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Col17a1 deficiency in the hair follicles. Our previous studies
demonstrated that defective maintenance of MSCs in the hair
bulge causes hair graying (Nishimura et al., 2005). Thus, we first
examined the distribution and morphology of MSCs in Col/17a1-
null mice by using a melanocyte-targeted Dct-lacZ transgene
(Mackenzie et al., 1997). As shown in Figures 1Ba and 1Bd,
Dct-lacZ-expressing cells showed a normal morphology and
distribution in the bulge area during hair follicle morphogenesis
until initiation of the hair regeneration cycle both in Col17a1*/~
and in Col17a1™’~ mice. At around 12 weeks after birth, pig-
mented melanocytes with a dendritic morphology that expressed
melanocyte markers appeared in the hair follicle bulge of
Col17a1™~ mice (Figure 1Be; Figure S1Be). At 5 months of
age, Dct-lacZ-expressing cells were almost completely lost in
the follicle bulge area as well as in the hair bulbs of Col17a7-
null mice (Figure 1Bf; Figure S1Bf). These data demonstrate
that MSC maintenance is defective in Col717a7-deficient mice
and that this mechanism resulis in progressive hair graying.

Preferential Expression of COL17A1 in HFSCs

but Not in MSCs

Collagen XVl is a hemidesmosomal transmembrane collagen
expressed by basal keratinocytes of the IFE (McGrath et al.,
1995). However, neither the expression of mouse Col77a7 nor
hemidesmosome assembly in melanocyte lineage cells and/or
in bulge keratinocytes has been reported, so we first examined
the expression of mouse COL17A1 protein in hair follicles by
using immunohistochemistry. As shown in Figure 1Ca and
Figures S1C and S1D, mouse COL17A1 was preferentially local-
ized along the dermal-epidermal junction of bulge keratinocytes
that express markers for HFSCs but not in follicular keratinocytes
outside of the bulge area. However, the localization of COL17A1
in basal cell surface of MSCs could not be determined via normal
immunohistochemical methods, because the attachment site of
MSCs to the basement membrane is limited (Figure 1Cb). We
therefore examined Col77a1 expression by using RT-PCR in
flow cytometry-sorted GFP* cells from melanocyte lineage-
tagged GFP transgenic mouse skin (Osawa et al., 2005). in sharp
contrast to the significant expression of Co/77a7 in control kera-
tinocytes, expression in GFP* melanocytes was not detectable
(Figure 1D). To support this finding, we used transmission
electron microscopy (TEM) to check whether Dct-lacZ-express-
ing melanoblasts within the bulge area in wild-type animals have
hemidesmosomes. As shown in Figure 1E, hemidesmosomes,
which form regularly spaced electron-dense structures along
the epidermal basement membrane zone (McMillan et al.,
2003), were completely absent in Dct-lacZ-expressing melano-
blasts in the bulge (Figures 1Ed and 1Ef), whereas typical hemi-
desmosomes were seen overlying the basal plasma membrane
in surrounding bulge keratinocytes (Figure 1Ee). Because these
bulge keratinocytes adjacent to Dct-lacZ-expressing melano-
blasts express HFSC markers (Figure 1F), these data indicate
that HFSCs but not MSCs are anchored to the underlying base-
ment membrane via hemidesmosomes. We also confirmed the
localization of COL17A1 to hemidesmosomes in basal keratino-
cytes but not in melanocytes by immunogold electron micro-
scopic analysis of human epidermis (Figure S1E). Therefore,
we conclude that MSCs do not express COL17A1 and do not
assemble any discernible hemidesmosomal structures at their

surface. These findings suggested that the depletion of MSCs
in Col17a1-null mice is caused by defects in the HFSC popula-
tion that forms the main supportive cells surrounding MSCs.

Abrogated Quiescence and Immaturity of HFSCs Result
in Depletion of HFSCs in Col17a1-Null Mice

Previous studies on wild-type mouse skin reported that mature
hemidesmosomes exist at the follicular-dermal junction just
below the level of sebaceous glands (Hojiro, 1972) and in hair
germs of telogen hair follicles (Greco et al., 2009). Consistently,
we found mature hemidesmosomes at these junctions within
the hair follicle bulge (Figure 1Ee). However, mature hemidesmo-
somes have not been found in the transient portion of hair folli-
cles (Hojiro, 1972), where COL17A1 expression is undetectable.
These data suggested that hemidesmosome formation is impor-
tant for anchoring of HFSCs located in the bulge-subbulge area
of hair follicles to the basal lamina.

To test whether the abnormalities observed in Col17a7 defi-
ciency are specifically caused by any functional defects of
HFSCs or by their detachment from the basal lamina, we first
carefully examined the junctions of hair follicles in the dorsal
skin of Col/17a7-null mice and their controls by TEM. A significant
number of hemidesmosomes are poorly formed in the bulge
keratinocytes of Col/17a1-deficient mice (Figure S2B), as seen
in epidermal keratinocytes of those mice (Nishie et al., 2007).
However, we did not find any significant microscopic separation
at the follicular-dermal junction in sections of trunk skin from
Col17a1-null mice (Figure 2; Figures S2A and S2B). Furthermore,
we did not find significant inflammatory cell infiltrates or any
signs of cell death, such as the appearance of eosinophilic cell
bodies or TUNEL-positive or cleaved caspase 3-positive cells,
at the follicular-dermal junction area of Col/77a7-null mouse
skin (Figure S2C and data not shown). Basement membrane
thickening/reduplication, a sign of repeated regeneration of the
epidermal and dermal junction, was also not found. These find-
ings suggested that the hair graying and hair loss phenotypes
in Col17a1-null mice cannot be explained simply by HFSC
detachment from the basal lamina but instead may result from
dysregulation or altered cell properties of HFSCs caused by
Col17a1 deficiency.

To examine whether HFSCs show any dysregulation caused
by Col17a1 deficiency, we carefully examined the hair follicle
cycle progression, which alternates phases of growth (anagen),
regression (catagen), and rest (telogen) in synchronization with
the activation status of HFSCs, in Col17a7-null mice. While the
first short telogen phase was transiently seen around 22 days
after birth both in Col77a7-null mice and in control littermates,
the second telogen phase was significantly shortened in
Col17a1-null mice (Figure 2, summarized on the right side). At
6 weeks of age, just before normal hair follicles on the dorsal skin
enter the second telogen phase, most hair follicles in Col17a1~/~
mice were not distinguishable from those in Colf7a7*'~ mice
either in morphology or in hair cycle progression. The second tel-
ogen phase is normally seen at around 7 weeks after birth and
lasts about 4-5 weeks over the entire skin surface of wild-type
mice (Paus and Cotsarelis, 1999; Paus et al., 1999). This phase
was shortened to less than 2 weeks in all Co/17a7~"~ mice exam-
ined at 8-12 weeks of age, whereas such an aberrant pattern
was seen in only 14.3% of Col77a7*’~ mice. The subsequent
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anagen phase was rather prolonged in Col17a1™/~ mice
compared to their control littermates. These findings suggest
that HFSCs are unable to remain quiescent for a sufficient time
from the second telogen phase and thereafter in the absence
of Col17at.

