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with mechanical stress. Although mechanical stress, such as
attempts to peel the neonatal mouse skin, can induce skin
erosion or blistering in Co/717a7-null mice (Nishie et al., 2007), it
did not significantly accelerate hair graying or hair loss in these
mice. Importantly, we did not find evidence of macroscopic/
microscopic junctional separation, basal cell death, nor inflam-
matory cell infiltrates between the HFSCs and the basement
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Figure 6. Transgene-Mediated Correction
of COL17A1 Expression in Col17a1™" Basal
Keratinocytes Rescues the Loss of MSCs
The Krt14-hCOL17A1 transgene was introduced
into Col17a1~'~ mice. )

(A} Macroscopic phenotype of 7- to 9-month-old
Col17a1™'~ mice with the Krt14-hCOL17A7 trans-
gene and Col17a1*~ mice.

(B) Distribution and morphology of Dct-lacZ-
expressing melanoblasts in the bulge area (Bg)
are normalized by the Krt714-hCOL17A7 transgene
in Col17a1™"~ mice. Bulge-subbulge areas are
demarcated by brackets.

(C) Ectopic KRT1 expression and abnormal prolif-
eration of HFSCs in the bulge-subbulge area
(brackets) are corrected by the Krt14-hCOL17A1
transgene in Col77a1~'~ mice. These mice were
observed at 13 weeks of age during the anagen
phase. Scale bar represents 50 um.

(D) The downregulated expression of phospho-
Smad2 (in green) in Col17a1~'~ HFSCs and MSCs
within the bulge-subbulge areas (demarcated
by brackets) was also normalized by forced
expression of the Kri14-hCOL17A1 transgene in
Col17a1™~ keratinocytes. Dct-lacZ-expressing
melanocytes in the bulge area are shown in red.
Scale bars represents 20 um.

See also Figure S6.

Col17a1*
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membrane in Col17a7-null mouse skin.
Instead, we found that significant defects
in HFSC quiescence and immaturity in
Col17a1-null mice were the earliest
events that could explain the defective
maintenance of HFSCs over ensuing hair
cycles. These findings underline a critical
cell-autonomous role for COL17A1 in the
maintenance of HFSCs under physiolog-
ical conditions. Although we did not
detect adhesion defects of Col77a7-null
keratinocytes on feeder cells used for
colony assay in this study, weakening of
cell attachment has been found with
human cultured keratinocytes treated
with COL17A1 antibody under vibration
conditions (lwata et al, 2008). One
adhesion-based explanation for the
premature HFSC depletion in Col77a1-
deficient mice is that COL17A1-depen-
dent anchoring of HFSCs to the basal
lamina might regulate the quiescence
and differentiation of HFSCs by modifying
their division frequency and properties.
Regardless of the precise mechanism invoived, our findings
reveal a potential mechanism for the hair loss (alopecia) seen
with human COL177A1 deficiency, which causes the nonlethal
form of junctional epidermolysis bullosa, also known as general-
ized atrophic benign epidermolysis bullosa (GABEB) (McGrath
et al., 1995; Nishie et al., 2007). It has been reported that the
hair loss in GABEB patients is not always associated with
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surrounding skin surface changes but is associated with hair
follicle atrophy or hair follicle loss (Hintner and Wolff, 1982).
This finding is consistent with the late skin changes such as
hair follicle atrophy seen in Co/77a7-null mice. Therefore, we
suggest that this mouse model may be a powerful tool for helping
to understand the pathomechanisms of premature alopecia.

Human patients with GABEB also show epidermal atrophy
with aging. Col77a7-deficient mice show transient epidermal
hyperplasia in some focal areas at around 6 months of age
(Figure 3D) but the entire skin becomes gradually more atrophic
over time. Similar but more pronounced changes have been
observed in the setting of stem cell depletion such as is seen
in Rac? conditional knockout mice (Benitah et al., 2005) and
in c-Myc transgenic mice (Arnold and Watt, 2001; Waikel
et al., 2001). The late onset of epidermal atrophy seen in
Col17a1-null mice might represent the eventual depletion or
a decreased self-renewing potential of epidermal stem cells for
the IFE.

More generally, Col17a7-null mice have provided evidence of
an unexpected biological function for HFSCs. Although we have
previously shown that the niche microenvironment plays a domi-
nant role in fate determination for MSCs (Nishimura et al., 2002),
the type of cell and/or the extracellular matrix in the bulge area
that comprises the functionally essential component(s) of the
niche has been unclear. Our current data indicate that HFSCs
serve as a functional niche for MSCs and act through HFSC-
derived TGF-B signaling, which is critical for MSC maintenance
(Figure 7). It is notable that MSC immaturity was lost in
Col17a1-deficient mice at a time when HFSCs were undergoing
aberrant proliferation and differentiation in the bulge area with
gradual loss of HFSC characteristics, including TGF-B produc-
tion. There are a number of keratinocyte-specific gene-deficient
mice that display a hair loss phenotype caused by HFSC
depletion (Benitah et al., 2005; Zanet et al., 2005). However, as
far as we know, characteristic premature hair graying has not
been reported in those mice. It is also interesting that HFSCs
nurture MSCs even though they are derived from a completely
different developmental origin (Nishimura et al., 1999, 2002). A
similar niche function provided by one type of stem cell for

Figure 7. A Schematic Model for HFSCs and
MSC Niche

HFSCs provide COL17A1-dependent niche for
MSCs though TGF-B signaling. APM, arrector pili
muscle.

another was reported in Drosophila
melanogaster testis and mouse bone
marrow during the revision of this paper
(Leatherman and Dinardo, 2010; Mén-
dez-Ferrer et al.,, 2010; Omatsu et al.,
2010). The maintenance of somatic
stem cell populations in a coherent cell
mass with a specialized tissue organiza-
tion such as in the hair follicle bulge
might be a recurring strategy for somatic
stem cell maintenance. COL17A1 in the
basal cell population of HFSCs (the a6-
integrin™®" population) (Blanpain et al., 2004) is critical not only
for the maintenance of MSCs but also for the suprabasal HFSCs
(«B-integrin® population), which suggests a common niche
function for basal HFSCs for the maintenance of adjacent
MSCs and HFSCs. Further studies to elucidate the precise niche
properties of HFSCs may clarify additional fundamental mecha-
nisms for the maintenance of stem cell pools as clustered stem
cell populations.

high

EXPERIMENTAL PROCEDURES

Animals

Dct-lacZ transgenic mice (Mackenzie et al., 1997) (a gift from I. Jackson),
Col17a1-knockout mice (Nishie et al., 2007), and Krt74-human COLT17A1
transgenic mice (Olasz et al., 2007) have been described previously.
Col17a1*'* and Col17a1*'~ mice are referred to as control mice. CAG-CAT-
EGFP mice (a gift from J. Miyazaki) were bred with Dct™(C®8¢¢ mice (a gift
from F. Beermann) to generate compound heterozygotes as described previ-
ously (Osawa et al., 2005). All mice were backcrossed to C57BL/6J. Animal
experiments conformed to the Guide for the Care and Use of Laboratory
Animals and were approved by the Institutional Committee of Laboratory
Animal Experimentation.

