[1]. Among these NS3/4A PIs, telaprevir, boceprevir, SCH446211, danoprevir (ITMN-191), nalaprevir (SCH900518), and TMC435 are now under clinical trials [1, 3–7]. In PROVE1 and PROVE2 studies [3, 4] undertaken in North America and Europe, the SVR rate was favorable (67 and 69%, respectively) in a triple therapy regimen including telaprevir. In addition, some studies have suggested that shortening of treatment duration may be possible for patients who achieve a rapid virologic response (RVR) [8, 9]. However the sole use of STAT-C drugs, such as PIs, promotes production and selection of drug-resistant variants in patients experiencing viral rebound during treatment [3, 10, 11] as well as in HCV replicon experiments [11, 12]. Therefore, these drugs should be used in combination with the PEG-IFN/RBV to prevent the appearance of drug-resistant variants. However, Kuntzen et al. [13] demonstrated the presence of these drug-resistant variants in high frequencies (8.6–16.2%) by population-based sequencing in patients not treated with the drugs [1, 13]. Gaudieri et al. [14] have suggested that regions of NS3 protease and NS5B polymerase are likely to be under HLA immune pressure and therapeutic selection, and that drugresistant variants may occur naturally to escape the immune system. These observations seem quite astonishing and troubling, since a substantial number of patients may not respond to the new therapies such as STAT-C drugs. In the present study, to assess the prevalence of NS3 mutations conferring PI resistance in HCV genotype 1b-infected Japanese patients who had not been previously treated with PIs, as well as to assess the influence of those mutations in response to PEG-IFN/RBV therapy, the dominant HCV-NS3 sequences were determined in 261 HCV-1b patients before starting the PEG-IFN/RBV therapy. #### Methods ### Patients Serum samples were acquired from 261 HCV genotype 1b-infected adult Japanese patients before combination therapy with PEG-IFN (PEGINTRON®, Schering-Plough, Tokyo, Japan) plus RBV (REBETOL®, Schering-Plough) between 2004 and 2008 at the University of Yamanashi, Musashino Red Cross Hospital and Kanazawa University. The therapy was administered according to the standard PEG-IFN/RBV treatment protocol established for Japanese patients by a hepatitis study group of the Ministry of Health, Labor, and Welfare, Japan. Specifically, the patients were subcutaneously administered PEG-IFN α -2b, 1.5 μ g/kg body weight, once weekly and RBV 600–800 mg daily per os for 48 weeks. These patients were not infected with human immunodeficiency virus (HIV). The study was approved by the ethics committees of all participating universities and the hospital, and the protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the Institutional Review Board at Massachusetts General Hospital. Written informed consent was obtained from each study participant. Amplification and sequencing of full-length HCV genomes Viral loads were determined using the Amplicor HCV RNA kit, version 2.0 (Roche Diagnostics, Tokyo, Japan) or the Cobas TaqMan test (Roche Diagnostics). HCV RNA was extracted from pretreatment serum samples by the AGPC method using Isogen (Wako, Osaka, Japan) according to the manufacturer's protocol. Complementary DNA was synthesised using Superscript II (Invitrogen, Tokyo, Japan) and random primers (Invitrogen), and then amplified by two-step nested PCR using the primers listed in Supplementary Table 1. All samples were initially denatured at 95°C for 7 min, followed by 40 cycles of amplification with denaturation at 95°C for 15 s, annealing at 55°C for 15 s, and extension at 72°C for 45 s using the BD Advantage 2 PCR Enzyme system (BD Biosciences Clontech, CA, USA). PCR amplicons were directly sequenced using BigDye Terminator version 3.1 (ABI, Tokyo, Japan) and universal M13 forward/reverse primers using an ABI prism 3130 sequencer (ABI). # Sequence alignment and analysis Sequences were determined in both directions, particularly for the ambiguous stretches, were assembled using the Vector NTI software (Invitrogen), and base-calling errors were corrected following the inspection of chromatograms. If mixed bases were detected as two different chromatogram peaks at the same residue, only the dominant base was called after evaluation of all overlapping fragments. A consensus sequence was generated from the alignment on the basis of the most common amino acid at each site. ## Determination of PI resistance mutations Multiple viral NS3 mutations were observed in amino acid positions reported to confer PI resistance among 261 patients: V36, Q41, F43, T54, V55, Q80, R109, I153, R155, A156, D168, V170, and M175. NS3 amino acid mutations with proven PI resistance in previously published studies (Table 1) were designated as resistance proven mutations (e.g., V36M/A). Mutations in the PI-resistance site not known to confer drug resistance were designated resistance unproven mutations (e.g., V36I). Patients were allocated to two groups according to the presence of PI-resistance mutations (including resistance unproven mutations), and clinical characteristics including HCV RNA levels and responses to PEG-IFN/RBV therapy were