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the development of active disease in experimental
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Abstract  Bullous pemphigoid (BP), the most common autoimmune blistering disease, is caused
by autoantibodies against type XVII collagen (COL17). We recently demonstrated that CD4* T
cells were crucial for the production of anti-COL17 1gG and for the development of the BP phe-
notype by using a novel active BP mouse model by adoptively transferring immunized spleno-
cytes into immunodeficient COL17-humanized mice. Noncollagenous 16A (NC16A) domain of
COL17 is considered to contain the main pathogenic epitopes of BP, however, the pathogenicity
of COL17 NC16A-reactive CD4" T cells has never been elucidated. To address this issue, we modu-
lated the immune responses against COL17 in active BP model by using anti-CD40 ligand (CD40L)
monoclonal antibody MR1, an inhibitor of the CD40-CD40L interaction, in various ways. First, we
show the essential role of CD4" T cells in the model by showing that CD4* T cells isolated from
wild-type mice immunized with human COL17 enabled naive B cells to produce anti-COL17
NC16A 1gG in vivo. Second, we show that the activation of anti-COL17 NC16A IgG-producing B
cells via CD40-CD40L interaction was completed within 5 days after the adoptive transfer of immu-
nized splenocytes. Notably, a single administration of MR1 at day 0 was enough to inhibit the pro-
duction of anti-COL17 NC16A IgG and to diminish skin lesions despite the presence of restored
anti-COL17 IgG at the later stage. In contrast, the delayed administration of MR1 failed to inhibit
the production of anti-COL17 NC16A IgG and the development of the BP phenotype. These results

Abbreviations: BP, bullous pemphigoid; COL17, type XVII collagen; BMZ, basement membrane zone; NC16A, noncollagenous 16A domain;
WT, wild type; hCOL17, human COL17; Tg, transgenic; CD40L, CD40 ligand; IF, immunofluorescence; OD, optimal density.
* Corresponding authors at: Department of Dermatology, Hokkaido University Graduate School of Medicine, N.15 W.7, Kita-ku, Sapporo 060-
8638, Japan. Fax: +81 11 706 7820.
E-mail address: h-ujiie@med.hokudai.ac.jp (H. Ujiie).
' Designated author to communicate with the Editorial and Production offices.

1521-6616/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
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strongly suggest that COL17 NC16A-reactive CD4” T cells play a pivotal role in the production of
pathogenic autoantibodies and in the development of active disease in experimental BP model.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Bullous pemphigoid (BP) is the most common autoimmune
blistering disorder. Clinically, tense blisters, erosions and
crusts with itchy urticarial plaques and erythema develop
on the entire body. Histologically, subepidermal blisters as-
sociated with inflammatory cell infiltration in the dermis
are observed. BP is induced by autoantibodies against type
XVII collagen (COL17, also called BP180 or BPAG2), a hemi-
desmosomal protein which spans the lamina lucida and pro-
jects into the lamina densa of the epidermal basement
membrane zone (BMZ) [1-6]. The juxtamembranous noncol-
lagenous 16A (NC16A) domain is considered to contain the
main pathogenic epitopes on COL17, although BP patients'
sera can also react with other parts [7-9].

Recently, we developed a novel active BP mouse model
by adoptively transferring wild-type (WT) splenocytes immu-
nized by human COL17 (hCOL17)-expressing transgenic (Tg)
skin-grafting into Rag-2~/~/COL17™~/=h* (Rag-2~/~/COL17-
humanized) mice that express hCOL17 in the skin and lack
both T and B cells [10]. The recipient mice accepted trans-
ferred splenocytes and produced high titers of anti-hCOL17
IgG in vivo for more than 10 weeks after the adoptive trans-
fer, while circulating anti-hCOL17 NC16A IgG titer decreased
in a short period for unknown reasons [10]. They developed
blisters and erosions corresponding to clinical, histological
and immunopathological features of BP [10]. This new active
BP model enables us to observe the dynamic immune reac-
tions induced by pathogenic antibodies against hCOL17
molecule.