TGF-BRIl straight knockout mice (a gift from M. Taketo) (Oshima et al., 1996)
were bred with Rag2-deficient mice at the Animal Research Facility of the Insti-
tute of Medical Science, University of Tokyo. Animal care of the line was
carried out in accordance with the guidance of Tokyo University for animal
and recombinant DNA experiments.

Histology, Immunohistochemistry, and Flow Cytometry Analyses
Paraffin, frozen sections, and whole-mount B-galactosidase staining were per-
formed as previously described (Nishimura et al., 2002, 2005). Additional
details on the methods and antibodies used are provided in the Supplemental
Information. Multicolor flow cytometry analysis for HFSCs was performed with
a FACSCalibur (BD).

Electron Microscopy

For electron microscopy, 20 um cryostat sections were cut and stained in
X-gal solution for 12 hr at 37°C. The sections were postfixed in 0.5% osmium
tetroxide for 30 min, stained with 1% uranyl acetate for 20 min, dehydrated
in a graded ethano! series, and then embedded in epoxy resin. Semithin
sections (1 um thick) were examined after toluidine blue staining and were
observed by light microscopy. Ultrathin sections were observed with a
JEM-1210 transmission electron microscope (JEOL) at 80 KV.

Cell Stem Cell 8, 177-187, February 4, 2011 ©2011 Elsevier Inc. 185
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Isolation of Melanocytes

Dorsal skin  was harvested from 6-day-old CAG-CAT-EGFP/+;
Detimi(Cre)ee/ tmiCre)Bee mice The skin specimens were incubated in PBS
containing 300 U/ml dispase (Sanko Junyaku) overnight at 4°C, and then
the dermis was removed from the epidermis with a stereomicroscope. The
epidermis was further dissociated by treatment with 0.25% trypsin for
10 min at 37°C. After neutralization with fetal calf serum (FCS), GFP* melano-
cytes were sorted with JSAN (Bay Bioscience).

RNA Isolation and Reverse Transcriptase Polymerase

Chain Reaction

Total RNAs from mouse skin or sorted GFP* melanocytes were isolated with
TRizol (GIBCO) according to the manufacturer’s instructions. 3 pg total RNA
was used for cDNA synthesis in THERMOSCRIPT RT-PCR System (GIBCO)
according to the manufacturer’s instructions. The following primers were
used for the analysis: mouse Col77a? (forward primer 5'-actcgcctcttcttca
acca, reverse primer 5'-gagcaggacgccatgttatt) and GAPDH (forward primer
5'-accacagtccatgccatcac, reverse primer 5'-tccaccaccctgtigetgta).

Colony-Formation and Adhesion Assays

For the colony-forming assay, keratinocytes from newborn mice were used.
Dorsal skins were incubated in PBS containing 300 U/ml dispase (Sanko
Junyaku) for 1 hr at 37°C, after which the dermis was removed from the
epidermis with a stereomicroscope. The epidermis was further dissociated
by treatment with TrypLE Select (GIBCO) for 10 min at 37°C. The isolated
cells (10% per 6 cm dish) were seeded on 3T3-J2 feeder cells treated with mito-
mycin C. The cells were grown in calcium-free medium (3:1 = calcium-free
DMEM:CnT-57CF.S [Celltec]) supplemented with 1.8 x 10~* M adenine, 1%
antibiotic-antimyotic solution (Sigma), 2 mM L-glutamine, 0.5 pg/m! hydrocor-
tisone, 5 pg/ml insulin, 107'° M cholera enterotoxin, 10 ng/ml EGF, and 10%
FCS treated with Chelex-100 resin (BioRad) at 32°C in a humidified atmo-
sphere with 8% CO, for a total of 14 days. To visualize the keratinocyte
colonies, the cells were washed with PBS and were then fixed in 4% formalin
for 20 min at room temperature. After further washing in PBS, the cultures were
stained for 5 min at room temperature with crystal violet.

For the adhesion assay, isolated keratinocytes (10° per well in 6-well plates)
were seeded on 3T3-J2 feeder cells treated with mitomycin C or on collagen
I-coated 6-well plates. 12 or 24 hr later, keratinocytes was washed three times
in PBS and were collected with 0.05% trypsin-EDTA. Collected cells were
fixed with 2% formaldehyde for 10 min at 37°C, permeabilized by ice-cold
100% methanol for 30 min, and stained with an Alexa Fluor 488-conjugated
pan-cytokeratin monoclonal antibody (EXBIO). Detection of adherent keratino-
cytes was performed with a FACSCanto 1l (BD).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
and six figures and can be found with this article online at doi:10.1016/
j.stem.2010.11.029.
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Localized autosomal recessive hypotrichosis (LAH) 2
is a type of non-syndromic human alopecia that is inhe-
rited as an autosomal recessive trait. We describe here
a patient with LAH2 who had mutations in the lipase H
(LIPH) gene. We analysed hair shaft morphology using
light and scanning electron microscopy (SEM). In ad-
dition, we review the features of other non-syndromic
human alopecias.

CASE REPORT

The patient was a 4-year-old boy, the firstborn of healthy and un-
related Japanese parents, born after an uneventful pregnancy. He
had scant hair at birth, which grew very slowly in infancy.

Clinical examination revealed hypotrichosis of the scalp (Fig.
1a). The hairs were sparse, thin, and curly, and not easily plucked.
The left eyebrow hair was sparse, but the eyelashes and other body
hair were present in normal amounts. Teeth, nails, and the ability
to sweat were completely normal. Clinical features of keratosis
pilaris, milia, scarring, and palmoplantar keratoderma were absent.
Psychomotor development was normal. The patient’s younger
brother also had severe hypotrichosis; since birth his hair was curly,
and his eyebrow hair virtually absent (Fig. 1b). No other family
members, including his parents, had similar hair abnormalities.
Laboratory tests of the patient showed normal serum levels of
copper and zinc, and liver and kidney function tests were all within
normal ranges. Over a period of 2 years there was no improvement
or exacerbation of hypotrichosis in the patient.

Light microscopy of the patient’s scalp hairs revealed that
approximately 10% had structural abnormalities. Abnormal
hairs were composed of thick dark parts and thin light parts
(Fig. 2a). SEM revealed alterations of the cuticular architecture.
Cuticular cells were absent from both the thick and thin parts
(Fig. 2b). Cross-sectional observation showed that thick, but not
thin, sections had hair medulla (Fig. 2¢, d). Light microscopy

B N
Fig. 1.(a) Clinical features of the patient at 4 years of age. (b) Clinical features

of the younger brother at 1 year 4 months of age. Permission is given from
the parents to publish these photos.
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on hairs from the patient’s younger brother revealed that they
were composed of thin and thick parts (data not shown).

Based on the clinical features, hair microscopy and family pe-
digree, we suspected LAH2 or LAH3. To determine the type of
LAH, we looked for gene mutations in LIPH and LPARG (enco-
ding lysophosphatidic acid receptor 6). Two prevalent missense
mutations in LIPH were found (1); ¢.736T>A (p.Cys246Ser)
and ¢.742C>A (p.His248Asn). The mutations were carried in
a compound heterozygous state. No mutations were found in
LPARG. The parents did not consent to genetic testing of the
younger brother or themselves.