To search for early events or changes in HFSCs in Co/17a1-
null mice, we performed immunohistochemical analysis with
four different markers for HFSCs, keratin 15 (KRT15), CD34,
ab-integrin, and S100A8, at different stages (Figure 3A; Fig-
ure S3; Morris et al., 2004; Tumbar et al., 2004). At 5 weeks of
age, there was no difference in the expression of HFSC markers
or the number of HFSC marker-positive cells between control
and Col17a1-null mice. However, at around 8 weeks of age,
HFSC marker-expressing cells were absent in the bulge area in
selected null mouse hair follicles (Figures 3A and 3B; Figure S3A),
and the number of these marker-deficient follicles increased
over time. By 6 months of age, the HFSC population had been
lost in most hair follicles of Col/77a7-null mice (Figure S3B).
Flow cytometric analysis also confirmed that the o6-integrin™o"
CD34" population (Blanpain and Fuchs, 20086), which represents
basal HFSCs in the bulge area, was diminished (Figure 3C). Hair
follicle atrophy with the loss of hair follicle structures were also
observed once the HFSC population was diminished (Figure 3D).
These data indicate that Cof77a7-null HFSCs fail to maintain
their stem cell characteristics, including their quiescence and
immaturity, after the second telogen phase, resulting in hair
follicle atrophy. Conversely, epidermal hyperplasia was also
transiently found in some focal areas of the Col/77a7-null skin
at around 6 months of age (Figure 3D, arrowheads) but was
normalized and subsequently became atrophic at later stages,
which suggests that the epidermal stem cell population might
also be gradually losing its self-renewing potential with age in
Col17a1 deficiency compared to controls.

To examine whether HFSC maintenance fails because the
cells lose their immaturity or quiescence in the absence of
Col17a1, we analyzed the expression of markers for keratinocyte
differentiation and proliferation in Col717a7-null hair follicles.
Interestingly, keratin 1 (KRT1), a differentiation marker for the
IFE, was ectopically expressed in the bulge area of Col17a7-
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other epidermal differentiation markers,

such as involucrin and KRT10, was also
present in the bulge areas of Col77a7-null mice at 8 weeks of
age (Figure S4A). Furthermore, Ki67-positive cells were located
in the bulge area of Col77a7-null mice, and those Ki67-positive
cells showed an absent or reduced level of KRT15 expression
(Figure 4A).

The maintenance of quiescence and immaturity of somatic
stem cells in tissues is a prerequisite for sustained stem cell
self-renewal, and which can be assessed for HFSCs by means
of a colony-formation assay in vitro (Barrandon and Green,
1987; Oshima et al., 2001). We therefore took advantage of the
type of assay by using neonatal epidermal keratinocytes, which
contain the presumptive HFSC population (Nowak et al., 2008),
to assess the self-renewal potential of that population in
Col17a7-null mice. As shown in Figures 4Ba and 4Bb, Col17at
homozygous null keratinocytes showed defects in colony-form-
ing ability on3T3-J2 feeder cells compared to keratinocytes from
control mice. Colonies larger than 0.5 mm in diameter were
significantly decreased in number with Col77a7-null keratino-
cytes (Figure 4Bc). Although Col77a7-null keratinocytes showed
defective binding ability to collagen I-coated dishes (Figure S4B),
they showed no detectable defects in their ability to directly
adhere to 3T3-J2 feeder cells (Figure 4Bd). These data strongly
suggest that Col77a7-null keratinocytes have a much lower
renewal capability than control keratinocytes. Taken together
with the in vivo findings, we conclude that COL17A1 is critical
for the self-renewal of HFSCs by maintaining their immaturity
and quiescence.

Loss of TGF-8 Expression by HFSCs and the Associated
Differentiation of Adjacent MSCs

To examine whether the early changes in HFSC in Col77a71
mutant mice affects the maintenance of MSCs in the hair follicle
bulge, we carefully examined MSCs in hair follicle bulge areas in
Col17a1-null mice beginning to show HFSC defects. At 8 weeks
of age, when HFSCs in Col/17a7-null mice are prematurely acti-
vated, KIT™ melanoblasts within the bulge area prematurely
coexpressed TYRP1, a melanocyte differentiation marker, in
Col17a1-null mice but not in control mice (Figure S5A). At around
12 weeks of age, pigmented melanocytes with a mature
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Figure 3. HFSC Depletion in COL17A1-Deficient Mice

(A) Immunostaining of the dorsal skin from Col17a1~'~ and from Col17a1*'~ mice with HFSC markers. The bulge areas are demarcated by brackets. HFSC marker
(KRT15, a6-integrin, and S100A6)-expressing cells were still maintained at 5 weeks of age in Col77a1~/~ mice, whereas follicles without HFSC marker-positive
cells appeared at 8 weeks of age.

(B) Ratio of hair follicles with af-integrin* cells in the bulge areas of skin from control mice and from 8- to 10-week-old Cof77a7~/~ mice. In Col17a1™/~ mice, many
hair follicles without u6-integrin* cells in the bulge areas were found (n = 3).

(C) Flow cytometric analysis of u6-integrin and CD34 double-labeled keratinocytes. a6-integrin® CD34* cells are almost completely lost in the skin of 9-month-old
Col17a1™'~ mice.

(D) H&E-stained histological sections of Co/17a1™/~ and of Col17a1*/~ mouse skin. At 6 months of age, there was a diminution of hair follicle bulbs, degeneration
of the hair follicles (arrows), and epidermal hyperplasia (arrowheads) in Col77a7~/~ skin. As a control for the anagen phase in (A), (B), and (C), dorsal skin at 5 days

after hair-plucking of telogen follicles was used.
Scale bars represent 100 um. See also Figure S3.