In BP, the presence of autoreactive CD4* T cells has been
reported [11-13]. Particular MHC class Il alleles occur more
frequently in BP patients [14]. These findings indicated the
contribution of CD4* T cells to the pathogenesis of BP. General-
ly, the production of IgG by B cells requires the help of CD4* T
cells [15-17]. Our previous study demonstrated that CD4* T
cells were crucial for the production of anti-hCOL17 IgG and
for the development of the BP phenotype because both the de-
pletion of CD4* T cells from immunized splenocytes, and the
administration of cyclosporin A significantly suppressed the
pathogenic IgG production and diminished the disease severity
[10]. However, the pathogenicity of COL17 NC16A-reactive
CD4™ T cells has never been elucidated. To address this issue,
we modulated the CD4* T cell function in active BP model by
administering anti-CD40L monoclonal antibody MR1 [18] in
various ways, and observed the phenotypic changes of the
treated mice.

CDA40 ligand (CD40L) is a costimulatory molecule which is
transiently expressed on the surface of activated CD4* T cells
and which binds to CD40 on antigen-presenting cells including
B cells. CD40—CD40L interaction is crucial for the proliferation
and differentiation of B cells into immunoglobulin-secreting
plasma cells and for the formation of humoral memory [19].

Immunosuppressive effects of anti-CD40L monoclonal antibody
have been shown in some T-cell-mediated antibody-induced
autoimmune animal models, such as experimental autoimmune
myasthenia gravis [20], and pemphigus vulgaris [21, 22]. In this
study, we demonstrate that COL17 NC16A-reactive CD4* T cells
play a pivotal role in the development of BP through the CD40-
CD40L interaction at an early stage of the disease in active BP
model, which suggests that COL17 NC16A-reactive CD4* T cell
is a promising therapeutic target for BP.

2. Materials and methods
2.1. Mice

C57BL/6J mice were purchased from Clea Japan. Rag-2~/~/
COL17™/=P* mice which carry the homozygous null muta-
tions of both the Rag-2 and mouse Col17 genes and the trans-
gene of human COL17 were generated by crossing Rag-2~/~
mice (C57BL/6 background) with COL17™/=h* (COL17-hu-
manized) mice (C57BL/6 background) as described previous-
ly [10]. All animal procedures were conducted according to
guidelines of the Hokkaido University Institutional Animal
Care and Use Committee under an approved protocol.

2.2. Induction of active BP by adoptive transfer of
immunized splenocytes

Immunization of WT mice by hCOL 17-expressing Tg skin graft
was performed according to the method reported previously
[10, 23]. After the confirmation of anti-hCOL17 IgG produc-
tion at 5 weeks after skin grafting by indirect immunofluo-
rescence (IF) analysis using normal human skin, splenocytes
were isolated and pooled from several Tg skin-grafted immu-
nized WT mice and administered into Rag-2~/~/COL17-hu-
manized mice by intravenous injection into the tail vain at
1.5-2.0x 108 splenocytes in 500 pL PBS per mouse [10, 24].

2.3. Evaluation of active BP model mice

Weekly, the recipient mice were examined for general con-
dition and cutaneous lesions (i.e., erythema, blisters, ero-
sions, crusts and hair loss). Extent of skin disease was
scored as follows: 0, no lesions; 1, lesions on less than 10%
of the skin surface; 2, lesions on 10-20% of the skin surface;
3, lesions on 20-40% of the skin surface; 4, lesions on 40-60%
of the skin surface; 5, lesions on more than 60% of the skin

"surface, as previously described [10]. Serum samples were

also obtained from recipient mice weekly and assayed by in-
direct IF microscopy and hCOL17 NC16A ELISA as previously
described [10]. The ELISA index value was defined by the fol-
lowing formula: index=(ODgsp of tested serum-—ODysq Of
negative control)/(OD4sso of positive control—0Dys, of
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negative control)=x100 [10]. Biopsies of lesional skin were
obtained for light microscopy (H&E), and for direct IF using
FITC-conjugated antibody against mouse 1gG (Jackson Immu-
noResearch Laboratories, West Grove, PA) and C3 (Cappel;
Valeant Pharmaceuticals, Costa Mesa, CA).