compared. To assess the influence of PEG-IFN/RBV therapy on NS3 mutational status, posttreatment HCV-NS3 sequences in 39 of 58 non-SVR patients were also examined. #### Statistical analysis Statistical differences in the data, including all available patients' demographic, biochemic, hematologic, and virologic data such as sequence variation factors, were determined among the various groups by Student's t test or Mann–Whitney U test for numerical variables and Fisher's exact probability test for categorical variables. #### Results Prevalence of dominant PI-resistance-associated nonstructural 3 mutations in untreated patients Figure 1 shows the frequency of substitutions in 261 patients for each of 181 NS3 protease amino acid residues compared to the consensus sequence. A total of 41 resistance proven mutations were detected in 35 (13.4%) patients: T54S (14 patients, 5.4%), Q80K (1 patient, 0.4%), I153V (22 patients, 8.4%), D168E (4 patients, 1.5%), T54S plus I153V double mutation (4 patients, 1.5%), and I153V plus D168E double mutation (2 patients, 0.8%). The mutation number increased to 54 in 47 (18.0%) patients when resistance unproven mutations were included: V36I (2 patients, 0.8%), I153L (11 patients, 4.2%), and I153V plus V36I double mutation (2 patients, 1.5%). Double mutations were found in 7 patients (2.7%) (Table 1). Q80L was observed in 47 (18%) patients but these were excluded from consideration because a previous study demonstrated that this mutation does not confer resistance [15]. All mutations observed in this study would confer low- to moderate-level PI resistance according to previous studies [6, 15–19]. No mutations conferring high-level resistance such as R155 or A156 [11, 17, 19-22] were observed. Clinical characteristics of patients with PI-resistance mutations Table 2 presents the characteristics of patients classified according to the presence of PI-resistance mutations Table 1 Prevalence of PI-resistance-associated NS3 mutations | Drug-re | sistance mutations desc | | Detected resistance mutations | | | |----------------|---------------------------|--|---------------------------------------|----------------------------------|--| | NS3
residue | Resistance
mutations | Drugs | References | Genotype 1b ($N = 261$), (%) | | | V36 | A, M, L, G, C | Telaprevir, Boceprevir | [1, 3, 4, 10, 11, 19, 31, 37] | I × 2 (0.8) | | | Q41 | R | ITMN-191, Boceprevir | [19] | | | | F43 | S, C | ITMN-191, Boceprevir, Telaprevir, TMC435 | [15, 19] | | | | T54 | A, S | Telaprevir, Boceprevir, SCH900518 | [1, 3, 10, 11, 19, 20, 31, 38] | $S \times 14 (5.4)$ | | | V55 | A | Boceprevir | [1] | | | | Q80 | R, K | TMC435 | [6, 15] | $K \times 1 (0.4)$ | | | R109 | K | SCH446211 | [17] | | | | I153 | V | SCH446211 | [17] | $V \times 22$ (8.4), L ×11 (4.2) | | | R155 | K, T, I, M, G, L, S,
Q | Telaprevir, Boceprevir, ITMN-191,
BILN2061, TMC435 | [1, 3, 4, 6, 10, 11, 15, 19, 20] | | | | A156 | S, T, V, I, G | Telaprevir, Boceprevir, ITMN-191,
BILN2061, SCH446211, TMC435,
SCH900518 | [1, 3, 4, 10, 11, 15, 17, 19, 20, 38] | | | | D168 | A, V, E, N, T, H | BILN2061, ITMN-191, TMC435 | [6, 15, 20] | $E\times 4\ (1.5)$ | | | V170 | A | Telaprevir, Boceprevir | [1, 19, 20] | | | | M175 | L | Boceprevir | [39] | | | | Total nu | mber (%) of patients v | 35 (13.4) | | | | | Total nu | mber (%) of patients v | 47 (18.0) | | | | Amino acid mutations conferring PI resistance in the literatures and those observed in PI-treatment-naive patients in this study are indicated. Bold indicates resistance proven mutations, and the others indicate resistance unproven mutations Double mutations found were as follows: V36I and I153V \times 1, T54S and I153V \times 4, I153V and D168E \times 2 (including resistance unproven mutations). Age, sex ratio, body mass index, alanine aminotransferase (ALT) levels, serum albumin, platelet count, and fibrosis stage did not differ between the NS3 mutation and wild-type groups. No significant difference was observed between the two groups in the parameters of PEG-IFN/RBV treatment response, HCV sequence variations in interferon sensitivity determining region (ISDR), Core 70, interferon plus ribavirin resistance-determining region (IRRDR), or interleukin 28B (IL28B) single nucleotide polymorphism (SNP) (rs8099917; T/G and G/G vs. T/T) [23–30]. These clinical variables were also compared between the mutation group defined as resistance proven mutations and the wild-type group, but no notable differences were observed. Unimpaired in vivo fitness of viral strains with resistance mutations Because most PI-resistance