dendritic morphology and expressing TYRP1 in addition to
Dct-lacZ and KIT were aberrantly found within the bulge area
in mid-anagen hair follicles (Dct-lacZ-expressing cells in Fig-
ure 1B, Figure S1B, arrow in Figure 5A; KIT*/TYRP1* cells in
Figures 5B and 5C and Figure S5B). Conversely, only nonpig-
mented melanoblasts expressing Dct-lacZ and KIT but not
TYRP1 and with small cell bodies (MSCs) were found in control
littermates (Figure 1B; Figures S1B and S5B). Similar morpho-
logical changes were previously described as ectopic MSC
differentiation within the niche (Inomata et al., 2009; Nishimura
et al., 2005). These ectopically differentiated melanocytes were
found in the bulge area at 12-13 weeks of age, prior to the hair
graying seen in Col17a7-null mice (Figure 5D). Furthermore, it
is notable that the ectopically differentiated melanocytes in
Col17a1-deficient mice were typically found in association with
early changes in bulge keratinocytes including the enlarged
morphology of surrounding bulge keratinocytes (Figure 5A,
arrowheads) and an increased number of Ki67-expressing bulge
keratinocytes in midanagen follicles (Figures 4A and 5E and data
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not shown). The appearance of ectopically differentiated mela-
nocytes within the bulge area was followed by progressive hair
graying in Col77a1-null mice (Figures 1A and 1B; Figure S1B).
TGF-B signaling is activated in the hair follicle bulge and is
involved in but is not essential for the maintenance of HFSCs
(Guasch et al.,, 2007; Qiao et al., 2006; Yang et al., 2005,
20089). Our recent study showed that the signal is required for
the maintenance of MSCs through promoting MSC immaturity
and quiescence (Nishimura et al., 2010), but it was not clear
whether the signal is derived from HFSCs or MSCs. As similar
changes in MSCs, such as the appearance of ectopically
differentiated melanocytes in the niche and the subsequent
depletion of MSCs seen in Col77a7-null mice, were found in
TGFbRII conditional knockout mice (Nishimura et al., 2010), we
hypothesized that the defective renewal of MSCs in Col717a1-
null mice might be mediated by defective TGF-§ signaling from
the surrounding HFSCs. To test this model, we examined the in-
volvement of TGF-B signaling in the defects of MSCs in Col17a71-
null mice and their controls. We found that KRT15-expressing
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keratinocytes coexpress TGF-B1/2 in wild-type hair follicles (Fig-
ure 5F), demonstrating that HFSCs produce TGF-B1/2 in the
bulge area. At 6 weeks of age, the expression of TGF-B1/2 was
similar in bulge keratinocytes in the control and in Col77a7-null
mice (Figure 5G). At 8 weeks of age or later, however, the hair
follicle bulge exhibited significantly downregulated expression
of TGF-B1/2 in Col17a1-null mice, although the hair follicle bulge
in control mice showed a normal expression pattern (Figure 5G).
Furthermore, phospho-Smad?2 signals were not found either in
bulge keratinocytes or in melanocytes of Col17a7-null mice
but were present in control mice (Figure 5H). These findings
demonstrate that niche features, including the loss of TGF-B1/2
production, are defective in Col17a7-null HFSCs. We reported
previously that Tgfbr2 (TGF-B receptor Il) conditional knockout
in mice via a bitransgenic system causes mild hair graying with
incomplete penetrance (73.3% within 10 months after birth)
possibly because of incomplete CRE-mediated recombination
(Nishimura et al., 2010). In this study, we found that Tgfbr2
straight knockout mice (with a Rag2-null background for the inhi-
bition of multiorgan autoimmunity) show a severe hair graying
phenotype with 100% penetrance within 5-6 weeks of age (Fig-
ure 5l). Thus, these data suggest that defective TGF-p signaling
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Figure 4. Deficient Stemness of HFSCs in
Col17a1-Null Skin

(A) Immunostaining of the dorsal skin from
8-week-old Col17a7™"~ and from control mice
with the IFE differentiation marker keratin 1
(KRT1) and Ki67. The bulge areas are demarcated
by brackets. Top: In Col17a1~/~ mice, cells coex-
pressing KRT15 (green) and KRT1 (red) appeared
within the bulge area. Bottom: Cells in the bulge
area of Col17a1™'~ mice proliferated abnormally.
As a control for anagen phase, dorsal skin at
5 days after hair-plucking of telogen follicles was
used. Scale bar represents 50 um.

(B) Loss of keratinocyte clonal growth potential
resulting from Col77al deficiency. (a) Clonal
growth assays of keratinocytes from Col17a1~/~
and from Col17a7*~ mice; representative dishes
are shown. (b) Col17a1~/~ keratinocytes formed
only small colonies. (c) Colonies from Col17a1~"~
skin were significantly fewer and smaller than
those from Col17a1*/~ control mice. *, **p < 0.05.
(d) Keratinocytes from Col17a7™'~ skin did not
show decreased binding to 373-J2 feeder cells.
b = 0.6653, *p = 0.162.

See also Figure S4.
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in MSCs resulting from the loss of TGF-B
production from HFSCs affects MSC
maintenance in Col17al mutant mice
and that HFSC-derived TGF-B signaling
mediates the niche function of HFSCs
for MSC maintenance.

Human COL17A1-Mediated Rescue
of HFSCs Normalizes Maintenance
of MSCs in Col17a71-Null Mice

Finally, to address whether the defects in
Col17a7-null HFSCs induce the ectopic
differentiation and eventual depletion of MSCs in the bulge
area, leading to hair graying, we studied the impact of the
transgenic rescue of Col77a7-null mice and in particular the
HFSC phenotype resulting from forced expression of human
COL17A1 under control of the Keratin 14 (Krt14) promoter (Olasz
etal., 2007). In these rescued mice, human COL17A1 expression
was restricted to basal keratinocytes and not to the melanocyte
lineage (Figure S6A). As shown in Figure 6A, the hair coat of these
mice was quite similar to that of Co/77a7*'~ mice and did not
show progressive hair depigmentation or hair loss at 6 months
of age, oreven at 1 year of age (data not shown), whereas control
Col17a1-null mice demonstrated the hair graying and other
typical changes described above. Interestingly, both the distribu-
tion and morphology of Dct-lacZ-expressing melanoblasts in the
bulge area were normal in the Col17a1™'~; Krt14-hCOL17A1
rescued mice (Figure 6B). Furthermore, the aberrant expression
of Ki67 and KRT1, downregulation of TGF-B1/2 expression, and
inactivation of TGF-B signaling in bulge keratinocytes were all
also normalized (Figures 6C and 6D; Figure S6B). These findings
demonstrate the dual critical roles of COL17A1 in HFSCs for their
maintenance and for providing a niche for MSC maintenance
through HFSC-derived TGF-B signaling (Figure 7).
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DISCUSSION

Interactions between somatic stem cells and their surrounding
niche microenvironment are critical for the establishment and
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Figure 5. Ectopic Differentiation of MSCs
in the Bulge Area with Diminished TGF-8
Signaling Resulting from Col17a1 Defi-
ciency

(A-E) Ectopic differentiation of MSCs and
surrounding keratinocytes in the bulge areas of
Col17a1~'~ follicles at 12 weeks of age. The bulge
areas are demarcated by brackets. Ectopically
pigmented melanocytes (A; arrow) are in direct
contact with enlarged keratinocytes with large
nuclei (A; arrowheads) in an anagen VI follicle;
these ectopically pigmented melanocytes (arrow)
are KIT*/TYRP1* cells with a dendritic morphology
(B and C). Ectopically pigmented melanocytes
were detected only in the bulge-subbulge area of
Col17a1~'~ follicles (D), and the proliferation of
Col17a1~'~ bulge keratinocytes at 12-13 weeks
of age was abnormally accelerated compared
with that of control anagen V follicles (E). *p < 0.05.
Scale bars represent 30 pm in (A) and 20 pm in
(B) and (C).