2.4. Isolation of CD4" T cells or CD45R" B cells from
splenocytes in mice

To examine the pathogenic role of CD4* T cells in active BP
model, we isolated CD4* T cells from splenocytes of Tg
skin-grafted WT mice by using a CD4* T cell isolation kit (Mil-
tenyi Biotec, Bergisch Galdbach, Germany). 0.5 to 8x107
CD4* T cells were mixed with 2.0x108 naive splenocytes
from WT mice and adoptively transferred to Rag-2~/~/
COL17-humanized mice. In another experiment, CD45R* B
cells were isolated from Tg skin-grafted WT mice by using
CD45R MicroBeads (Miltenyi Biotec). 0.4x108 of CD45R* B
cells were transferred to Rag-2~/~/COL17-humanized mice.
The isolation of CD4* T cells and CD45R* B cells was confirmed
by flow cytometric analysis on FACSAria (BD Bioscience Phar-
mingen) using monoclonal antibodies purchased from BD Bio-
sciences Pharmingen: H129.19-FITC (anti-CD4) and RA3-6B2-
PE (anti-CD45R/B220).

2.5. In vivo monoclonal antibody treatment

Rag-2/~/COL17-humanized recipients that were adoptively
transferred with immunized splenocytes were intraperitoneal-
ly injected with 500 ug hamster monoclonal antibody MR1 spe-
cific to mouse CD40L (Taconic Farms, Hudson, NY) or an
equivalent amount of control hamster 1gG (Rockland immuno-
chemicals, Gilbertsville, PA) at days 0, 2 and 6 after the adop-
tive transfer of immunized splenocytes as previously described
[21], with some minor modifications. In a delayed treatment
experiment, MR1 was injected at days 13, 16 and19 after the
adoptive transfer. Some recipient mice were injected with
500 ng of MR1 just once on one of days 1 to 5 after the adoptive
transfer, respectively. To investigate the immune responses in
active BP model modulated by early single administration of
MR1, 1000 pg of MR1 was injected into recipient mice at day
0 soon after the adoptive transfer. All treated mice were care-
fully observed for at least ten weeks after the adoptive
transfer.

2.6. ELISPOT assay

ELISPOT assay was performed as previously described [10,
24]. Polyvinylidene-difluoride-bottomed 96-well multi-
screen plates (Millipore) were coated with 30 pg/mL of re-
combinant hCOL17 NC16A protein. Splenocytes isolated
from the Rag-2~/~/COL17-humanized recipients were incu-
bated on the plate at 37 °C in a 5% CO, incubator for 4 h.
lgG bound to the membrane was visualized as spots, using
alkaline-phosphatase-conjugated anti-mouse 1gG antibody.
The number of spots was counted using the ImmunoSpot S5
Versa Analyzer (Cellular Technology Ltd., Shaker Heights,
OH), and the frequency of anti-hCOL17 NC16A IgG-
producing B cells was defined as the number of spots in 10°
mononuclear cells.

2.7. Statistical analysis

Data expressed as mean +standard error of means were ana-
lyzed using Student's t-test. We considered P values of less
than 0.05 as significant.

3. Results

3.1. CD4" T cells are required for the production of
pathogenic antibody in active BP model

We previously reported that CD4* — but not CD8* — T cells
are crucial for the production of anti-hCOL17 IgG and for
the development of the BP phenotype in active BP model
[10]. To further analyze the contribution of CD4* T cells,
we additionally conducted two experiments. First, mixed
transfer into Rag-2~/~/COL17-humanized mice of 4 or
8x107 CD4* T cells from WT splenocytes immunized by
hCOL17-expressing Tg skin-grafting and 2x 108 naive spleno-
cytes from unimmunized WT mice produced high titers of
anti-hCOL17 NC16A IgG and severe BP skin changes associat-
ed with linear deposition of igG at the BMZ. In contrast, re-
ducing the number of CD4* T cells (0.5x107) failed to
produce such titers and skin changes (n=3, respectively;
Fig. 1). Second, we isolated CD45R* B cells from immunized
splenocytes and adoptively transferred 0.4x108 of those
cells into Rag-27/~/COL17-humanized recipients (n=3),
which produced quite low levels of anti-hCOL17 NC16A 1gG
(mean index value of ELISA at day 9: 3.28) and no skin
changes (not shown). These results show that the production
of anti-hCOL17 NC16A IgG by B cells and the development of
BP skin changes in active BP model depend heavily on immu-
nized CD4* T cells.