DISCUSSION

The different LAH subtypes map to chromosomes
18q12.1,3g27.3 and 13q14.11-13¢21.32, and are de-
signated LAH1, LAH2 and LAH3, respectively (2—4).
Mutations in DSG4 (encoding desmoglein 4) have been
found to be responsible for LAH1 (5). Kazantseva et
al. (6) reported deletion mutations in LIPH leading
to LAH2. Pasternack et al. (7) reported disruption of
LPARG in families affected with LAH3.

Table I summarizes of genetic, non-syndromic human
alopecias. In iypotrichosis simplex of the scalp, hair loss

Fig. 2. (a) Light microscopy (x40). Hair was composed of thick (=) and thin
parts (—). (b) Scanning electron microscopy (*900). Cuticular cells were
absent in both thick and thin sections. (¢, d) Scanning electron microscopy
(cross-section, x900). (c) Thick regions showed hair medulla, while (d) thin
regions did not.

© 2011 The Authors. doi: 10.2340/00015555-1095
Journal Compilation © 2011 Acta Dermato-Venereologica. ISSN 0001-5555
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is limited to the scalp without hair shaft abnormalities.
The causative gene is CDSN (encoding corneodesmosin)
on 6p21.3 (8). The clinical presentations of monilethrix
vary among patients. Mild cases have hair loss limited to
the scalp, while severe cases show generalized alopecia.
Hair shaft abnormalities are characteristic, demonstrating
regularly-spaced, spindle-shaped swellings. The nodes
are as thick as normal hair and the atrophic internodes
represent areas where the hair is easily broken. Causative
genes are hHbI, hHb3 and hHb6 (12q13) (9), which
encode for basic hair keratins.

In case of atrichia with papular lesions, hair loss on
the entire body occurs several months after birth. The
gene responsible is AR (encoding hairless™) (10), a tran-
scription modulating factor that influences the regression
phase of the hair shaft cycle. Patients with sypotrichosis,
Marie Unna type have hard and rough scalp hair, de-
scribed as iron-wire hair. Generalized hypotrichosis is
often seen. U2HR, an inhibitory upstream open reading
frame of the human hairless gene (11), is mutated in this
condition. Hereditary hypotrichosis simplex is charac-
terized by hair follicle miniaturization. The defective
gene is APCDDI (encoding adenomatosis polyposis
down-regulated 1) (12). Hairs are short, thin, and easily
plucked. Eyelashes and eyebrows are also affected.

As already mentioned, there are three types of locali-
zed hereditary hypotrichosis. LAH]1 patients have hair
shaft abnormalities that resemble moniliform hair (13).
LAH]1 can be viewed as an autosomal recessive form
of monilethrix. Patients with LAH2 and LAH3 have
woolly hair (14, 15), and eyelashes and eyebrows are
often sparse or absent. Upper and lower limb hairs are
sometimes absent too.

Our patient had hypotrichosis of the scalp with sparse
left eyebrow hair and irregularly spaced segments of
thick and thin hair, but not to a degree that could be
labelled moniliform. The mode of inheritance was
autosomal recessive and L/PH was found to be abnor-
mal, thus establishing a diagnosis of LAH2. One of the
mutations (c.736T>A) leads to an amino acid change
(p.Cys246Ser) of a conserved cysteine residue, which
forms intramolecular disulphide bonds in the lid domain
in the structure model of LIPH (1). The other mutation
(c.742C>A) results in alteration of one of the amino
acids of the catalytic triad (Ser', Asp'™, and His**®) of
LIPH (p.His248Asn) (1).

Table 1. Features of genetic, non-syndromic human alopecias
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Regarding hair shaft morphology, Horev et al. (14)
reported that hairs of LAH2 patients showed decreased
diameter under light microscopy. This is the first report
to describe hairs from an LAH2 patient by SEM. Shi-
momura et al. (13) observed hairs of LAH1 patients
by SEM and found variable thickness of the hair shaft,
resulting in nodes and internodes. Which are absent in
LAH]1 (our observation). Longitudinal ridges and flutes
were observed at internodes, and the breaks always oc-
curred at internodes in LAH1. These features resemble
those of moniliform hair rather than LAH2. However, in
the end gene analysis is probably easier to accomplish
than SEM to distinguish the two types of LAH.
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Abstract Epidermolysis bullosa (EB) is classified into the three major subtypes depending on the level
of skin cleavage within the epidermal keratinocyte or basement membrane zone. Tissue separation
occurs within the intraepidermal cytoplasm of the basal keratinocyte, through the lamina lucida, or in
sublamina densa regions of the basal lamina (basement membrane) in EB simplex, junctional EB, and
dystrophic EB, respectively. Transmission electron microscopy (TEM) is an effective method for
determining the level of tissue separation and hemidesmosome (HD) and anchoring fibril morphology if
performed by experienced operators, and has proven to be a powerful technique for the diagnosis of new
EB patients. Recent advances in genetic and immunofluorescence studies have enabled us to diagnose
EB more easily and with greater accuracy. This contribution reviews TEM findings in the EB subtypes
and discusses the importance of observations in the molecular morphology of HD and basement

membrane associated structures.
© 2011 Elsevier Inc. All rights reserved.

Introduction

Epidermolysis bullosa (EB) comprises a group of
hereditary disorders characterized by mechanical stress-
induced blistering of the skin and mucous membranes.’ This
group of diseases is caused by a genetic abnormality in a
single gene encoding one of 13 proteins involved in
epidermal keratinocyte-basement membrane zone (BMZ)
adhesion (Figure 1).* EB has typically been classified into
three main subtypes, depending on the level of epidermal
separation from the underlying basal lamina. Tissue
separation occurs within the intraepidermal keratinocyte
cytoplasm, through the lamina lucida, or in the sublamina

* Corresponding author. Tel.: +81 11 716 1161x5962; fax: +81 11 706
78201
E-mail address: qxfjc346(@ybb.ne.jp (S. Shinkuma).

0738-081X/$ — see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.clindermatol.2011.01.010

densa in EB simplex (EBS), junctional EB (JEB), and
dystrophic EB (DEB), respectively (Figure 2).! After the
initial diagnosis based on careful examination of the clinical
manifestations and inheritance pattern, a skin biopsy from a
recently formed blister lesion should be taken to determine
the level of tissue separation to classify the disease.*
Transmission electron microscopy (TEM) and immuno-
fluorescence (IF) are both effective at determining the level
of tissue separation.® Currently, IF is becoming increasingly
important in the diagnosis of EB because TEM requires
expensive equipment and significant experience and exper-
tise to process skin biopsy specimens and accurately interpret
the resulting micrographs.* The primary advantage of TEM,
however, is that it can visualize ultrastructural abnormalities
and provide a semiquantitative assessment of specific BMZ
structural deficits.® Therefore TEM is likely to continue to
assume an important role in both the clinical and research
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Fig. 1  Schematic diagram shows the approximate positions of principal epidermal basement membrane zone components. (Adapted with

permission from McMillan et al.”)

fields. This contribution focuses on TEM findings and their
usefulness in EB diagnosis and cell adhesion research.