(F) Localization of TGF-p1/2 expression (red) in
Col17a1** hair follicles. Plucked dorsal skins
(4 days after hair plucking in telogen skin from
7-week-old Col17a7** mice) were used. KRT15-
expressing keratinocytes (shown in green) express
TGF-B1/2 (red). Scale bars represent 50 um.

(G) Col17a1™/~ mouse hair follicles from 5-week-
old mice showed normal TGF-B1/2 expression
patterns (left). However, at 8 weeks of age or later
in Col17a1™’~ mice, the TGF-B1/2 expression
was downregulated (right and middle). Scale bar
represents 200 pm.

(H) Phosphorylated Smad2 (shown in green) was
not detected at 8 weeks in the Col17a71~'~ hair
follicle bulge. Dct-lacZ-expressing melanocytes
in the bulge area are shown in red. Bulge areas
are demarcated by brackets. Scale bar represents
20 pm.

(1) Tgfbre straight knockout mice (Tgfbr2 ~/~) (right)
show severe hair graying phenotype at 6 weeks
of age.

See also Figure S5.

maintenance of stem cell properties
(Li and Xie, 2005; Moore and Lemischka,
2006). Although previous in vitro studies
suggested some correlation in keratino-
cytes between integrin-mediated extra-
cellular matrix adhesion and proliferation
potential, in vivo ablation studies of major
integrins in basal keratinocytes have
not provided data on stem cell-specific
depletion phenotypes (Dowling et al,,
1996; Georges-Labouesse et al., 1996;
Raghavan et al., 2000; van der Neut et al.,
1996; Watt, 2002). In the present study,
we demonstrated that COL17A1, a hemi-
desmosomal transmembrane collagen, is

highly expressed in HFSCs within hair follicles and is required for
the self-renewal of HFSCs. We found that Col77a7 ablation in
mice results in premature hair loss almost homogeneously over
the entire body surface without showing any specific association

Cell Stem Cell 8, 177-187, February 4, 2011 ©2011 Elsevier Inc. 183

101—



A Col17at1* Col17a1"; Krt14-hCOL17A1
B Col17a Coi17at1”; Krt14-hCOL17A1
6d
5m_
Cc

HET1E}
KRT1

Col17at"

with mechanical stress. Although mechanical stress, such as
attempts to peel the neonatal mouse skin, can induce skin
erosion or blistering in Col77a1-null mice (Nishie et al., 2007), it
did not significantly accelerate hair graying or hair loss in these
mice. Importantly, we did not find evidence of macroscopic/
microscopic junctional separation, basal cell death, nor inflam-
matory cell infiltrates between the HFSCs and the basement
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Figure 6. Transgene-Mediated Correction
of COL17A1 Expression in Col17a1~"~ Basal
Keratinocytes Rescues the Loss of MSCs
The Krt14-hCOL17A1 transgene was introduced
into Col17a1™/~ mice.

(A) Macroscopic phenotype of 7- to 9-month-old
Col17a1~'~ mice with the Krt14-hCOL17A1 trans-
gene and Col17a1*'~ mice.

(B) Distribution and morphology of Dct-lacZ-
expressing melanoblasts in the bulge area (Bg)
are normalized by the Krt14-hCOL17A1 transgene
in Col17a1™~ mice. Bulge-subbulge areas are
demarcated by brackets.

(C) Ectopic KRT1 expression and abnormal prolif-
eration of HFSCs in the bulge-subbulge area
(brackets) are corrected by the Krt14-hCOL17A1
transgene in Col77a1™’~ mice. These mice were
observed at 13 weeks of age during the anagen
phase. Scale bar represents 50 um.

(D) The downregulated expression of phospho-
Smad? (in green) in Col17a1~/~ HFSCs and MSCs
within the bulge-subbulge areas (demarcated
by brackets) was also normalized by forced
expression of the Krt14-hCOL17A1 transgene in
Col17a1™'~ keratinocytes. Dct-lacZ-expressing
melanocytes in the bulge area are shown in red.
Scale bars represents 20 pm.

See also Figure S6.
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membrane in Col17a7-null mouse skin.
Instead, we found that significant defects
in HFSC quiescence and immaturity in
Col17al-null mice were the earliest
events that could explain the defective
maintenance of HFSCs over ensuing hair
cycles. These findings underline a critical
cell-autonomous role for COL17A1 in the
maintenance of HFSCs under physiolog-
ical conditions. Although we did not
detect adhesion defects of Col77a7-null
keratinocytes on feeder cells used for
colony assay in this study, weakening of
cell attachment has been found with
human cultured keratinocytes treated
with COL17A1 antibody under vibration
conditions (lwata et al, 2009). One
adhesion-based explanation for the
premature HFSC depletion in Col77a1-
deficient mice is that COL17A1-depen-
dent anchoring of HFSCs to the basal
lamina might regulate the quiescence
and differentiation of HFSCs by modifying
their division frequency and properties.
Regardless of the precise mechanism involved, our findings
reveal a potential mechanism for the hair loss (alopecia) seen
with human COL77A71 deficiency, which causes the nonlethal
form of junctional epidermolysis buliosa, also known as general-
ized atrophic benign epidermolysis bullosa (GABEB) (McGrath
et al., 1995; Nishie et al., 2007). It has been reported that the
hair loss in GABEB patients is not always associated with
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surrounding skin surface changes but is associated with hair
follicle atrophy or hair follicle loss (Hintner and Wolff, 1982).
This finding is consistent with the late skin changes such as
hair follicle atrophy seen in Col/17a7-null mice. Therefore, we
suggest that this mouse model may be a powerful tool for helping
to understand the pathomechanisms of premature alopecia.

Human patients with GABEB also show epidermal atrophy
with aging. Col17a1-deficient mice show transient epidermal
hyperplasia in some focal areas at around 6 months of age
(Figure 3D) but the entire skin becomes gradually more atrophic
over time. Similar but more pronounced changes have been
observed in the setting of stem cell depletion such as is seen
in Rac1 conditional knockout mice (Benitah et al., 2005) and
in c-Myc transgenic mice (Arnold and Watt, 2001; Waikel
et al., 2001). The late onset of epidermal atrophy seen in
Col17a1-null mice might represent the eventual depletion or
a decreased self-renewing potential of epidermal stem cells for
the IFE.