3.2. Anti-CD40L monoclonal antibody suppresses
the production of anti-hCOL17 IgG and skin changes
in active BP model

To investigate the precise mechanism of the activation of B
cells by immunized CD4* T cells in active BP model, we
assessed the role of CD40-CD40L interaction. Rag-27/~/
COL17-humanized recipients were injected intraperitoneal-
ly with 500 pg of monoclonal antibody MR1 specific to
mouse CD40L or an equivalent dose of hamster IgG as a con-
trol on days 0, 2 and 6 after the adoptive transfer of immu-
nized splenocytes (n=6, respectively). All the control Rag-
27/~/COL17-humanized recipients produced high titers of
1gG against BMZ of normal human skin, which reflects the
presence of anti-hCOL17 IgG, and those against hCOL17
NC16A, as previously reported [10]. In contrast, the produc-
tion of those antibodies was almost completely inhibited in
all the mice that were injected with MR1, and the inhibitory
effect persisted for more than 10 weeks (Figs. 2A, B). The
control mice developed patchy hair loss associated with ery-
thema around day 14 after the adoptive transfer. Then, blis-
ters and erosions spontaneously developed in the depilated
areas on the trunk (Fig. 3A). Disease severity, scored by
the percent of skin surface with the BP phenotype [10, 25],
gradually increased, plateauing 7 weeks after the transfer
in the control mice (Fig. 3G). In contrast, none of the MR1-
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Fig. 1 Immunized CD4" T cells can activate naive B cells to produce anti-hCOL17 NC16A IgG in vivo. (A) CD4" T cells isolated from
WT splenocytes immunized by hCOL17-expressing Tg skin-grafting were mixed with naive splenocytes from untreated WT mice, and
were adoptively transferred into Rag-2"/~/COL17-humanized mice (n=3, respectively). Mice transferred with 4 or 8x107 immunized
CD4" T cells mixed with naive splenocytes produce significantly higher levels of anti-hCOL17 NC16A IgG than with 0.5x107 CD4* T
cells mixed with naive splenocytes (*P<0.05, **P<0.01). Mice transferred with 0.5x 107 of immunized CD4* T cells and naive spleno-
cytes show no skin changes (B) or deposition of IgG (C). In contrast, mice transferred with 8x107 immunized CD4* T cells and naive
splenocytes develop severe BP skin changes (D) associated with linear deposition of IgG at the BMZ (E).

treated mice developed any skin lesions (Figs. 3D, G). Histo-
pathological analysis of the skin revealed the dermal-epidermal
separation that is associated with mild inflammatory cell infil-
tration in control mice (Fig. 3B), whereas there were no histo-
pathological changes in MR1-treated mice (Fig. 3E). Direct IF
analysis of lesional skin revealed linear deposition of IgG
(Fig. 3C) at the BMZ in the control mice, whereas IgG deposi-

the production of anti-hCOL17 IgG and skin changes in active
BP model.

3.3. Anti-CD40L monoclonal antibody shows no effects
in mice with established active BP

tion was absent or faint in the MR1-treated mice (Fig. 3F).
We also examined the number of splenocytes which produced
anti-hCOL17 NC16A I1gG by enzyme-linked immunospot assay
at day 9. In the control, 226.5+25.0 cells in 10° splenocytes
produced anti-hCOL17 NC16A IgG, whereas only 9.0+3.0
cells in 10° splenocytes produced them in the mice treated
with MR1 (n=3, respectively; Fig. 3H). Thus, preventive and
repetitive administration of MR1 can continuously suppress