Ultrastructure of normal
dermal-epidermal junction

The BMZ is composed of various molecules, each of
which plays a differing role in dermal-epidermal junction
adhesion (Figure 1).37-% The ultrastructural location of each

BMZ molecule has been studied using a range of
immunoelectron microscopy techniques.” In the basal
keratinocyte, several electron dense rivetlike structures are
found on the inner surface of the keratinocyte basal pole of
the cell membrane, called hemidesmosomes (HDs).!® HDs
show a distinct tripartite, two-plaque structure, consisting of
inner and outer plaques.!!-!> Keratin intermediate filaments
(KIF), which are 10 to 12 mm thick and consist of basal cell
keratins 5 and 14, associate with the inner hemidesmosome
(HD) plaque and interplaque space and are capable of
binding to both plectin and 230-kDa bullous pemphigoid
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Fig. 2  The mechanism and the cleavage site of epidermolysis bullosa. (Adapted with permission from Shimizu H: Shimizu’s Textbook of
Dermatology: Blistering and Pustular Diseases. Sapporo, Japan: Hokkaido University Press/Nakayama Shoten Publishers. 2007:203p.).

antigen 1 (BPAGle, BP230, also known as dystonin)
hemidesmosomal antigens.!*!7 These two plakin protein
family members, plectin and dystonin, form critical links in a
continuous series of protein interactions bridging two distinct
transmembrane molecular systems of the outer HD plaque,
integrin o6B4'%1% and collagen XVIL2%?! also known as
180-kDa bullous pemphigoid antigen 2 (BPAG2) or BP180.

Immediately beneath the keratinocyte plasma membrane
lays an electron-lucent zone, the lamina lucida and an
electron-dense layer comprising a closely packed fibrous
network called the lamina densa.” Below the HD, there is a
thin electron-dense line termed the subbasal dense plate,
parallel to the plasma membrane that is visible in
approximately one-third of HDs, depending on the precise
orientation of the section.!®-?? Traversing the lamina lucida
zone, subjacent to HDs, are thin anchoring filaments
apparently inserting into the lamina densa. Laminin 332,
one of the major epidermal laminins (formerly known as
Kalinin, laminin 5), is found on the border between the upper
lamina densa of HDs and lower lamina lucida at the base of

anchoring filaments, which may comprise collagen
XVIL.?*?* Beneath the lamina densa, most of the collagen
VI molecules form semicircular loop structures called
anchoring fibrils in which the amino (N-) terminals of the
antiparallel collagen VII fibrils originate and terminate in the
lamina densa.3?%¢ In the dermis, anchoring fibrils may
enable the lamina densa to link or encircle dermal collagen
fibers or other components to provide basal lamina
anchorage to the underlying structures.

Ultrastructural findings of EB
Epidermolysis bullosa simplex

The three major subtypes of EBS—Dowling-Meara
(EBS-DM) (severe), other generalized (moderate), and the
localized (mild) type—are caused by keratin 5 or 14
mutations that result in an abnormal keratin network leading

—166—



Ultrastructure and molecular pathogenesis

415

Fig. 3  Electron microscopic image of epidermolysis bullosa
simplex shows (A) separation has occurred within the cytoplasm of
the epidermal basal cells, which leads to intraepidermal blistering.
The arrowheads indicate the lamina densa. The cytoplasm of the
basal cells contains large vacuoles (asterisks) and show extensive
damage. (B) Aggregation of keratin fibers is seen in epidermolysis
bullosa simplex—Dowling-Meara (arrows).

to blister formation within the cytoplasm of the epidermal
basal cells (Figure 3A).27-?% In EBS-DM, in addition to the
intraepidermal cleavage, clumping of degenerated keratin
fibers can be observed within epidermal keratinocytes
(Figure 3B).>°

Rare types of EBS, including EBS with muscular dystrophy
(EBS-MD) and EBS with pyloric atresia (EBS-PA), are caused
by plectin gene mutations.?%-33 In EBS-MD and EBS-PA, the
split occurs around the level of the HD inner plaque within the
keratinocyte cytoplasm and is often associated with reduced
numbers of poorly formed hypoplastic HDs, with reduced
numbers of inner plaque and KIF association.5-32

Junctional EB

JEB can be further divided into three subtypes: Herlitz
JEB, non-Herlitz JEB, and JEB with pyloric atresia.! All JEB
subtypes are inherited in an autosomal-recessive manner and
are characterized by blister formation in the lamina lucida.3¢

Herlitz JEB, the most severe type, is caused by a complete
absence of laminin 332.37-3 Non-Herlitz JEB is caused by
missense mutations leading to a reduction in functional
laminin 332 or complete absence of collagen XVIL37 JEB
with pyloric atresia is caused by a genetic mutation in the
integrin 06 or B4 subunits that are the main receptor for
ligand laminin 332 beneath HDs. 404!

Ultrastructurally, Herlitz JEB is characterized by wide-
spread epidermal separation through the lamina lucida or by
hypoplastic (small), or both, and a markedly reduced number
of HDs (Figure 4).22 In non-Herlitz JEB, HDs may appear
normal or reduced in size or number.542

Dystrophic EB

DEB is caused by mutations in the gene that codes
collagen VII, a major structural component of anchoring
fibrils that is essential for connecting the dermis and the basal
lamina and hence the epidermis.>*** Subepidermal blister-
ing occurs in conjunction with reductions in anchoring fibril

Fig. 4  Electron microscopic image of junctional epidermolysis
bullosa (JEB) shows (A) a blister (asterisks) is present within the
lamina lucida, between the plasma membrane of the basal
keratinocytes (white arrowheads) and the lamina densa (black
arrowheads). (B) The hemidesmosomes are rudimentary and
reduced in number in Herlitz JEB.
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Fig. 5 Electron microscopic image of dystrophic epidermolysis
bullosa shows (A) dissociation (asterisks) immediately below the
lamina densa (arrowheads). (B) It is characterized by hypoplasia of
anchoring fibrils.

numbers or with defects in normal anchoring fibril morphol-
ogy, or both (Figure 5).“* The phenotype of autosomal-
dominant DEB (DDEB) is milder than that of recessive DEB
(RDEB).*> The most severe subtype of RDEB, severe
generalized type, shows a severe reduction or lack of
expression of collagen VII, which ultrastructurally results in
rudimentary or absent anchoring fibrils (Figure 5).** By
contrast, in the milder RDEB phenotype, termed “generalized
other RDEB”, shows reduced or rudimentary-appearing
anchoring fibrils. In DDEB, anchoring fibrils are typically
seen as normal in appearance or slightly decreased in number.