mutations described till date have been associated with reduced replicative capacity of varying degrees [1, 10, 11, 13, 17, 20–22, 31, 32], we examined viral replication levels in patients with drugresistance mutations (Fig. 2). The estimated P value indicated no significant difference between the mutation (median 1,500 KIU/ml) and wild-type (median 1,800 KIU/ml) groups (P=0.69). The results indicate that drug-resistant HCVs were not necessarily impaired in their ability to replicate in vivo. However, patients with double mutations (N=7) tended to have low viral loads (median 1,200 KIU/ml) (P=0.09). Resistance mutations and virologic response to PEG-IFN/RBV therapy To determine the difference in virologic response to PEG-IFN/RBV therapy according to the PI mutation, frequency of HCV RNA levels below detection at 4 weeks (rapid viral response, RVR) and 12 weeks (complete early viral response, cEVR), and SVR rate (%) were investigated in each group. The frequency of HCV RNA levels below detection at 4 and 12 weeks was 14 and 50%, respectively, in the mutation group, and was 11 and 46%, respectively, in the wild-type group. The SVR rate was 48 and 40% in the mutation and wild-type groups, respectively (P=0.38). No significant difference was observed between the two groups in any of the indexes investigated (Table 2). The time-dependent viral clearance rate during PEG-IFN/RBV therapy was estimated in 133 patients including 25 patients (19%) with PI-resistance mutations available for the analysis. Kaplan–Meier analysis demonstrated that HCV clearance did not differ between the two groups with and without resistance mutations (log-rank test, P=0.30) (Fig. 3). Changes in nonstructural 3 amino acid sequence diversity during PEG-IFN/RBV therapy Full-length NS3 protease sequences were determined in 39 non-SVR patients after PEG-IFN/RBV therapy. A single amino acid change at resistance-associated sites in two patients was observed. In one patient, isoleucine (Ile) at position 153 changed to valine (Val), and glutamic acid (Glu) changed to aspartic acid (Asp) at position 168 in the second (Fig. 4). At the nucleotide level, ATC (Ile) changed to GTC (Val) in I153V, and GAA (Glu) changed to GAC (Asp) in E168D. Both mutations were caused by one nucleotide exchange. No other changes were observed in the other 37 patients. #### Discussion Here we report that in 18% (47/261) HCV genotype 1b-infected patients who had not been previously treated with NS3 PIs, the viral genome contained dominant amino acid mutations within the NS3 PI-resistance sites. Even after confining the data to established PI-resistance mutations, the mutation rate was still significant in 13.4% (35/261). No clinical differences were observed between patients Fig. 1 Frequency of polymorphic mutations for each of the 181 NS3 protease amino acid residues in 261 patients. *Arrowheads* indicate the sites reported to confer PI resistance. *Dark bars* denote the amino acid variations at the resistant sites in this study. *80, we detected one resistant mutation (Q80K) and 47 (18%) non-resistant variations (Q80L) at the 80th residue **Table 2** Characteristics of patients with or without HCV genomes harboring drug-resistance mutations | Characteristics | Mutation type $(N = 47)$ | Wild-type ($N = 214$) | P value | |--------------------------------------|--------------------------|-------------------------|---------| | Patients' characteristics | | | | | Age, median (range) | 59 (46–72) | 57 (19–77) | 0.17 | | Male, no. (%) | 26 (55) | 112 (52) | 0.70 | | BMI, median (range) | 23.2 (15.5–31.9) | 22.8 (16.1–31.9) | 0.41 | | ALT IU/ml | 81.3 ± 72.6^{a} | 74.8 ± 51.9 | 0.93 | | Serum albumin g/dl | 4.00 ± 0.37 | 4.01 ± 0.36 | 0.81 | | Platelet count $\times 10^4/\mu l$ | 15.8 ± 4.3 | 14.5 ± 4.8 | 0.18 | | HCV RNA KIU/ml, median (range) | 1,500 (58-6,310) | 1800 (28–15,849) | 0.69 | | Fibrosis, no. (%) | | | 0.97 | | F0 | 0 (0) | 7 (3) | | | Fl | 23 (50) | 89 (42) | | | F2 | 9 (20) | 52 (24) | | | F3 | 9 (20) | 40 (19) | | | F4 | 5 (11) | 26 (12) | | | IFN pre-treatment no. (%) | 15/40 (38) ^b | 66/172 (38) | 1.00 | | IL28B (rs8099917) T/G or G/G no. (%) | 6/20 (30) | 19/67 (28) | 1.00 | | Response to PEG-IFN/RBV therapy | | | | | SVR total cases no. (%) | 22/46 (48) | 83/210 (40) | 0.38 | | RVR in total cases no. (%) | 6/44 (14) | 22/195 (11) | 0.83 | | cEVR in total cases no.(%) | 22/44 (50) | 92/200 (46) | 0.75 | | SVR 48w treatment no. (%) | 16/29 (55) | 55/130 (42) | 0.29 | | End of treatment response no. (%) | 26/41 (63) | 123/202 (61) | 0.91 | | HCV genome sequence variation | | | | | ISDR mutation ≤1 no. (%) | 32/46 (70) | 167/210 (80) | 0.21 | | Core70 R no. (%) | 26/44 (59) | 136/210 (65) | 0.56 | | IRRDR mutation >3 no. (%) | 25/38 (66) | 107/190 (56) | 0.34 | harboring viruses with and without these mutations. Moreover, no differences were observed in the responses of either group to PEG-IFN/RBV therapy. Recent studies reported that significant number of patients who were never treated with PI possess viral sequences with PI-resistance-associated NS3 mutations. In these studies, the prevalence of PI-resistance mutations was determined to be 8.6-16.2% [13, 14], in HCV genotype 1- and 3-infected patients in European–American populations. These patients were often coinfected with HIV. Analysis of the public HCV databases (EuHCVdb and Los Alamos) also reported the presence of naturally occurring PI-resistanceassociated NS3 mutations in worldwide isolates [33]. However, in vivo and in vitro studies demonstrated that most of the mutations observed conferred only low- to moderatelevel PI resistance [7, 13, 14, 34, 35]. Regarding viral fitness, PI-resistant HCVs show lower fitness at varying degrees as revealed by in vitro studies [1, 10, 11, 17, 20–22, 31, 32], but HCV RNA