To examine the effect of MR1 in mice with producing IgG
against hCOL17 and hCOL17 NC16A, 500 ug of MRt or the
equivalent dose of normal hamster IgG were administered
into active BP model at days 13, 16 and 19 after the adoptive
transfer of splenocytes (n=4, respectively). There were no
significant differences in the titers of anti-hCOL17 or anti-
hCOL17 NC16A IgG, nor in disease severity in both groups
at more than 10 weeks after the adoptive transfer (Fig. 4).
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Fig.2  Anti-CD40L monoclonal antibody strongly suppresses the production of anti-hCOL17 and anti-hCOL17 NC16A IgG and in active
BP model. Rag-2"/~/COL17-humanized recipients were injected intraperitoneally with monoclonal antibody specific to mouse CD40L
(MR1) or the equivalent dose of control hamster IgG on day 0, 2 and 6 after the adoptive transfer of immunized splenocytes (n=6,
respectively). All the Rag-27/~/COL17-humanized recipients that were injected with control 1gG produce significantly high titers of
IgG against hCOL17 (BMZ of normal human skin) and hCOL17 NC16A, while the production of those antibodies is almost completely
inhibited in all mice injected with MR1 (A, B) P<0.01 from day 9 to day 70 in both graphs.




Fig. 3

G
-8 anti-CD40L Ab (n=6)

-&~-Control IgG (n=6)

w
1

Disease severity
- N
1 3

0 —bo——a8—8—8—8—&—&—{
3 4 8

0 1 2 5 6 7 3 10
Time after the adoptive transfer (week)

Control I1gG

Anti-CD40L Ab

226.6125.0 9.0+3.0
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blisters and erosions spontaneously develop in the depilated areas on the trunk (n=6). (B) Histopathologic analysis of the skin reveals
the dermal-epidermal separation associated with mild inflammatory cell infiltration in the control group. (C) Direct IF analysis of
lesional skin demonstrates linear deposition of IgG at the BMZ in control mice. None of the MR1-treated mice demonstrate any skin
lesions (D) or histopathologic changes (E) (n=6). (F) No or faint IgG deposition is detected in the treated mice. (G) Disease severity,
which was scored by the percentage of affected skin surface area, gradually increases and plateaus at 7 weeks after the adoptive
transfer in the control mice, whereas that is stably zero in the MR1-treated mice (P<0.05 at day 14, P<0.01 from day 21 to day
70) (H) Enzyme-linked immunospot assay using recombinant hCOL17 NC16A protein at day 9 after the adoptive transfer. In contrast
to the control, very few spots are seen in the well of the MR1-treated splenocytes. The number of anti-hCOL17 NC16A lgG-producing B
cells is displayed per 105 cells in the spleen (n=3, respectively).

These findings show that delayed administration of MR1 fails
to diminish the disease activity in established active BP
mice.

3.4. Activation of anti-hCOL17 NC16A IgG-producing
B cells via CD40—-CD40L interaction is completed
within five days after the adoptive transfer of
immunized splenocytes

Since the delayed administration of MR1 failed to diminish
the disease activity, we considered that the timing of T-B
interaction via the CD40-CD40L pathway after the adoptive
transfer needed to be elucidated. Single injections of
1000 pg of MR1 at days 1 to 5 after the adoptive transfer of
immunized splenocytes into the Rag-2~/~/COL17-humanized
recipients were administered (n=4, respectively). Injection
of MR1 at day 1, day 2 or day 3 strongly inhibited the produc-
tion of anti-h COL17 NC16A IgG in recipients (Fig. 5A). The
effects of MR1 successively decreased if the treatment was
initiated at day 4 or day 5. Anti-hCOL17 NC16A 1gG titer
and disease severity of the recipients treated at day 5
were similar to those in active BP model without MR1 treat-
ment (mean index value of anti-hCOL17 NC16A IgG at day 9:
765.3 vs. 918.97, P>0.05; mean disease severity at day 35:
3.00vs. 2.16, P>0.05) (Figs. 2B, 3G and 5). Thus, the activa-
tion of anti-hCOL17 NC16A IgG-producing B cells via CD40-

CDA40L interaction is completed within 5 days after the adop-
tive transfer of immunized splenocytes in active BP model.