Kindler syndrome

Kindler syndrome has been added as a further, specific
subtype of EB, in the latest classification of EB.!*¢ Kindler
syndrome is inherited in an autosomal-recessive manner and
is characterized by trauma-induced blistering, poikiloderma
(skin atrophy and altered skin pigmentation), mucosal
inflammation, and varying degrees of photosensitivity.*®
The pathogenesis of Kindler syndrome involves loss-of-
function mutations in a newly recognized actin cytoskeleton-
associated protein, now known as fermitin family homolog 1
and encoded by the gene FERMTI.47 This protein has a role
in controlling/activating B1 associated integrin cell adhesion
and may play a role in the linkage of the actin cytoskeleton to
Pl integrins and the extracellular matrix at sites of focal
adhesion. Whereas EB is caused by abnormalities in HD-KIF
cell attachment to the underlying basal lamina and dermis,
Kindler syndrome is caused by defective activation of focal
adhesion anchorage.*® Ultrastructural examination of Kin-
dler syndrome reveals a distinct disorganization below the

Fig. 6  Electron microscopic image of Kindler syndrome (KS) shows that (A) compared with the site-matched skin of healthy controls,
(B) the skin of the KS patient has a thinner epidermis resulting from fewer cell layers. (C) Ultrastructurally, along the dermal-epidermal junction
in the K patient’s skin, the hemidesmosomes (HDs) appear normal (white arrow); however, there may be signs of epidermal separation within
the basal keratinocyte (asterisks) or immediately below the lamina densa as dermal clefts (DC). A common finding is the reduplication of the
lamina densa (arrowheads) is seen in the upper dermis. Dermal cleft formation can occur together with reduplication of the lamina densa.
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epidermal keratinocyte basement membrane exhibiting as
lamina densa reduplication with branching, folding, and
formation of loops and circles.*® Cleft formation can occur at
various sites along the dermal-epidermal junction, the
largest and most common being below the lamina densa
(Figure 6).°° HDs and anchoring fibrils typically appear
normal and with normal frequency, but there can be
concomitant disturbances in the KIF network.

The role of electron microscopy in EB

Recent advances in genetic and IF techniques have
enabled us to diagnose EB more rapidly and with greater
accuracy regarding the particular underlying genetic
defects.’> We cannot, however, sufficiently predict precise
clinical manifestations of each EB subtype using these

techniques alone. Gene analysis cannot always precisely
predict EB disease severity from novel mutations, although
some successful genotype—phenotype correlations have been
reported.>!>2 One reason is that most cases of JEB and
RDEB are inherited in an autosomal-recessive manner and
are thus caused by compound heterozygous gene mutations;
therefore, it is usually difficult to assess the clinical
phenotype and function of each mutant protein derived
from different maternal or paternal mutations. Another
reason is that there may exist, as yet undiscovered, modifier
genes that influence EB disease severity, other than the
causative gene.*?

IF studies also have limited ability to assess disease
severity by measuring the expression level of particular
constitutive BMZ proteins, because the clinical severities of
EBS, DDEB, and parts of autosomal-recessive EB with

Fig.7 A case of recessive dystrophic epidermolysis bullosa (EB) with missense mutation. (A) The patient exhibits a clinical severity similar
to the most severe subtype of recessive dystrophic EB (DEB), the severe generalized type. (B) Immunofluorescence staining for collagen VII
shows the expression level of collagen VII is just slightly reduced for the severe manifestation. (C) The electron micrograph of the DEB
epidermal basement membrane zone. There are rudimentary-appearing anchoring fibrils, which are slightly reduced in number (arrow).
(D) Normal control of immunofluorescence staining for collagen VII. In this case, the clinical severity correlates with the morphology of each
mutant collagen VII anchoring fibril rather than the expression level.
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missense mutations correlate with the combined function of
the mutant proteins rather than the expression levels of both
wild-type normal or abnormal protein expression examined
by IF staining (Figure 7).>* In these cases, determination of
the precise molecular morphology of BMZ components
provides important clues to predict their clinical severities,
organ involvement, and overall patient prognosis. A careful
ultrastructural examination can thus provide some estimate
of EB clinical severity and disease progression, not only
from a quantitative ultrastructural analysis but also from a
morphologic examination. Taken together, we propose that
electron microscopic evaluation remains an important
technique acting as a bridge between genetic and
immunohistologic tests and has the ability to provide
extra diagnostic clues and subsequent beneficial practical
and clinical information for EB patients and their health
care providers.
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TO THE EDITOR ~

Mutations in FLG, the gene encoding
profilaggrin/filaggrin, are the underlying
cause of ichthyosis vulgaris (OMIM
146700) and an important predi-
sposing factor for atopic eczema (AE)
(Sandilands et al., 2007). FLG muta-
tions are also significantly associated
with asthma with AE mainly in the
European population (Rodriguez et al.,
2009; van den QOord and Sheikh, 2010).
The presence of population-specific
FLG mutations has been reported in
both the European and Asian races
(Nomura et al, 2007; Sandilands
et al., 2007). To clarify whether FLG
mutations are a predisposing factor for
asthma in the non-European popula-
tion, we initially studied 172 Japanese
AE patients (mean age, 24.8 £ 9.1 years)
and 134 unrelated Japanese control
individuals (healthy volunteers; mean
age, 27.9£6.0 years). All AE patients
had been diagnosed based on widely
recognized diagnostic criteria (Hanifin
and Rajka, 1980). The majority of AE
patients and control individuals were
identical to those in a previous study
(Nemoto-Hasebe et al., 2010). In this
AE cohort, 73 AE patients (mean age,
25.4+8.9 years) experienced compli-
cations with asthma. Furthermore, we
studied another Japanese asthma cohort
(137 patients; mean age, 58.2+16.9
years). Patients were considered asth-
matic based on the presence of recur-
rent episodes of >2 of the three
symptoms (coughing, wheezing, or
dyspnea) associated with demonstrable
reversible airflow limitation, either
spontaneously or with an inhaled short-
acting B2-agonist and/or increased
airway responsjveness to methacholine
(lsada et al, 2010). Fully informed
consent was obtained from the partici-
pants or their legal guardians for this

study. This study had been approved by
the Ethical Committee at Hokkaido
University Graduate School of Medi-
cine and was conducted according to
the Declaration of Helsinki Principles.

FLG mutation screening revealed
that 27.4% of patients in our Japanese
AE complicated with asthma case
series carried one or more of the eight
FLG mutations (combined minor allele
frequency of 0.151, n=146) (Table 1).
Conversely, 26.3% of Japanese AE
patients without asthma carried one or
more of the eight FLG mutations
(combined minor allele frequency of
0.147, n=198). The FLG variants are
also carried by 3.7% of Japanese con-
trol individuals (combined minor allele
frequency of 0.019, n=268). We found
that all compound heterozygous muta-
tions were present in trans by observing
transmission or haplotype analysis
(Nomura et al., 2007, 2008). There is
a statistically significant association
between the eight FLG mutations and
AE with asthma, and between the eight
FLG mutations and AE without asthma
(Table 1). Moreover, AE complicated
with asthma manifested in heterozy-
gous carriers of FLG mutations with an
odds ratio for AE and asthma of 9.74
(95% confidence interval 3.47-27.32),
suggesting a relationship between
FLG mutations and AE with asthma.