levels in a clinical study did not differ significantly. The response to PEG-IFN/RBV therapy was almost comparable to that in HCV-infected patients without PI-resistance mutations either in HCV replicon experiments or in a clinical study of small number of treated patients [34]. The prevalence of 13.4% for PI-resistance-proven patients observed in the present study was almost comparable to the results of previous studies. Although HIV is known to increase HCV replication in coinfection with HCV [36], and HIV patients are often treated with the HIVspecific PIs, the HIV infection might not affect the natural occurrence of HCV-specific PI-resistance mutations since our studied patients were all proven to be free from coinfection with HIV infection. As shown in Table 1 and Fig. 1, I153 V (22/261, 8.4%), T54S (14/261, 5.4%), and D168E (4/261, 1.5%) were among the most prevalent PI-resistance-proven mutations in the present study. The most frequent mutation detected in our study I153V was reported to appear secondarily to the occurrence of R109K mutations in a HCV replicon system [17]. Although the role of this mutation is not understood, the I153V mutation on its own conferred SCH446211 resistance to the HCV replicon to a lesser degree [17]. Interestingly, I153V was often found in double mutations in our study, as shown in Fig. 2. This suggests analogy between in vitro and in vivo data. T54S and D168E, the other frequent mutations, have been also reported to occur as single dominant mutations in previous in vitro or in vivo studies in HCV genotype 1 $[^]a$ Mean \pm SD ^b Number/total number (%) Fig. 2 In vivo fitness of HCV with PI-resistance-associated NS3 mutations. HCV RNA levels were compared between patients with and without NS3 PI-resistance-associated mutations (a) and between patients with each resistance mutation (b). The estimated P value (Mann-Whitney U test) indicates no significant difference between the wild-type and other groups (wild-type vs. mutation type, wild-type vs. single mutation type, and wild-type vs. double mutation type). (Wildtype, N = 214; mutation type, N = 47; single mutation type, N = 40; double mutation type, N = 7; V36I, N = 2; T54S, N = 14; Q80K, N = 1; I153L, N = 11; I153V, N = 22; D168E, N = 4; E176A, N = 1; V36I + I153V, N = 1;T54S + I153V, N = 4, and I153V + D168E, N = 2 Fig. 3 Comparison of virologic response to PEG-IFN/RBV therapy between HCV-infected patients with and without PI-resistance-associated NS3 mutations. Time-dependent HCV clearance rate analysis was based on serum HCV RNA positivity during PEG-IFN/RBV therapy for HCV isolates with resistance mutations or wild- type sequences. A total of 133 patients for whom the limit of viral genome detection could be determined were analyzed. Among this group, NS3 mutations were detected in 25 patients (19%). The estimated P value (log-rank test) shows no significant difference between the two groups (P=0.30) infections showing moderate degrees of resistance [16, 18, 19]. Most PI-resistance mutations described to date have been associated with varying degrees of reduced replicative capacity [10, 11, 17, 20–22, 31, 32]. In the present study, HCV RNA levels of those patients with low- to moderate-level resistance mutations were similar to those in patients in the wild-type groups, suggesting that in vitro viral fitness Fig. 4 Appearance of PI-resistance-associated NS3 mutations during the PEG-IFN/RBV therapy. Chromatograms show part of the HCV NS3 sequence demonstrating PI-resistance mutations in two patients receiving therapy. a Site 153 isoleucine (Ile) (ATC) changed to valine (Val) (GTC), b Site 168 glutamic acid (Glu) (GAA) changed to aspartic acid (Asp) (GAC) does not necessarily reflect in vivo viral fitness. This, however, does not rule out the possibility that some unknown compensatory viral mutations might have resulted in upregulation of reduced viral fitness. Interestingly, although the replicative capacity conferred by a single mutation seemed to be the same, the HCV RNA levels of double mutations were frequently low, suggesting that double mutations might weaken viral
fitness. In previous studies, clinical characteristics representing the state of liver disease other than HCV RNA levels were not studied in patients with PI-resistance mutations. In this study, we show that those clinical characteristics did not differ according to the presence of viral NS3 mutations. As shown in Table 2, age, sex ratio, fibrosis stage, ALT levels, serum albumin, platelet count, and past history of IFN pretreatment did not differ according to the presence of NS3 mutations. These results suggest that NS3 mutations occur independently of disease progression. Moreover, no evident differences were observed between viral and host factors known to affect IFN-based treatment responses. However, viral amino acid variations in the core and NS5A or the allelic frequency of IL28B SNPs, which were recently reported for the close relationship of responses to PEG-IFN/ RBV therapy, did not differ between the two groups. A significant outcome of the present study is the demonstration that PI-resistance mutations might not affect responses to PEG-IFN/RBV