3.5. Anti-hCOL17 IgG restored after the early single
administration of anti-CD40L monoclonal antibody
do not contain anti-hCOL17 NC16A IgG, and only
weak pathogenicity is shown

The results above suggested that the early short-term effect
of MR1 was sufficient to inhibit the production of anti-
hCOL17 NC16A 1gG. To observe the phenotypic changes in ac-
tive BP model without the presence of anti-hCOL17 NC16A
1gG, we induced the transient immunosuppressive condition
in Rag-2~/~/COL17-humanized recipients by single injections
of 1000 ug of MR1 at day 0 (n=6). The production of anti-
hCOL17 1gG in treated mice gradually recovered to levels
similar to those in the control mice without MR1-treatment
at 7 weeks after the adoptive transfer (Fig. 6A), but the re-
stored IgG did not contain anti-hCOL17 NC16A IgG

(Fig. 6B). The disease severity of the treated mice slowly in-
creased but was significantly lower than that of the controls
(Fig. 6C). Each of the IgG subclasses (IgG1, IgG2b, IgG2c,
1gG3) against hCOL17 showed similar titers between an
MR1-treated group and an untreated group at 10 weeks
after the adoptive transfer (not shown). Although 3 out of
6 treated mice showed distinct deposition of C3, they




6 H. Ujiie et al.
A .
-8-anti-CD40L Ab delay (n=4)
-&~Control active BP model (n=4)
)
=
L
e C
% -E-anti-CD40L Ab delay {n=4)
~ -&-Control active BP model (n=4)
3 5
=
o
= e z 4
0123456789105} o
Time after the adoptive transfer (week) § 31
o
5 2
-8~ anti-CD40L Ab delay (n=4) 2
~&~-Control active BP model (n=4) 1-
O B T T T T T T T
o 1 2 3 4 5 6 7 8 9 10

Human NC16A ELISA index (x102)

3 4 5 6 7
Time after the adoptive transfer (week)

Time after the adoptive transfer (week)

Fig. 4  Delayed treatment with anti-CD40L monoclonal antibody shows no effects in mice with established active BP. MR1 or control
hamster igG was injected into active BP model at days 13, 16 and 19 after the adoptive transfer of immunized splenocytes (n=4, re-
spectively). There are no significant differences in the titers of anti-hCOL17 1gG (A) or anti-hCOL17 NC16A 1gG (B), and in disease se-

verity (C) between the groups. P>0.05.

developed only mild skin changes (Fig. 6D). Thus, anti-
hCOL17 IgG restored after the transient blockade of CD40—
CD40L interaction contain no anti-hCOL17 NC16A 1gG and
show only weak pathogenicity. This strongly suggests that
hCOL17 NC16A-reactive CD4* T cells play a crucial role in
the development of BP lesions in active mouse model.

4. Discussion

This study has demonstrated the pivotal role of COL17
NC16A-reactive CD4* T cells in BP induction for the first
time by using active BP mouse model. We first demonstrated
the pathogenic role of CD4" T cells in active BP model by
showing that CD4* T cells immunized by hCOL17-expressing
Tg-skin grafting could activate unimmunized B cells to pro-
duce anti-hCOL17 NC16A I1gG. We also showed that immu-
nized CD45R* B cells needed the coexistence of activated
CD4* T cells to produce those IgG. These results suggest
that the interaction between activated hCOL17-reactive T
cells and B cells is essential for the production of anti-
hCOL17 1gG. Administrations of anti-CD40L monoclonal anti-
body have previously demonstrated the strong suppression
of humoral immune responses against autoantigens in some

T-cell-mediated antibody-induced autoimmune animal
models [20-22, 26]. Therefore, we considered that anti-
CD40L monoclonal antibody may be utilized for the modula-
tion of immune responses in active BP model.

Blockade of CD40-CD40L interaction by anti-CD40L
monoclonal antibody (MR1) continuously suppressed the pro-
duction of anti-hCOL17 NC16A IgG and the development of
the BP phenotype in active BP model when MR1 was repeti-
tively administered close to the time of adoptive transfer
of immunized splenocytes. Although the production of anti-
hCOL17 IgG detected by indirect IF study using normal
human skin was not completely suppressed by MR1 treat-
ment, ELISA revealed an absence of anti-hCOL17 NC16A
IgG, resulting in the prevention of BP skin changes.
Enzyme-linked immunospot assay demonstrated quite a
small number of anti-hCOL17 NC16A IgG-producing B cells
in the spleens of the MR1-treated mice.