In the )apanese general asthma
cohort, 8.0% of the asthma patients
carried one or more of the eight FLG
mutations (combined minor allele fre-
quency of 0.04, n=274) (Table 2).
Whereas, of the Japanese patients with
asthma complicated by AE, 22.2%
carried one or more of the FLG muta-
tions (combined minor allele frequency
of 0.11, n=36). In contrast, 5.9% of
asthma patients without AE carried
one or more of the FLG mutations

Abbreviation: AE, atopic eczema
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(combined minor allele frequency of
0.03, n=238). There was a statistically
significant association between the
eight FLG mutations and asthma with
AE (Table 2). There was no statistically
significant association between the FLG
mutations and entire asthma patients,
nor between FLG mutations and asthma
without AE. We cannot exclude the
possibility that this lack of significant
association is due to the small number
of the patients included in this study.
We used the same control set for both
case-controlled studies. Thus, strictly
speaking, there is no independent
replication for the control group.

Recent meta-analysis revealed that
FLG mutations are significantly asso-
ciated with asthma in the European
population and there are especially,
strong effects observed for FLG muta-
tions for the compound phenotype,
asthma in addition to eczema (Rodri-
guez et al., 2009; van den Oord and
Sheikh, 2010). In contrast, there
appeared to be no association of FLG
mutations with asthma in the absence
of eczema (Rodriguez et al., 2009; van
den Oord and Sheikh, 2010).

This Japanese cohort has a comple-
tely different FLG mutation spectrum
from those in the European and the
North American populations. However,
our results clearly confirm the strong
association of FLG mutations with our
Japanese cohort of AE patients with
asthma complications, and the associa-
tion of FLG mutations and asthma
patients with AE complications, for the
first time outside Europe or North
America. Conversely, this study showed
no significant correlation between gen-
eral asthma patients and FLG muta-
tions, suggesting that atopic asthma
patients associated with FLG mutations
are a minority among general asthma
patients. The frequency of heterozy-
gous, compound heterozygous, and
homozygous FLG mutation carriers



observed in our Japanese controls was
only 3.7%, which was much lower than
that seen in European general popula-
tion, where it is approximately 7.5%.
This suggested that there may be further
mutations yet to be discovered in the
Japanese. As we have sequenced more
than 40 Japanese families with ichthyo-
sis vulgaris, there is now little possibi-
lity that further highly prevalent
mutations will be found in the Japanese
population. However, it is still possible
that there might be multiple, further
low-frequency FLG mutations discov-
ered in the Japanese population,
In addition, because of the relatively
small sample size of this genetic study,
further replication in association studies
will be required for FLG mutations and
asthma in Japan.

In our cohorts, serum IgE levels were
extremely high (median, 3141.91Uml™;
25th-75th  percentiles, 1276.0-9753.
0lUmI™") in AE patients with asthma
(n=73) in the AE cohort, compared with
that in total asthma patients (median,

156.01UmI™";  25M75th  percentiles,
71.05-441.451Uml™", n=137) in the
asthma cohort. These findings suggest
that extrinsic allergic sensitization might
have an important role in atopic asthma
pathogenesis. Recent studies hypothe-
sized skin barrier defects caused by FLG
mutation(s) allow allergens to penetrate
the skin, resulting in initiation of further
immune response and leading to the
development of systemic allergies, includ-
ing atopic asthma (Fallon et al,, 2009). In
patients with asthma that also harbor FLG
mutations, we could not exclude the
possibility that the systemic effects of early
eczema might simply influence airway
responsiveness (Henderson et al., 2008).

CONFLICT OF INTEREST

Irwin Mclean has filed patents relating to genetic
testing and therapy development aimed at the
filaggrin gene.

ACKNOWLEDGMENTS

We thank the patients and their families for their
participation. We also thank Kaori Sakai for fine
technical assistance and Dr James McMillan for
proofreading and comments concerning this

—173—

R Osawa et al.
Asian FLG Mutations in Asthma

paper. This work was supported in part by
Grants-in-Aid from the Ministry of Education,
Science, Sports, and Culture of Japan to M
Akiyama (Kiban B 20390304) and by the Health
and Labour Sciences Research Grant (Research on
Allergic Diseases and Immunology; H21-Meneki-
Ippan-003) to H Shimizu. Filaggrin research in the
MclLean laboratory was supported by grants from
The British Skin Foundation; The National Eczema
Society; The Medical Research Council (Refer-
ence number G0700314); A*STAR, Singapore,
and donations from anonymous families affected
by eczema in the Tayside region of Scotland.

Rinko Osawa’, Satoshi Konno?,
Masashi Akiyama’, Ikue Nemoto-
Hasebe’, Toshifumi Nomura™?,
Yukiko Nomura®, Riichiro Abe’,
Aileen Sandilands®,

W.H. Irwin McLean®, Nobuyuki
Hizawa*®, Masaharu Nishimura®

and Hiroshi Shimizu'

"Department of Dermatology, Hokkaido
University School of Medicine, Sapporo, Japan;
2First Department of Medicine, Hokkaido
University School of Medicine, Sapporo, Japan;
*Epithelial Genetics Group, Division of
Molecular Medicine, University of Dundee,
Colleges of Life Sciences and Medicine,
Dentistry & Nursing, Dundee, UK;

www jidonline.org 2835



M Simanski et al.
RNase 7 in Skin Defense Against S. aureus

*Department of Pulmonary Medicine, Institute
of Clinical Medicine, Graduate School of
Comprehensive Human Sciences, University
of Tsukuba, Tsukuba, Ibaraki, Japan and
*University Hospital, University of Tsukuba,
Tsukuba, Ibaraki, Japan

E-mail: akiyama@med.hokudai.ac.jp

REFERENCES

Fallon PG, Sasaki T, Sandilands A et al. (2009) A
homozygous frameshift mutation in the
mouse Flg gene facilitates enhanced percu-
taneous allergen priming. Nat Genet 41:
602-8

Hanifin JM, Rajka G (1980) Diagnostic features of
atopic dermatitis. Acta Derm Venereol
92:44-7

See related commentary on pg 2703

Henderson J, Northstone K, Lee SP et al. (2008)
The burden of disease associated with
filaggrin mutations: a population-based,
longitudinal birth cohort study. J Allergy Clin
Immunol 121:872-7

Isada A, Konno S, Hizawa N et al. (2010) A
functional polymorphism (-603A —> G) in
the tissue factor gene promoter is associated
with adult-onset asthma. J Hum Genet 55:
16774

Nemoto-Hasebe |, Akiyama M, Nomura T et al.
(2010) FLG mutation p.Lys4021X in the C-
terminal imperfect filaggrin repeat in Japanese
atopic eczema patients. Br J Dermatol
161:1387-90

Nomura T, Akiyama M, Sandilands A et al. (2008)
Specific filaggrin mutations cause ichthyosis
vulgaris and are significantly associated with
atopic dermatitis in Japan. J Invest Dermatol
128:1436-41

Nomura T, Sandilands A, Akiyama M et al. (2007)
Unique mutations in the filaggrin gene in
Japanese patients with ichthyosis vulgaris
and atopic dermatitis. J Allergy Clin Immunol
119:434-40