therapy. Previous in vitro studies demonstrated that HCV replicons harboring PI-resistance mutations were also sensitive to IFN treatment [31]. In addition, recent clinical studies also indicated that PI-resistance mutations were sensitive to the PEG-IFN/RBV [10, 34]. However, our analysis was more comprehensive because viral and host factors that contribute to treatment responses were simultaneously analyzed. A unique aspect of the present study is that we investigated the influence of the PEG-IFN/RBV treatment on the occurrence of new PI mutations by direct nucleotide sequencing, and were able to show that the PEG-IFN/RBV might not induce amino acid mutations. Will the pre-existence of naturally occurring PI-resistance mutations have an influence on future treatment of HCV infections? Since new PIs are on the verge of clinical use, all clinicians should bear in mind the substantial numbers of HCV-infected patients with PI-resistance mutations. Although the degree of resistance is considered to be low or moderate in untreated patients, weak resistance might progress to more potent resistance with additional mutations, when PIs become widely used. Therefore, all clinicians need to be sufficiently prepared for the possibility of later onset of PI-resistance mutations that confer greater drug resistance and concomitant poorer responses to therapy. In SPRINT-1 study, the lead-in therapy was associated with a modestly lower rate of breakthrough than with no lead in [7]. Considering that PEG-IFN/RBV was equally effective for PI-resistant viruses, sufficient "leadin" therapy before the administration of PIs could be an option in the forthcoming triple therapy modality. In conclusion, we demonstrate here that PI-resistance-associated NS3 mutations exist in a substantial proportion of untreated HCV-1b-infected patients. Although the degree of resistance might not be strong, clinicians will need to consider this upon the introduction of triple therapy. **Acknowledgements** This work was supported in part by a grant-in-aid scientific research fund from the Ministry of Education, Science, Sports, and Culture [grant number 20390206] and in part by a grant-in-aid from the Ministry of Health, Labor, and Welfare of Japan [grant number H19-kanen-002]. ### References - Susser S, Welsch C, Wang Y, et al. Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus-infected patients. Hepatology 2009;50:1709–1718 - Hadziyannis SJ, Sette H Jr, Morgan TR, et al. Peginterferonalpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 2004;140:346–355 - Hezode C, Forestier N, Dusheiko G, et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N Engl J Med 2009;360:1839–1850 - McHutchison JG, Everson GT, Gordon SC, et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 2009;360:1827–1838 - McHutchison JG, Manns MP, Muir AJ, et al. Telaprevir for previously treated chronic HCV infection. N Engl J Med 2010; 362:1292–1303 - Reesink HW, Fanning GC, Farha KA, et al. Rapid HCV-RNA decline with once daily TMC435: a phase I study in healthy volunteers and hepatitis C patients. Gastroenterology 2010;138: 913–921 - Kwo PY, Lawitz EJ, McCone J, et al. Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. Lancet 2010;376:705-716 - Forestier N, Reesink HW, Weegink CJ, et al. Antiviral activity of telaprevir (VX-950) and peginterferon alfa-2a in patients with hepatitis C. Hepatology 2007;46:640–648 - Suzuki F, Akuta N, Suzuki Y, et al. Rapid loss of hepatitis C virus genotype 1b from serum in patients receiving a triple treatment with telaprevir (MP-424), pegylated interferon and ribavirin for 12 weeks. Hepatol Res 2009;39:1056–1063 - Kieffer TL, Sarrazin C, Miller JS, et al. Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 2007;46: 631–639 - Sarrazin C, Kieffer TL, Bartels D, et al. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 2007;132: 1767–1777 - Lin C, Lin K, Luong YP, et al. In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem 2004;279:17508–17514 - Kuntzen T, Timm J, Berical A, et al. Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naive patients. Hepatology 2008;48:1769–1778 - Gaudieri S, Rauch A, Pfafferott K, et al. Hepatitis C virus drug resistance and immune-driven adaptations: relevance to new antiviral therapy. Hepatology 2009;49:1069–1082 - Lenz O, Verbinnen T, Lin TI, et al. (2010) In vitro resistance profile of the hepatitis C virus NS3/4A protease inhibitor TMC435. Antimicrob Agents Chemother 54:1878–1887 - Kieffer TL, Kwong AD, Picchio GR. Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs). J Antimicrob Chemother 2010;65:202–212 - Yi M, Tong X, Skelton A, et al. Mutations conferring resistance to SCH6, a novel hepatitis C virus NS3/4A protease inhibitor. Reduced RNA replication fitness and partial rescue by secondsite mutations. J Biol Chem 2006;281:8205–8215 - 18. Welsch C, Domingues FS, Susser S, et al. Molecular basis of telaprevir resistance due to V36 and T54 mutations in the NS3-4A protease of the hepatitis C virus. Genome Biol 2008;9:R16 - Tong X, Bogen S, Chase R, et al. Characterization of resistance mutations against HCV ketoamide protease inhibitors. Antiviral Res 2008;77:177–185 - He Y, King MS, Kempf DJ, et al. Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system. Antimicrob Agents Chemother 2008;52:1101–1110 - Tong X, Chase R, Skelton A, Chen T, Wright-Minogue J, Malcolm BA. Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antiviral Res 2006;70:28–38 - Lu L, Pilot-Matias TJ, Stewart KD, et al. Mutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro. Antimicrob Agents Chemother 2004;48:2260–2266 - 23. Akuta N, Suzuki F, Hirakawa M, et al. Amino acid substitutions in the hepatitis C virus core region of genotype 1b affect very early viral dynamics during treatment with telaprevir, peginterferon, and ribavirin. J Med Virol 2010;82:575–582 - Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009;461:399–401 - Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009;41: 1105–1109 - Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 2009;41:1100–1104 - El-Shamy A, Nagano-Fujii M, Sasase N, Imoto S, Kim SR, Hotta H. Sequence variation in hepatitis C virus nonstructural protein 5A predicts clinical outcome of pegylated interferon/ribavirin combination therapy. Hepatology 2008;48:38–47 - Enomoto N, Sakuma I, Asahina Y, et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 1996; 334:77-81 - 29. Akuta N, Suzuki F, Kawamura Y, et al. Predictive factors of early and sustained responses to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b: amino acid substitutions in the core region and lowdensity lipoprotein cholesterol levels. J Hepatol 2007;46:403–410 - Akuta N, Suzuki F, Sezaki H, et al. Predictive factors of virological non-response to interferon-ribavirin combination therapy for patients infected with hepatitis C virus of genotype 1b and high viral load. J Med Virol 2006;78:83–90 - Zhou Y, Bartels DJ, Hanzelka BL, et al. Phenotypic characterization of resistant Val36 variants of hepatitis C virus NS3-4A serine protease. Antimicrob Agents Chemother 2008;52: 110–120 - Mo H, Lu L, Pilot-Matias T, et al. Mutations conferring resistance to a hepatitis C virus (HCV) RNA-dependent RNA polymerase inhibitor alone or in combination with an HCV serine protease inhibitor in vitro. Antimicrob Agents Chemother 2005; 49:4305–4314 - Lopez-Labrador FX, Moya A, Gonzalez-Candelas F. Mapping natural polymorphisms of hepatitis C virus NS3/4A
protease and antiviral resistance to inhibitors in worldwide isolates. Antivir Ther 2008;13:481–494 - 34. Bartels DJ, Zhou Y, Zhang EZ, et al. Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3.4A protease inhibitors in treatment-naive subjects. J Infect Dis 2008;198:800–807 - Cubero M, Esteban JI, Otero T, et al. Naturally occurring NS3protease-inhibitor resistant mutant A156T in the liver of an untreated chronic hepatitis C patient. Virology 2008;370:237–245 - 36. Soriano V, Puoti M, Sulkowski M, et al. Care of patients with hepatitis C and HIV co-infection. Aids 2004;18:1–12 - Barbotte L, Ahmed-Belkacem A, Chevaliez S, et al. Characterization of V36c, a novel amino acid substitution conferring hepatitis C virus (HCV) resistance to telaprevir, a potent peptidomimetic inhibitor of HCV protease. Antimicrob Agents Chemother 2010;54:2681–2683 - 38. Tong X, Arasappan A, Bennett F, et al. Preclinical characterization of the antiviral activity of SCH 900518 (Narlaprevir), a novel mechanism-based inhibitor of hepatitis C virus NS3 protease. Antimicrob Agents Chemother 2010;54:2365–2370 - Chase R, Skelton A, Xia E, et al. A novel HCV NS3 protease mutation selected by combination treatment of the protease inhibitor boceprevir and NS5B polymerase inhibitors. Antiviral Res 2009;84:178–184 # Malnutrition Impairs Interferon Signaling Through mTOR and FoxO Pathways in Patients With Chronic Hepatitis C MASAO HONDA,*.‡ KENJI TAKEHANA,§ AKITO SAKAI,* YUSUKE TAGATA,§ TAKAYOSHI SHIRASAKI,‡ SHINOBU NISHITANI,§ TAKAHIKO MURAMATSU,^{||} TATSUYA YAMASHITA,* YASUNARI NAKAMOTO,* EISHIRO MIZUKOSHI,* YOSHIO SAKAI,* TARO YAMASHITA,* MIKIKO NAKAMURA,* TETSURO SHIMAKAMI,¶ MINKYUNG YI,# STANLEY M. LEMON,¶ TETSUO SUZUKI,** TAKAJI WAKITA,** SHUICHI KANEKO,* and the Hokuriku Liver Study Group *Department of Gastroenterology, *Department of Advanced Medical Technology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan; *Exploratory Research Laboratories, Research Center, Ajinomoto Pharmaceuticals, Co, Ltd, Kanagawa, Japan; "Frontier Research Labs, Institute for Innovation, Ajinomoto, Co, Inc, Kanagawa, Japan; "Division of Infectious Diseases, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; "Center for Hepatitis Research, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; and **Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan BACKGROUND & AIMS: Patients with advanced chronic hepatitis C (CH-C) often are malnourished, but the effects of malnutrition on interferon (IFN) signaling and response to treatment have not been determined. We assessed the importance of the nutritional state of the liver on IFN signaling and treatment response. METHODS: We studied data from 168 patients with CH-C who were treated with the combination of pegylated-IFN and ribavirin. Plasma concentrations of amino acids were measured by mass spectrometry. Liver gene expression profiles were obtained from 91 patients. Huh-7 cells were