Because the crucial role of B cell activation via CD40-
CD40L interaction was elucidated at the initial stage of ac-
tive BP model, we then tried to examine the effects of MR1
at the late stage of active BP model. Since the model starts
to produce anti-hCOL17 and anti-hCOL17 NC16A 1gG within a
week after the adoptive transfer if no immunosuppressive
treatment is added [10], we injected MR1 at days 13, 16
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Activation of anti-hCOL17 NC16A IgG-producing B cells via CD40-CD40L interaction is established within 5 days after the

adoptive transfer of immunized splenocytes. Rag-2~/~/COL17-humanized recipients were injected with MR1 just once between
days 1 and 5 after the adoptive transfer of immunized splenocytes (n=4, respectively). (A) MR1-treatments at day 1, day 2 or day
3 significantly suppress the titers of anti-hCOL17 NC16A IgG at day 9 compared with those at day 5 (*P<0.01). The effect of MR1 gradually
decreases if the treatment is initiated late. The IgG titers at day 9 of the mice treated at day 5 are similar to those in active BP model
without MR1 treatment (Fig. 2B) (mean index value: 765.3 vs. 918.97, P>0.05). (B) Skin changes are strongly suppressed if MR1-
treatment is initiated before day 3 after the adoptive transfer. Disease severity of the recipients treated at day 5 is similar to those in
active BP model without MR1 treatment (Fig. 3G) (mean disease severity at day 35: 3.00 vs. 2.16, P>0.05).

and 19 after the adoptive transfer (delayed treatment). No
therapeutic effects were observed in mice with delayed
treatment. This result indicates that the CD40-CD40L inter-
action is not required once the disease is established in ac-
tive BP model. Similarly, delayed MR1-treatment was
unable to suppress the titer of pathogenic antibody in an
established pemphigus vulgaris model [21]. Meanwhile,
delayed treatment can prevent relapses of ongoing diseases
or can halt disease progression in models of multiple sclero-
sis [27], lupus nephritis [28, 29] and myasthenia gravis [20].
A possible mechanism of those therapeutic effects is the in-
hibition of epitope spreading. In experimental autoimmune
encephalomyelitis, anti-CD40L monoclonal antibody treat-
ment acts in part by inhibiting the expansion and/or differ-
entiation of Th1 effector cells specific to relapse-
associated epitopes [27]. Epitope spreading has also been
reported in BP patients [30-32] and in an hCOL17-
expressing Tg skin-grafting mouse model [33] although it is
still unclear whether antibodies against hCOL17 - other
than those against the NC16A domain — are pathogenic.
Hence, the efficacy of anti-CD40L antibody treatment on
epitope spreading in BP seems an interesting line of
investigation.

Furthermore, we revealed that the activation of anti-
hCOL17 NC16A IgG-producing B cells via CD40-CD40L inter-
action was completed within 5 days after the adoptive trans-
fer of immunized splenocytes. This suggests that the short-
term effect of MR1 at the early stage of active BP is suffi-
cient to inhibit the production of anti-hCOL17 NC16A IgG.
Therefore, we tried to investigate the immune responses at
the late stage of active BP model under the condition of no
anti-hCOL17 1gG by means of early administration of a single
dose of MR1. As shown in Figs. 6A and B, the production of