Rodriguez E, Baurecht H, Herberich E et al. (2009)
Meta-analysis of filaggrin polymorphisms in
eczema and asthma: robust risk factors
in atopic disease. J Allergy Clin Immunol
123:1361-70

Sandilands A, Terron-Kwiatkowski A, Hull PR
et al. (2007) Comprehensive analysis of the
gene encoding filaggrin uncovers prevalent
and rare mutations in ichthyosis vulgaris and
atopic eczema. Nat Genet 39:650-4

den Oord RA, Sheikh A (2010) Filaggrin
gene defects and risk of developing
allergic sensitisation and allergic disorders:
systematic review and meta-analysis. BM/
339:b2433

van

RNase 7 Protects Healthy Skin from Staphylococcus aureus

Colonization
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TO THE EDITOR
The Gram-positive bacterium Staphylo-
coccus aureus is an important pathogen
that causes various skin infections
(Miller and Kaplan, 2009). However,
healthy skin is usually not infected by
S. aureus, despite the high carrier rates
in the normal population (Noble,
1998). This suggests that the cutaneous
defense system has the capacity to
effectively control the growth of S.
aureus. There is increasing evidence
that antimicrobial proteins are impor-
tant effectors of the cutaneous defense
system (Harder et al., 2007). A recent
study reported that keratinocytes con-
tribute to cutaneous innate defense
against S. aureus through the produc-
tion of human B-defensin-3 (Kisich
et al., 2007). In addition to human B-
defensin-3,, other antimicrobial pro-
teins may also participate in cutaneous
defense against S. aureus. One candi-
date is RNase 7, a potent antimicrobial
ribonuclease that is highly expressed in
healthy skin (Harder and Schréder,
2002; Koten et al., 2009).

To investigate the hypothesis that
RNase 7 may contribute to protect

healthy skin from S. aureus coloniza-
tion, we first incubated natural RNase 7
isolated from stratum corneum skin
extracts (Harder and Schroder, 2002)
with S. aureus (ATCC 6538). In con-
cordance with our initial report about
RNase 7 (Harder and Schréder, 2002),
we verified that RNase 7 exhibited

a high killing activity against S. aureus
(lethal dose of 90% =3-6pg ml™).
Recently, we reported a moderate
induction of RNase 7 mRNA expres-
sion in primary keratinocytes treated
with heat-killed S. aureus (Harder and
Schréder, 2002). To assess the induc-
tion of RNase 7 by S. aureus in the
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Figure 1. Induced secretion of RNase 7 on the skin surface on treatment with living S. aureus.
Defined areas (0.8 cm?) of skin explants derived from plastic surgery were incubated with or without
approximately 1,000 colony-forming units of S. aureus (ATCC 6538) in 100 pl of sodium phosphate
buffer. After 2, 6, and 20 hours, the concentration of secreted RNase 7 was determined by ELISA.
Stimulation with S. aureus for 2 hours revealed a significant induction as compared with the
unstimulated control after 2 hours (*P<0.05, Student’s t-test; n.s. = not significant). Data shown are
means of triplicates of five skin explants derived from five donors.
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Background: Kindler syndrome (KS) is a rare, inherited skin disease characterized by blister formation
and generalized poikiloderma. Mutations in KIND1, which encodes kindlin-1, are responsible for KS.
¢.1089del/1089+1del is a recurrent splice-site deletion mutation in KS patients.

Objective: To elucidate the effects of c.1089del/1089+1del at the mRNA and protein level.

Methods: Two KS patients with ¢.1089del/1089+1del were included in this study. Immunofluorescence
analysis of KS skin samples using antibodies against the dermo-epidermal junction proteins was
performed. Exon-trapping experiments were performed to isolate the mRNA sequences transcribed from
genomic DNA harbouring ¢.1089del/1089+1del. B1 integrin activation in Hela cells transfected with
truncated KIND1 cDNA was analyzed.

Results: Immunofluorescence study showed positive expression of kindlin-1 in KS skin with ¢.1089del/
1089+1del mutation. We identified the exon-8-skipped in-frame transcript as the main product among
multiple splicing variants derived from that mutation. HeLa cells transfected with KIND1 cDNA without
exon 8 showed impaired 31 integrin activation. Exon-8-coding amino acids are located in the FERM F2
domain, which is conserved among species, and the unstructured region between F2 and the pleckstrin
homology domain.

Conclusion: This study suggests that exon-8-skipped truncated kindlin-1 is functionally defective and

Keywords:

Epidermolysis bullosa
Exon-trapping system
Basement membrane zone
Skin atrophy
Pseudo-ainhum

does not compensate for the defects of KS, even though kindlin-1 expression in skin is positive.
© 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Kindler syndrome (KS) is classified as a novel subtype of
epidermolysis bullosa (EB) according to a revised classification of
EB [1] and characterized by photosensitivity, skin fragility, fused
fingers, and generalized progressive poikiloderma [2]. A charac-
teristic histological finding in KS skin is the variability of epidermal
separation and clefting at the epidermal basement membrane
[3.4]. Former studies have confirmed that mutations in COL7A1 are
not a factor in KS patients [3,5].

In 2003, mutations in the KIND1 gene encoding kindlin-1 were
detected in KS patients [6,7]. The KINDI gene was mapped to

Abbreviations: KS, Kindler syndrome; ECM, extracellular matrix; EB, epidermolysis
bullosa; SCC, squamous cell carcinoma; MASA, mutant-allele-specific amplifica-
tion; PTC, premature termination codon; NMD, nonsense-mediated mRNA decay;
PCR, polymerase chain reaction; DEJ, dermo-epidermal junction.
* Corresponding author. Tel.: +81 11 716 1161x5962; fax: +81 11 706 7820.
E-mail address: natsuga@med.hokudai.ac.jp (K. Natsuga).

chromosome 20p12.3 [7]. The gene spans 48.5 kb of genomic DNA
and contains 14 coding sequences (exons 2-15) and one non-
coding exon (exon 1) [2,7]. The KIND1 gene is the human homolog
of the Caenorhabditis elegans gene, unc-112, which encodes a
membrane-associated structural/signaling protein that has been
implicated in linking the actin cytoskeleton to the extracellular
matrix (ECM) [7,8]. Kindlin-1 deficiency is associated with
cutaneous basement membrane zone abnormalities and reduced
integrin activation [9]. Also, kindlin-1 is necessary for lamellipodia
formation in vitro, which is mediated by RhoGTPase signaling [10].
To date, more than 30 different loss-of-function mutations in
KIND1 have been reported [2].

Splicing is a common mRNA modification after transcription, in
which introns are removed and exons are joined. This is mandatory
for typical eukaryotic mRNA before it can be used to produce an
accurate protein through translation. Nucleotide alterations in
positions close to the spliced sites affect correct splicing of the
mRNA transcript and result in complete skipping of the exon,
retention of the intron, or the introduction of a new splice site

0923-1811/$36.00 © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
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within an exon or intron. Several methods are available to predict
the consequences resulting from splice site mutations, such as the
use of neural network software [11] (http://www.fruitfly.org/
seq_tools/splice.html) and GeneSplicer software [12] (http://
cbeb.umd.edu/software/GeneSplicer/). However, these programs
cannot distinguish between pseudo and real splice sites [13];
therefore, other functional testing is necessary to correctly predict
the mRNA products. Use of an exon-trapping system (Invitrogen,
Carlsbad, CA) is one such approach for directly isolating
transcribed mRNA sequences from genomic DNA [14]. This system
is a reliable and easy-to-use tool for assessing the effects of splice-
site mutations on mRNA splicing in cell cultures [15].