More generally, Col17a7-null mice have provided evidence of
an unexpected biological function for HFSCs. Although we have
previously shown that the niche microenvironment plays a domi-
nant role in fate determination for MSCs (Nishimura et al., 2002),
the type of cell and/or the extracellular matrix in the bulge area
that comprises the functionally essential component(s) of the
niche has been unclear. Our current data indicate that HFSCs
serve as a functional niche for MSCs and act through HFSC-
derived TGF-B signaling, which is critical for MSC maintenance
(Figure 7). It is notable that MSC immaturity was lost in
Col17a1-deficient mice at a time when HFSCs were undergoing
aberrant proliferation and differentiation in the bulge area with
gradual loss of HFSC characteristics, including TGF-B produc-
tion. There are a number of keratinocyte-specific gene-deficient
mice that display a hair loss phenotype caused by HFSC
depletion (Benitah et al., 2005; Zanet et al., 2005). However, as
far as we know, characteristic premature hair graying has not
been reported in those mice. It is also interesting that HFSCs
nurture MSCs even though they are derived from a completely
different developmental origin (Nishimura et al., 1999, 2002). A
similar niche function provided by one type of stem cell for

Figure 7. A Schematic Model for HFSCs and
MSC Niche

HFSCs provide COL17A1-dependent niche for
MSCs though TGF-B signaling. APM, arrector pili
muscle.

another was reported in Drosophila
melanogaster testis and mouse bone
marrow during the revision of this paper
(Leatherman and Dinardo, 2010; Mén-
dez-Ferrer et al.,, 2010; Omatsu et al.,,
2010). The maintenance of somatic
stem cell populations in a coherent cell
mass with a specialized tissue organiza-
tion such as in the hair follicle bulge
might be a recurring strategy for somatic
stem cell maintenance. COL17A1 in the
basal cell population of HFSCs (the a6-
integrin™®" population) (Blanpain et al., 2004) is critical not only
for the maintenance of MSCs but also for the suprabasal HFSCs
(2B-integrin® population), which suggests a common niche
function for basal HFSCs for the maintenance of adjacent
MSCs and HFSCs. Further studies to elucidate the precise niche
properties of HFSCs may clarify additional fundamental mecha-
nisms for the maintenance of stem cell pools as clustered stem
cell populations.

high

EXPERIMENTAL PROCEDURES

Animals
Dct-lacZ transgenic mice (Mackenzie et al., 1997) (a gift from I. Jackson),
Col17a1-knockout mice (Nishie et al., 2007), and Krt74-human COL17A1
transgenic mice (Olasz et al, 2007) have been described previously.
Col17a1*'* and Col17a1*'~ mice are referred to as control mice. CAG-CAT-
EGFP mice (a gift from J. Miyazaki) were bred with Dct™r/8e mice (a gift
from F. Beermann) to generate compound heterozygotes as described previ-
ously (Osawa et al., 2005). All mice were backcrossed to C57BL/6J. Animal
experiments conformed to the Guide for the Care and Use of Laboratory
Animals and were approved by the Institutional Committee of Laboratory
Animal Experimentation. k
TGF-8RIl straight knockout mice (a gift from M. Taketo) (Oshima et al., 1996)
were bred with Rag2-deficient mice at the Animal Research Facility of the Insti-
tute of Medical Science, University of Tokyo. Animal care of the line was
carried out in accordance with the guidance of Tokyo University for animal
and recombinant DNA experiments.

Histology, Immunohistochemistry, and Flow Cytometry Analyses
Paraffin, frozen sections, and whole-mount B-galactosidase staining were per-
formed as previously described (Nishimura et al.,, 2002, 2005). Additional
details on the methods and antibodies used are provided in the Supplemental
Information. Multicolor flow cytometry analysis for HFSCs was performed with
a FACSCalibur (BD).

Electron Microscopy

For electron microscopy, 20 um cryostat sections were cut and stained in
X-gal solution for 12 hr at 37°C. The sections were postfixed in 0.5% osmium
tetroxide for 30 min, stained with 1% urany! acetate for 20 min, dehydrated
in a graded ethanol series, and then embedded in epoxy resin. Semithin
sections (1 um thick) were examined after toluidine blue staining and were
observed by light microscopy. Ultrathin sections were observed with a
JEM-1210 transmission electron microscope (JEOL) at 80 KV.
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Isolation of Melanocytes

Dorsal skin was harvested from 6-day-old CAG-CAT-EGFP/+;
Dct'miCreiBee! tmiCre)Boe mice The skin specimens were incubated in PBS
containing 300 U/mi dispase (Sanko Junyaku) overnight at 4°C, and then
the dermis was removed from the epidermis with a stereomicroscope. The
epidermis was further dissociated by treatment with 0.25% trypsin for
10 min at 37°C. After neutralization with fetal calf serum (FCS), GFP* melano-
cytes were sorted with JSAN (Bay Bioscience).

RNA Isolation and Reverse Transcriptase Polymerase

Chain Reaction

Total RNAs from mouse skin or sorted GFP* melanocytes were isolated with
TRIzol (GIBCO) according to the manufacturer’s instructions. 3 pg total RNA
was used for cDNA synthesis in THERMOSCRIPT RT-PCR System (GIBCO)
according to the manufacturer’s instructions. The following primers were
used for the analysis: mouse Colf7a7 (forward primer 5'-actcgcctettcttca
acca, reverse primer 5'-gagcaggacgccatgttatt) and GAPDH (forward primer
§'-accacagtccatgccatcac, reverse primer 5'-tccaccaccetgttgetgta).

Colony-Formation and Adhesion Assays

For the colony-forming assay, keratinocytes from newborn mice were used.
Dorsal skins were incubated in PBS containing 300 U/ml dispase (Sanko
Junyaku) for 1 hr at 37°C, after which the dermis was removed from the
epidermis with a stereomicroscope. The epidermis was further dissociated
by treatment with TrypLE Select (GIBCO) for 10 min at 37°C. The isolated
cells (10° per 6 cm dish) were seeded on 3T3-J2 feeder cells treated with mito-
mycin C. The cells were grown in calcium-free medium (3:1 = calcium-free
DMEM:CnT-57CF.S [Celltec]) supplemented with 1.8 x 10~* M adenine, 1%
antibiotic-antimyotic solution (Sigma), 2 mM L-glutamine, 0.5 pg/ml hydrocor-
tisone, 5 pg/ml insulin, 10~'° M cholera enterotoxin, 10 ng/mi EGF, and 10%
FCS treated with Chelex-100 resin (BioRad) at 32°C in a humidified atmo-
sphere with 8% CO, for a total of 14 days. To visualize the keratinocyte
colonies, the cells were washed with PBS and were then fixed in 4% formalin
for 20 min at room temperature. After further washing in PBS, the cultures were
stained for 5 min at room temperature with crystal violet.

For the adhesion assay, isolated keratinocytes (10° per well in 6-well plates)
were seeded on 3T3-J2 feeder cells treated with mitomycin C or on collagen
I-coated 6-well plates. 12 or 24 hr later, keratinocytes was washed three times
in PBS and were collected with 0.05% trypsin-EDTA. Collected cells were
fixed with 2% formaldehyde for 10 min at 37°C, permeabilized by ice-cold
100% methanol for 30 min, and stained with an Alexa Fluor 488-conjugated
pan-cytokeratin monoclonal antibody (EXBIO). Detection of adherent keratino-
cytes was performed with a FACSCanto Ii (BD).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
and six figures and can be found with this article online at doi:10.1016/
j.stem.2010.11.029.
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Localized autosomal recessive hypotrichosis (LAH) 2
is a type of non-syndromic human alopecia that is inhe-
rited as an autosomal recessive trait. We describe here
a patient with LAH2 who had mutations in the lipase H
(LIPH) gene. We analysed hair shaft morphology using
light and scanning electron microscopy (SEM). In ad-
dition, we review the features of other non-syndromic
human alopecias.