anti-hCOL17 NC16A IgG was durably suppressed by the
early single MR1-treatment, while the production of anti-
hCOL17 1gG gradually recovered. Previous study using active
pemphigus vulgaris model demonstrated that MR1-
treatment could induce tolerance to desmoglein 3 in the
treated mice and the tolerance was transferable [21]. Our
results suggest that the MR1-treatment induced immune tol-
erance to some antigens including hCOL17 NC16A in the
treated mice, which induced the durable suppression of
the anti-hCOL17 NC16A IgG production. Some other
hCOL17-reactive CD4* T cells which escaped the tolerance-
induction might activate B cells as the effect of the MR1-
treatment wore off. Of note, the treated mice developed
only mild skin changes despite the high titers of restored
anti-hCOL17 1gG in the late stage. In this setting, some
mice showed the distinct deposition of complements as
well as IgG at the BMZ but developed only mild skin changes.
Complement activation is considered important in the patho-
genesis of BP [34-36], while anti-hCOL17 IgG from BP patients
has been proven to reduce the content of hemidesmosomal
COL17 and weaken the adhesion of hemidesmosomes to the
lamina densa without complements [37]. Thus, the signifi-
cance of complement activation in the pathogenesis of BP re-
mains controversial. As we reported previously [10],
untreated active BP model demonstrates a trend in which
the disease severity starts to decrease around 12 weeks after
the adoptive transfer. The results shown in Fig. 6 demonstrate
that anti-hCOL17 NC16A IgG is the major pathogenic antibody
and able to cause severe skin changes for more than 10 weeks
after the adoptive transfer. In addition, they indicate that
some antibodies against hCOL17 other than against the
NC16A domain have weak pathogenicity and partially sus-
tain the disease activity in the late stage of active BP
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Fig. 6  Early single dose of anti-CD40L monoclonal antibody inhibits the production of anti-hCOL17 NC16A IgG, while the production
of anti-hCOL17 IgG is recovered in the late stage. 1000 pg of MR1 was injected into Rag-2~/~/COL17-humanized recipients at day
0 just once (n=6). (A) Anti-hCOL17 IgG titer gradually increases and reaches to a level similar to that of control active BP model at
7 weeks after the adoptive transfer (P<0.01 at days 9, 14 and 21; P<0.05 at days 28, 35 and 42; P>0.05 at days 0, 49, 56, 63 and
70). (B) Anti-hCOL17 NC16A IgG titers are significantly lower in the treated mice than those in the controls (P<0.01 at days 9, 14,
21 and 28). (C) Disease severity of the treated mice slowly increases but is significantly lower than that of the controls (P<0.05 at
day 14; P<0.01 from day 21 to 70). (D) Some of the treated mice show the distinct deposition of C3 and have developed just a
mild skin change (Fig. 6D).
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Fig. 2. Indirect immunofluoresence for collagen VII autoantibodies on normal skin (a) and collagen VII deficient skin (b) with serum from EBA patient, 200x.

We agree with the authors that more studies are indicated to
determine the use of this test for monitoring disease activity in EBA
patients. Similar studies in pemphigus patients with recombinant
desmoglein 1 and 3 ELISA’s reveal that the sera with identical titers
of antibodies by IIF give variable results with ELISA [7]. Unless high
titer sera are diluted, saturation of antibody-antigen reactions in
ELISA may lead to false low positive ELISA index values to begin
with. Such sera may not appear to show a decline in ELISA index
values with treatment response [8]. We also have observed, in
some pemphigus sera, that even though the IIF titers show a
decline, ELISA index values still remain high. Therefore, we may
have to use this ELISA with caution to monitor the disease.
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Letter to the Editor

CYP4F22 is highly expressed at the site and timing of onset of
keratinization during skin development
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Autosomal recessive congenital ichthyoses (ARCI) include
several subtypes: harlequin ichthyosis (HI), lamellar ichthyosis
(LI) and congenital ichthyosiform erythroderma (CIE). To date, six

causative genes have been identified in ARCI patients: ABCA12,
TGM1, NIPAL4, CYP4F22, ALOXE3 and ALOX12B [1]. The localization
of transglutaminase 1, ABCA12 and 12R-lipoxygenase have been
analyzed using samples from patients and model mice [1].
However, as for NIPAL4, CYP4F22, and lipoxygenase-3, neither
localization nor function has been fully clarified yet. Herein, we
investigate the expression pattern and localization of NIPAL4,
CYP4F22 and lipoxygenase-3 in developing human epidermis and
primary cultured normal human keratinocytes.

By quantitative reverse transcription (RT)-PCR analysis, at 10
and 14 weeks EGA, mRNA of NIPAL4, CYP4F22 and ALOXE3 was
hardly expressed (Fig. 1A). The CYP4F22 mRNA expression at 18