This study highlights a recurrent ¢.1089del/1089+1del in KIND1
in KS patients. To elucidate the pathogenic effects of this deletion
mutation on mRNA splicing, exon-trapping experiments were
performed. We found that in-frame exon-8-skipped transcripts
were produced by ¢.1089del/1089+1del defects. Immunofluores-
cence analysis of the patient’s skin showed positive kindlin-1
staining, which might have resulted from exon-8-skipped kindlin-
1. In vitro analysis using living cells revealed the expression of
truncated kindlin-1 lead to impaired activation of 31 integrin. This
study clarifies the complex sequelae resulting from a splice-site
deletion mutation and provides greater understanding of the
pathomechanisms involved in KS disease.

2. Materials and methods
2.1. Mutation detection

gDNA was extracted from the patient’s peripheral blood cells.
The mutation detection strategy was implemented after polymer-
ase chain reaction (PCR) amplification of all exons and the intron-
exon border of KIND1, followed by direct automated sequencing
using an ABI Prism 3100 genetic analyzer (Advanced Biotechnol-
ogies, Columbia, MD). Oligonucleotide primers and PCR conditions
used in this study are described elsewhere [7]. The genomic DNA
nucleotides, the complementary DNA nucleotides, and the amino
acids of the protein were numbered based on the following
sequence information: GenBank accession no. NM_017671 [7].

2.2. Mutant-allele-specific amplification analysis

To verify the ¢.1761T>A mutation, using PCR products as a
template, mutant-allele-specific amplification (MASA) analysis was
performed with mutant-allele-specific primers carrying the substi-
tution of two bases at the 3’-end mutant-allele-specific primers
[16,17]: forward, 5'-ACATTCTGGGAGTTITCATGA-3'; reverse, 5'-
CAATTCTGAGGGACACACAT-3'. Only the 179-bp fragment derived
from the mutant allele was amplified with these primers.

2.3. Electron microscopy

Electron microscopy was performed as previously described
[18,19]. Briefly, skin biopsy samples were fixed in 2% glutaralde-
hyde solution, post-fixed in 1% 0sQy4, dehydrated, and embedded
in Epon 812. The samples were sectioned at 1 wm thickness for
light microscopy and thin sectioned for electron microscopy
(70 nm thick). The thin sections were stained with uranyl acetate
and lead citrate, and examined in a transmission electron
microscope.

2.4. Antibodies
The following antibodies (Abs) were used: monoclonal antibody

(mADb) HD1-121 against the rod domain of plectin; mAbs GoH3 and
3E1 against a6 and 34 integrins, respectively (Chemicon Interna-

tional, CA); mAb GB3 against laminin 332 (Sera-lab, Cambridge, UK);
mADb LH7.2 against type VII collagen (Sigma, St. Louis, MO); mAb
PHM-12+(CIV22 against type IV collagen (NeoMarkers, Fremont, CA);
$1193 against BP230; mAb HDD20 against type XVII collagen; anti-
kindlin-1 Ab (ab68041) that recognizes the C-terminus of kindlin-1
(Abcam, Cambridge, UK); unconjugated and horseradish peroxidase
conjugated anti-V5 Abs (Invitrogen); and mAbs 4B7R and 12G10
against (1 integrin (Abcam, Cambridge, UK). The following
secondary antibodies were used: fluorescein isothiocyanate
(FITC)-conjugated goat anti-rabbit Ab (Jackson Immuno Research,
West Grove, PA); FITC-conjugated goat anti-mouse Ab (Jackson
Immuno Research); and TIRTC-conjugated goat anti-mouse Ab
(SouthernBiotech, Birmingham, AL); horseradish peroxidase-conju-
gated goat anti-mouse Ab (Jackson Immuno Research). mAb GoH3
was a kind gift from Dr. A. Sonnenberg of the Netherlands Cancer
Institute. mAbs HD1-121 and HDD20 were kind gifts from Dr. K.
Owaribe of Nagoya University. The antibody S1193 was a kind gift
from Dr. J.R. Stanley of the University of Pennsylvania.

2.5. Skin immunofluorescence studies

Indirect immunofluorescence analysis using a series of anti-
bodies against antigens at the dermo-epidermal junction (DE]) and
cryostat skin sections was performed as previously described
{3.20].

2.6. Exon-trapping experiments

Exon-trapping (Invitrogen, Carlsband, CA)is an approach used for
the direct isolation of mRNA sequences transcribed from gDNA. To
generate a KINDI genomic fragment extending from intron 6 to
intron 9, we synthesized two primers (5-GAATTCCTGAGCT-
GAAGTTTGCTGCA-3' and 5'-GGATCCACCTTTGAACCATGAACCTG-
3') which contained the respective restriction enzyme sites: EcoRI
and BamHI. PCR were performed using the patient’s gDNA as a
template. The DNA fragment was digested with EcoRl and BamHI
and subcloned into the multi-cloning site of a pSPL3 expression
vector, which contained a portion of the HIV-1 tat gene, an intron,
splice donor and acceptor sites, and some flanking exon sequences.
Sequence analysis selected constructs with or without the splice site
mutation ¢.1089del/c.1089+1del. The constructs were transfected
into HaCaT cells using lipofectamine LTX (Invitrogen) according to
the manufacturer’s instructions. Total RNA was extracted from the
cultured cells and RT-PCR was performed using the trapping vector-
specific oligonucleotide primers. The samples without transfection
of the SPL3 were used as controls. The PCR products were subcloned
into a TA cloning vector pCRII (Invitrogen).

2.7. In vitro analysis of truncated KIND1

cDNA containing the entire coding region of KIND1 (FEMT1wt)
was subcloned into the pcDNA3.1V5-His vector (Invitrogen).
KIND1 cDNA without exon 8 was subcloned to generate the same
vector minus exon 8 (KIND1delex8) using PCR methods and the
following flanking KIND1 cDNA primers: sense, 5'-GAGGACAT-
TACTGATATCCC-3', anti-sense, 5'-CTGTAGAGCTGCAAAGATCA-3'.
Two different KIND1wt and KIND1delex8 transfections were
performed into Hela cells, using Lipofectamine LTX (Invitrogen).
For immunoblotting, Hela cells 24 h after transfection were lysed
in Laemmli buffer [21], cell debris was removed by centrifugation,
and supernatant was collected. SDS-PAGE and immunoblotting
were performed using standard techniques. For immunofluores-
cence, Hela cells at 24 h after transfection were washed with
phosphate-buffered saline and fixed with methanol. All cells were
observed using a confocal laser scanning microscope (Olympus
Fluoview FV300).