CASE REPORT

The patient was a 4-year-old boy, the firstborn of healthy and un-
related Japanese parents, born after an uneventful pregnancy. He
had scant hair at birth, which grew very slowly in infancy.

Clinical examination revealed hypotrichosis of the scalp (Fig.
1a). The hairs were sparse, thin, and curly, and not easily plucked.
The left eyebrow hair was sparse, but the eyelashes and other body
hair were present in normal amounts. Teeth, nails, and the ability
to sweat were completely normal. Clinical features of keratosis
pilaris, milia, scarring, and palmoplantar keratoderma were absent.
Psychomotor development was normal. The patient’s younger
brother also had severe hypotrichosis; since birth his hair was curly,
and his eyebrow hair virtually absent (Fig. 1b). No other family
members, including his parents, had similar hair abnormalities.
Laboratory tests of the patient showed normal serum levels of
copper and zinc, and liver and kidney function tests were all within
normal ranges. Over a period of 2 years there was no improvement
or exacerbation of hypotrichosis in the patient.

Light microscopy of the patient’s scalp hairs revealed that
approximately 10% had structural abnormalities. Abnormal
hairs were composed of thick dark parts and thin light parts
(Fig. 2a). SEM revealed alterations of the cuticular architecture.
Cuticular cells were absent from both the thick and thin parts
(Fig. 2b). Cross-sectional observation showed that thick, but not
thin, sections had hair medulla (Fig. 2¢, d). Light microscopy

B NN
Fig. 1. (a) Clinical features of the patient at4 years of age. (b) Clinical features
of the younger brother at 1 year 4 months of age. Permission is given from
the parents to publish these photos.
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on hairs from the patient’s younger brother revealed that they
were composed of thin and thick parts (data not shown).

Based on the clinical features, hair microscopy and family pe-
digree, we suspected LAH2 or LAH3. To determine the type of
LAH, we looked for gene mutations in LIPH and LPAR6 (enco-
ding lysophosphatidic acid receptor 6). Two prevalent missense
mutations in LIPH were found (1); ¢.736T>A (p.Cys246Ser)
and ¢.742C>A (p.His248Asn). The mutations were carried in
a compound heterozygous state. No mutations were found in
LPARG. The parents did not consent to genetic testing of the
younger brother or themselves.

DISCUSSION

The different LAH subtypes map to chromosomes
18q12.1, 3q27.3 and 13q14.11-13q21.32, and are de-
signated LAH1, LAH2 and LAH3, respectively (2—4).
Mutations in DSG4 (encoding desmoglein 4) have been
found to be responsible for LAH1 (5). Kazantseva et
al. (6) reported deletion mutations in LIPH leading
to LAH2. Pasternack et al. (7) reported disruption of
LPARG in families affected with LAH3.

Table I summarizes of genetic, non-syndromic human
alopecias. In hypotrichosis simplex of the scalp, hair loss

Fig. 2. (a) Light microscopy (x40). Hair was composed of thick (=) and thin
parts (—). (b) Scanning electron microscopy (%900). Cuticular cells were
absent in both thick and thin sections. (c, d) Scanning electron microscopy
(cross-section, x900). (c) Thick regions showed hair medulla, while (d) thin
regions did not.

© 2011 The Authors. doi: 10.2340/00015555-1095
Journal Compilation © 2011 Acta Dermato-Venereologica. ISSN 0001-5555
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is limited to the scalp without hair shaft abnormalities.
The causative gene is CDSN (encoding corneodesmosin)
on 6p21.3 (8). The clinical presentations of monilethrix
vary among patients. Mild cases have hair loss limited to
the scalp, while severe cases show generalized alopecia.
Hair shaft abnormalities are characteristic, demonstrating
regularly-spaced, spindle-shaped swellings. The nodes
are as thick as normal hair and the atrophic internodes
represent areas where the hair is easily broken. Causative
genes are AHbI, hHb3 and hHb6 (12q13) (9), which
encode for basic hair keratins.

In case of atrichia with papular lesions, hair loss on
the entire body occurs several months after birth. The
gene responsible is HR (encoding "hairless™) (10), a tran-
scription modulating factor that influences the regression
phase of the hair shaft cycle. Patients with ayporrichosis,
Marie Unna type have hard and rough scalp hair, de-
scribed as iron-wire hair. Generalized hypotrichosis is
often seen. U2HR, an inhibitory upstream open reading
frame of the human hairless gene (11), is mutated in this
condition. Hereditary hypotrichosis simplex is charac-
terized by hair follicle miniaturization. The defective
gene is APCDDI (encoding adenomatosis polyposis
down-regulated 1) (12). Hairs are short, thin, and easily
plucked. Eyelashes and eyebrows are also affected.

As already mentioned, there are three types of locali-
zed hereditary hypotrichosis. LAH]1 patients have hair
shaft abnormalities that resemble moniliform hair (13).
LAHI can be viewed as an autosomal recessive form
of monilethrix. Patients with LAH2 and LAH3 have
woolly hair (14, 15), and eyelashes and eyebrows are
often sparse or absent. Upper and lower limb hairs are
sometimes absent too.

Our patient had hypotrichosis of the scalp with sparse
left eyebrow hair and irregularly spaced segments of
thick and thin hair, but not to a degree that could be
labelled moniliform. The mode of inheritance was
autosomal recessive and LIPH was found to be abnor-
mal, thus establishing a diagnosis of LAH2. One of the
mutations (c.736T>A) leads to an amino acid change
(p.Cys246Ser) of a conserved cysteine residue, which
forms intramolecular disulphide bonds in the lid domain
in the structure model of LIPH (1). The other mutation
(c.742C>A) results in alteration of one of the amino
acids of the catalytic triad (Ser'*, Asp!”®, and His**®) of
LIPH (p.His248Asn) (1).

