen-free facility in micro-isolator cages at
the Kyushu University (Fukuoka, Japan) or RIKEN Center for Allergy and Immu-
nology (Kanagawa, Japan). Animal experiments were performed in accor-
dance with institutional guidelines approved by the animal care committee
of each institute. For the reconstitution assays, sorted cells were transplanted
into irradiated (100 cGy) NSG newborns via a facial vein within 48 hr of birth
(ishikawa et al., 2005) or into sublethally irradiated NRG adult mice (4.8 Gy)
via a tail vein as previously reported (Kikushige et al., 2010).

IGH Gene Rearrangement Analysis and Subcloning of PCR Products
Genomic DNA was extracted by Micro Kit (QIAGEN) according to the manu-
facturer's instructions. Multiplex PCR assays were employed to detect clonal
B cell population (van Dongen et al., 2003). To evaluate the IGH gene rear-
rangement of a small number of sorted cells, semi-nested PCR assays were
performed (d'Amore et al., 1997; Ramasamy et al., 1992; Reed et al., 1993).
The clonal PCR product was excised from gel, purified by QlAquick Spin
(QIAGEN), and directly sequenced with the heavy-chain primer by ABI 3730
Genetic analyzer (Applied Biosystems).

Subcloning was performed to detect clonal bands within polyclonal back-
ground, by using the TOPO TA Cloning kit (Invitrogen). The PCR products
were ligated into the vector and transformed in Escherichia coli cells according
to the manufacturer's recommendation. At least 12 colonies were selected
and sequenced to confirm clonal expansion. The sequence results were
analyzed on the IMGT tools (Giudicelli et al., 2004) and IgBLAST, and aligned
to the closest match with the germline IGHV segment. Sequencing results with
a germiine identity of less than 98% were regarded as mutated, whereas those
with a germline identity of 38% or more were regarded as unmutated accord-
ing to previous studies (Damle et al., 1899; Hamblin et al., 1999).

Single-Cell Quantitative PCR

For single-cell quantitative PCR analysis, single CD34*CD387Lin"HSC,
CD34*CD38*CD10*CD19Lin"CLP (Galy et al., 1995), or CD34"CD38*CD10*
CD18*Lin"proB cell was sorted directly into the mixture of CellsDirect 2x
Reaction Mix (CellsDirect™; Invitrogen), 0.2x TagMan Assay Mix (Applied
Biosystems), and SuperScript™ lIf RT/Platinum Taq Mix (Invitrogen) according
to the protocol of BioMark™ Dynamic Array (Fluidigm, CA, USA). After sorting
single cells into 86-well plates, reverse transcription (RT) and specific target
amplification (STA) were performed. Temperature setting for RT was 15 min
at 50°C, and after RT reaction, samples were incubated for 2 min 95°C.
Thermal-cycling settings for STA were 22 cycles of 95°C for 15 s and 60°C
for 4 min. After RT and STA reaction, preamplified cDNA was diluted with TE
buffer (1:5). Single-cell quantitative PCR was performed using BioMark™
48 X 48 or 86 X 96 Dynamic Array. Data were analyzed by BioMark™ Real-
Time PCR Analysis Software v2.0 (Fluidigm, CA, USA). TagMan Gene
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Expression Assay Mixes for all the genes analyzed in this study were
purchased from Applied Biosystems.

Statistical Analysis

Data were presented as mean = standard deviation. The significance of the
differences between groups was determined by using Student’s t test. p
values <0.05 were considered statistically significant.
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