used to evaluate the IFN signaling pathway, mammalian target of rapamycin complex 1 (mTORC1), and forkhead box O (FoxO). Antiviral signaling induced by branched-chain amino acids (BCAAs) was determined using the in vitro hepatitis C virus replication system. **RESULTS:** Multivariate logistic regression analysis showed that Fischer's ratio was associated significantly with nonresponders, independent of interleukin-28B polymorphisms or the histologic stage of the liver. Fischer's ratio was correlated inversely with the expression of BCAA transaminase 1, and was affected by hepatic mTORC1 signaling. IFN stimulation was impaired substantially in Huh-7 cells grown in medium that was low in amino acid concentration, through repressed mTORC1 signaling, and increased Socs3 expression, which was regulated by Foxo3a. BCAA could restore impaired IFN signaling and inhibit hepatitis C virus replication under conditions of malnutrition. CONCLUSIONS: Malnutrition impaired IFN signaling by inhibiting mTORC1 and activating Socs3 signaling through Foxo3a. Increasing BCAAs to up-regulate IFN signaling might be used as a new therapeutic approach for patients with advanced CH-C. Keywords: HCV; Liver Disease; Therapy; Diet. Interferon (IFN) and ribavirin (RBV) combination therapy is a popular modality for treating patients with chronic hepatitis C (CH-C), but approximately 50% of patients usually relapse, particularly those with hepatitis C virus (HCV) genotype 1b and a high viral load.¹ Recent landmark studies of genome-wide associations identified genomic loci associated with treatment responses to pegylated (Peg)-IFN and RBV combination therapy,^{2,3} and a polymorphism in the interleukin (IL)-28B gene was found to predict hepatitis C treatment-induced viral clearance. Moreover, we previously showed that expression of hepatic IFN-stimulated genes (ISGs) was associated with the IL-28B polymorphism and might contribute to the treatment response.⁴ In addition to the IL-28B polymorphism, host factors such as fibrosis stage and metabolic status of the liver might be associated with the treatment outcome^{4,5}; however, the significance of these factors in conjunction with the IL-28B polymorphism has not been evaluated fully. In CH-C livers, prolonged liver cell damage, fibrosis development, and microcirculation failure can lead to a state of malnutrition in hepatocytes, resulting in the impairment of multiple metabolic pathways. In patients with advanced stage CH-C, hypoalbuminemia and decreased plasma values for the Fischer's ratio of branchedamino acids (BCAA; leucine, isoleucine, and valine) to aromatic amino acids (tyrosine and phenylalanine) commonly are observed. BCAA are the essential amino acids necessary for ammonium metabolism in muscle when the liver is unable to perform this function. Recent reports have shown that BCAA activates albumin synthesis in rat Abbreviations used in this paper: BCAA, branched-chain amino acid; BCAT1, branched chain amino-acid transaminase 1; CH-C, chronic hepatitis C; ChIP, chromatin immunoprecipitation; DMEM, Dulbecco's modified Eagle medium; FBE, Foxo binding element; FBEmut, Foxo binding element mutant; FoxO, forkhead box, subgroup 0; GLuc, Gaussia luciferase; IFN, interferon; IL, interleukin; ISG, interferon-stimulated genes; mTOR, mammalian target of rapamycin; mTORC1, mammalian target of rapamycin complex 1; NR, no response; PCR, polymerase chain reaction; Peg, pegylated; p-mTOR, phosphorylated form of p70 S6 protein kinase; pSTAT1, phosphorylated form of signal transducer and activator of transcription 1; Raptor, regulatory associated protein of mTOR; RBV, ribavirin; S6K, p70 S6 protein kinase; siRNA, small interfering RNA; SVR, sustained viral response; TR, transient response. © 2011 by the AGA Institute 0016-5085/\$36.00 doi:10.1053/j.gastro.2011.03.051 primary hepatocytes6 and cirrhotic rat liver7 through mammalian target of rapamycin (mTOR) signaling, a central regulator of protein synthesis, by sensing nutrient conditions.8 Thus, peripheral amino acid composition is closely related to signaling pathways in the liver. In addition to metabolic aspects, recent reports have elucidated new functional roles for mTOR in the IFN signaling pathway. Targeted disruptions of tuberous sclerosis 2 and eukaryotic translation initiation factor 4E binding protein 1, which both inhibit mTOR complex 1 (mTORC1) signaling, substantially enhanced IFN-alfa-dependent antiviral responses. 