Table 1. Features of genetic, non-syndromic human alopecias

Letters to the Editor 487

Regarding hair shaft morphology, Horev et al. (14)
reported that hairs of LAH2 patients showed decreased
diameter under light microscopy. This is the first report
to describe hairs from an LAH2 patient by SEM. Shi-
momura et al. (13) observed hairs of LAH1 patients
by SEM and found variable thickness of the hair shaft,
resulting in nodes and internodes. Which are absent in
LAHI (our observation). Longitudinal ridges and flutes
were observed at internodes, and the breaks always oc-
curred at internodes in LAH1. These features resemble
those of moniliform hair rather than LAH2. However, in
the end gene analysis is probably easier to accomplish
than SEM to distinguish the two types of LAH.
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Abstract Epidermolysis bullosa (EB) is classified into the three major subtypes depending on the level
of skin cleavage within the epidermal keratinocyte or basement membrane zone. Tissue separation
occurs within the intraepidermal cytoplasm of the basal keratinocyte, through the lamina lucida, or in
sublamina densa regions of the basal lamina (basement membrane) in EB simplex, junctional EB, and
dystrophic EB, respectively. Transmission electron microscopy (TEM) is an effective method for
determining the level of tissue separation and hemidesmosome (HD) and anchoring fibril morphology if
performed by experienced operators, and has proven to be a powerful technique for the diagnosis of new
EB patients. Recent advances in genetic and immunofluorescence studies have enabled us to diagnose
EB more easily and with greater accuracy. This contribution reviews TEM findings in the EB subtypes
and discusses the importance of observations in the molecular morphology of HD and basement

membrane associated structures.
© 2011 Elsevier Inc. All rights reserved.

Introduction

Epidermolysis bullosa (EB) comprises a group of
hereditary disorders characterized by mechanical stress-
- induced blistering of the skin and mucous membranes.! This
group of diseases is caused by a genetic abnormality in a
single gene encoding one of 13 proteins involved in
epidermal keratinocyte-basement membrane zone (BMZ)
adhesion (Figure 1).%* EB has typically been classified into
three main subtypes, depending on the level of epidermal
separation from the underlying basal lamina. Tissue
separation occurs within the intraepidermal keratinocyte
cytoplasm, through the lamina lucida, or in the sublamina

* Corresponding author. Tel.: +81 11 716 1161x5962; fax: +81 11 706
78201
E-mail address: qxfjc346@ybb.ne.jp (S. Shinkuma).

0738-081X/$ — see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.clindermatol.2011.01.010

densa in EB simplex (EBS), junctional EB (JEB), and
dystrophic EB (DEB), respectively (Figure 2).! After the
initial diagnosis based on careful examination of the clinical
manifestations and inheritance pattern, a skin biopsy from a
recently formed blister lesion should be taken to determine
the level of tissue separation to classify the disease.*
Transmission electron microscopy (TEM) and immuno-
fluorescence (IF) are both effective at determining the level
of tissue separation.® Currently, IF is becoming increasingly
important in the diagnosis of EB because TEM requires
expensive equipment and significant experience and exper-
tise to process skin biopsy specimens and accurately interpret
the resulting micrographs.* The primary advantage of TEM,
however, is that it can visualize ultrastructural abnormalities
and provide a semiquantitative assessment of specific BMZ
structural deficits.® Therefore TEM is likely to continue to
assume an important role in both the clinical and research
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Fig. 1 Schematic diagram shows the approximate positions of principal epidermal basement membrane zone components. (Adapted with

permission from McMillan et al.?)

fields. This contribution focuses on TEM findings and their
usefulness in EB diagnosis and cell adhesion research.

Ultrastructure of normal
dermal-epidermal junction

The BMZ is composed of various molecules, each of
which plays a differing role in dermal-epidermal junction
adhesion (Figure 1).>-7® The ultrastructural location of each

BMZ molecule has been studied using a range of
immunoelectron microscopy techniques.”® In the basal
keratinocyte, several electron dense rivetlike structures are
found on the inner surface of the keratinocyte basal pole of
the cell membrane, called hemidesmosomes (HDs).!® HDs
show a distinct tripartite, two-plaque structure, consisting of
inner and outer plaques.!!*!* Keratin intermediate filaments
(KIF), which are 10 to 12 mm thick and consist of basal cell
keratins 5 and 14, associate with the inner hemidesmosome
(HD) plaque and interplaque space and are capable of
binding to both plectin and 230-kDa bullous pemphigoid
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Fig. 2 The mechanism and the cleavage site of epidermolysis bullosa. (Adapted with permission from Shimizu H: Shimizu’s Textbook of
Dermatology: Blistering and Pustular Diseases. Sapporo, Japan: Hokkaido University Press/Nakayama Shoten Publishers. 2007:203p.).

antigen 1 (BPAGle, BP230, also known as dystonin)
hemidesmosomal antigens.!'7 These two plakin protein
family members, plectin and dystonin, form critical links in a
continuous series of protein interactions bridging two distinct
transmembrane molecular systems of the outer HD plaque,
integrin 0:634'%1° and collagen XVII,2%2! also known as
180-kDa bullous pemphigoid antigen 2 (BPAG2) or BP180.

Immediately beneath the keratinocyte plasma membrane
lays an electron-lucent zone, the lamina lucida and an
electron-dense layer comprising a closely packed fibrous
network called the lamina densa.” Below the HD, there is a
thin electron-dense line termed the subbasal dense plate,
parallel to the plasma membrane that is visible in
approximately one-third of HDs, depending on the precise
orientation of the section.!%?? Traversing the lamina lucida
zone, subjacent to HDs, are thin anchoring filaments
apparently inserting into the lamina densa. Laminin 332,
one of the major epidermal laminins (formerly known as
Kalinin, laminin 5), is found on the border between the upper
lamina densa of HDs and lower lamina lucida at the base of

anchoring filaments, which may comprise collagen
XVIL.232 Beneath the lamina densa, most of the collagen
VII molecules form semicircular loop structures called
anchoring fibrils in which the amino (N-) terminals of the
antiparallel collagen VII fibrils originate and terminate in the
lamina densa.??>2¢ In the dermis, anchoring fibrils may
enable the lamina densa to link or encircle dermal collagen
fibers or other components to provide basal lamina
anchorage to the underlying structures.

Ultrastructural findings of EB
Epidermolysis bullosa simplex

The three major subtypes of EBS—Dowling-Meara
(EBS-DM) (severe), other generalized (moderate), and the
localized (mild) type—are caused by keratin 5 or 14
mutations that result in an abnormal keratin network leading
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Fig. 3  Electron microscopic image of epidermolysis bullosa
simplex shows (A) separation has occurred within the cytoplasm of
the epidermal basal cells, which leads to intraepidermal blistering.
The arrowheads indicate the lamina densa. The cytoplasm of the
basal cells contains large vacuoles (asterisks) and show extensive
damage. (B) Aggregation of keratin fibers is seen in epidermolysis
bullosa simplex—Dowling-Meara (arrows).

to blister formation within the cytoplasm of the epidermal
basal cells (Figure 3A).27-8 In EBS-DM, in addition to the
intraepidermal cleavage, clumping of degenerated keratin
fibers can be observed within epidermal keratinocytes
(Figure 3B).*?

Rare types of EBS, including EBS with muscular dystrophy
(EBS-MD) and EBS with pyloric atresia (EBS-PA), are caused
by plectin gene mutations.?%-33 In EBS-MD and EBS-PA, the
split occurs around the level of the HD inner plaque within the
keratinocyte cytoplasm and is often associated with reduced
numbers of poorly formed hypoplastic HDs, with reduced
numbers of inner plaque and KIF association.®32

Junctional EB

JEB can be further divided into three subtypes: Herlitz
JEB, non-Herlitz JEB, and JEB with pyloric atresia.! All JEB
subtypes are inherited in an autosomal-recessive manner and
are characterized by blister formation in the lamina lucida.3¢

Herlitz JEB, the most severe type, is caused by a complete
absence of laminin 332.37-3% Non-Herlitz JEB is caused by
missense mutations leading to a reduction in functional
laminin 332 or complete absence of collagen XVIL37 JEB
with pyloric atresia is caused by a genetic mutation in the
integrin o6 or B4 subunits that are the main receptor for
ligand laminin 332 beneath HDs.*0-4!

Ultrastructurally, Herlitz JEB is characterized by wide-
spread epidermal separation through the lamina lucida or by
hypoplastic (small), or both, and a markedly reduced number
of HDs (Figure 4).%%? In non-Herlitz JEB, HDs may appear
normal or reduced in size or number, 642

Dystrophic EB

DEB is caused by mutations in the gene that codes
collagen VII, a major structural component of anchoring
fibrils that is essential for connecting the dermis and the basal
lamina and hence the epidermis.>?*? Subepidermal blister-
ing occurs in conjunction with reductions in anchoring fibril

Fig. 4  Electron microscopic image of junctional epidermolysis
bullosa (JEB) shows (A) a blister (asterisks) is present within the
lamina lucida, between the plasma membrane of the basal
keratinocytes (white arrowheads) and the lamina densa (black
arrowheads). (B) The hemidesmosomes are rudimentary and
reduced in number in Herlitz JEB.
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Fig. 5 Electron microscopic image of dystrophic epidermolysis
bullosa shows (A) dissociation (asterisks) immediately below the
lamina densa (arrowheads). (B) It is characterized by hypoplasia of
anchoring fibrils.

numbers or with defects in normal anchoring fibril morphol-
ogy, or both (Figure 5).** The phenotype of autosomal-
dominant DEB (DDEB) is milder than that of recessive DEB
(RDEB).** The most severe subtype of RDEB, severe
generalized type, shows a severe reduction or lack of
expression of collagen VII, which ultrastructurally results in
rudimentary or absent anchoring fibrils (Figure 5).** By
contrast, in the milder RDEB phenotype, termed “generalized
other RDEB”, shows reduced or rudimentary-appearing
anchoring fibrils. In DDEB, anchoring fibrils are typically
seen as normal in appearance or slightly decreased in number.

Kindler syndrome

Kindler syndrome has been added as a further, specific
subtype of EB, in the latest classification of EB.!#¢ Kindler
syndrome is inherited in an autosomal-recessive manner and
is characterized by trauma-induced blistering, poikiloderma
(skin atrophy and altered skin pigmentation), mucosal
inflammation, and varying degrees of photosensitivity.*®
The pathogenesis of Kindler syndrome involves loss-of-
function mutations in a newly recognized actin cytoskeleton-
associated protein, now known as fermitin family homolog 1
and encoded by the gene FERMT1.%7 This protein has a role
in controlling/activating 1 associated integrin cell adhesion
and may play a role in the linkage of the actin cytoskeleton to
Bl integrins and the extracellular matrix at sites of focal
adhesion. Whereas EB is caused by abnormalities in HD-KIF
cell attachment to the underlying basal lamina and dermis,
Kindler syndrome is caused by defective activation of focal
adhesion anchorage.*® Ultrastructural examination of Kin-
dler syndrome reveals a distinct disorganization below the

Fig. 6  Electron microscopic image of Kindler syndrome (KS) shows that (A) compared with the site-matched skin of healthy controls,
(B) the skin of the KS patient has a thinner epidermis resulting from fewer cell layers. (C) Ultrastructurally, along the dermal-epidermal junction
in the KS patient’s skin, the hemidesmosomes (HDs) appear normal (white arrow); however, there may be signs of epidermal separation within
the basal keratinocyte (asterisks) or immediately below the lamina densa as dermal clefts (DC). A common finding is the reduplication of the
lamina densa (arrowheads) is seen in the upper dermis. Dermal cleft formation can occur together with reduplication of the lamina densa.
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epidermal keratinocyte basement membrane exhibiting as
lamina densa reduplication with branching, folding, and
formation of loops and circles.* Cleft formation can occur at
various sites along the dermal-epidermal junction, the
largest and most common being below the lamina densa
(Figure 6).3% HDs and anchoring fibrils typically appear
normal and with normal frequency, but there can be
concomitant disturbances in the KIF network.

The role of electron microscopy in EB

Recent advances in genetic and IF techniques have
enabled us to diagnose EB more rapidly and with greater
accuracy regarding the particular underlying genetic
defects.!> We cannot, however, sufficiently predict precise
clinical manifestations of each EB subtype using these

techniques alone. Gene analysis cannot always precisely
predict EB disease severity from novel mutations, although
some successful genotype—phenotype correlations have been
reported.®!->2 One reason is that most cases of JEB and
RDEB are inherited in an autosomal-recessive manner and
are thus caused by compound heterozygous gene mutations;
therefore, it is usually difficult to assess the clinical
phenotype and function of each mutant protein derived
from different maternal or paternal mutations. Another
reason is that there may exist, as yet undiscovered, modifier
genes that influence EB disease severity, other than the
causative gene.>

IF studies also have limited ability to assess disease
severity by measuring the expression level of particular
constitutive BMZ proteins, because the clinical severities of
EBS, DDEB, and parts of autosomal-recessive EB with

Fig.7 A case of recessive dystrophic epidermolysis bullosa (EB) with missense mutation. (A) The patient exhibits a clinical severity similar
to the most severe subtype of recessive dystrophic EB (DEB), the severe generalized type. (B) Immunofluorescence staining for collagen VII
shows the expression level of collagen VII is just slightly reduced for the severe manifestation. (C) The electron micrograph of the DEB
epidermal basement membrane zone. There are rudimentary-appearing anchoring fibrils, which are slightly reduced in number (arrow).
(D) Normal control of immunofluorescence staining for collagen VII. In this case, the clinical severity correlates with the morphology of each
mutant collagen VII anchoring fibril rather than the expression level.
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missense mutations correlate with the combined function of
the mutant proteins rather than the expression levels of both
wild-type normal or abnormal protein expression examined
by IF staining (Figure 7).>* In these cases, determination of
the precise molecular morphology of BMZ components
provides important clues to predict their clinical severities,
organ involvement, and overall patient prognosis. A careful
ultrastructural examination can thus provide some estimate
of EB clinical severity and disease progression, not only
from a quantitative ultrastructural analysis but also from a
morphologic examination. Taken together, we propose that
electron microscopic evaluation remains an important
technique acting as a bridge between genetic and
immunohistologic tests and has the ability to provide
extra diagnostic clues and subsequent beneficial practical
and clinical information for EB patients and their health
care providers.
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