9,10 Therefore, mTORC1 signaling might be involved in the antiviral response as well as in metabolic processes. However, these issues have not yet been addressed in terms of IFN treatment for CH-C. In the present study, therefore, we evaluated the clinical relevance of the nutritional state of the liver, as estimated by the plasma Fischer's ratio, on Peg-IFN and RBV combination therapy. We also evaluated antiviral signaling induced by BCAA using an in vitro HCV replication system. #### **Materials and Methods** #### **Patients** A total of 168 patients with CH-C at the Graduate School of Medicine at Kanazawa University Hospital (Kanazawa, Japan) and its related hospitals in Japan (Table 1, Supplementary Table 1) were evaluated in the present study. The clinical characteristics of these patients have been described previously.4 All patients were administered Peg-IFNalfa 2b (Schering-Plough K.K., Tokyo, Japan) and RBV combination therapy for 48 weeks. The definition of the treatment response was as follows: sustained viral response (SVR), clearance of HCV viremia 24 weeks after the cessation of therapy; transient response (TR), no detectable HCV viremia at the cessation of therapy but relapse during the follow-up period; and no response (NR). Genetic variation of the IL-28B polymorphism at rs8099917 was evaluated in all patients using TaqMan Pre-Designed SNP Genotyping Assays (Applied Biosystems, Carlsbad, CA) as described previously.4 Gene expression profiling in the liver was performed in 91 patients using the Affymetrix Human 133 Plus 2.0 microarray chip (Affymetrix, Santa Clara, CA) as described previously (Supplementary Table 1).4 # Plasma Amino Acid Analysis Amino acid concentrations in plasma samples were measured by high-performance liquid chromatographyelectrospray ionization-mass spectrometry, followed by derivatization.¹¹ Detailed experimental procedures are described in the Supplementary Materials and Methods section. #### Culture Medium Huh-7 and Huh-7.5 cells (kindly provided by Professor C. M. Rice, Rockefeller University, New York, NY) were maintained in Dulbecco's modified Eagle medium (DMEM; Gibco BRL, Gaithersburg, MD) containing 10% fetal bovine serum and 1% penicillin/streptomycin (normal medium). Amino acid-free medium (ZERO medium) was prepared by mixing 5.81 g nutrition-free DMEM (Nacalai Tesque, Kyoto, Japan),
1.85 g NaHCO3, 1 g glucose, and 0.5 mL 1M (mol/L) sodium pyruvate in 500 mL Milli-Q water, then sterilizing with a 0.22-µm filter (Millipore, Billerica, MA). Low amino acid media (×1/5, ×1/ 10, $\times 1/30$, and $\times 1/100$ DMEM) were prepared by diluting X1 DMEM with ZERO medium. Powdered BCAA (leucine-isoleucine-valine, 2:1:1.2) (Ajinomoto Pharma, Tokyo, Japan) was freshly dissolved with distilled water at 100 mmol/L, then applied to cultured medium at 2 mmol/L, 4 mmol/L, or 8 mmol/L. # Western Blotting and Immunofluorescence Staining A total of 1.5×10^5 Huh-7 cells were seeded in normal medium 24 hours before performing the experiments. The medium was changed to low-amino-acid medium and maintained for up to 24 hours. Western blotting was performed as previously described.12 Cells were washed in phosphate-buffered saline (PBS) and lysed in RIPA buffer containing complete Protease Inhibitor Cocktail and PhosSTOP (Roche Applied Science, Indianapolis, IN). The membranes were blocked in Blocking One-P (Nacalai Tesque). The antibodies used for Western blotting are summarized in the Supplementary Materials and Methods section. For immunofluorescence staining, cells were fixed with 4% paraformaldehyde in PBS, then permeabilized with 0.1% Triton-X 100 in PBS. The primary antiforkhead box O (Foxo)3a antibody (Abcam, Cambridge, MA) was used at a final concentration of 2 µg/mL in PBS containing 2% fetal bovine serum at 4°C for 16 hours. Incubation with the Alexa Fluor 488-conjugated secondary antibody (Invitrogen, Carlsbad, CA) at a 500-fold dilution in PBS containing 3% fetal bovine serum antibody was performed for 4 hours, and cells were stained with Hoechst 33258 to visualize nuclear DNA (Vector Laboratories, Burlingame, CA). #### Quantitative Real-Time Detection Polymerase Chain Reaction A total of 1.5 imes 10⁵ Huh-7 cells were seeded in normal medium 24 hours before performing the experiments. The medium was changed to low-amino-acid medium, to which IFN-alfa and/or BCAA was added, and maintained for 24 hours. Rapamycin treatment (100 nmol/L) was performed for 30 minutes in normal medium before a medium change. RNA was isolated using TriPure isolation reagent (Roche Applied Science), and complementary DNA (cDNA) was synthesized using the High Capacity cDNA reverse transcription kit (Applied Biosystems, Carlsbad, CA). Real-time detection polymerase chain reaction (PCR) was performed using the 7500 Real-Time PCR System (Applied Biosystems) and Power SYBR Green PCR Master Mix (Applied Biosystems) containing specific primers according to the manufacturer's Table 1. Comparison of Clinical Factors Between Patients With and Without NR | Clinical category | SVR+TR | NR | Univariate
<i>P</i> value | Multivariate odds
(95% CI) | Multivariate P value | |-----------------------------------|-------------------|-------------------|------------------------------|---|-----------------------| | Patients, n | 125 | 43 | | _ | | | Age and sex | | | | | | | Age, y | 57 (30–72) | 56 (30–73) | .927 | | | | Sex, male vs female | 68 vs 57 | 24 vs 19 | .872 | • | | | Liver histology | | | | | | | F stage (F1-2 vs F3-4) | 95 vs 30 | 20 vs 23 | .001 | 6.35 (2.02-23.7) | .001 | | A grade (A0-1 vs A2-3) | 68 vs 57 | 19 vs 24 | .248 | | .001 | | Host gene factors | | | | | | | IL-28B (TT vs TG/GG) ^a | 109 vs 12 | 12 vs 31 | <.001 | 19.7 (5.74-82.7) | <.001 | | ISGs (Mx, IFI44, IFIT1), | 103 vs 22 | 12 vs 31 | <.001 | 5.26 (1.65–17.6) | .005 | | (<3.5 vs ≥3.5) | | 12 10 01 | 1.001 | 0.20 (1.00-17.0) | .005 | | Metabolic factors | | | | | | | BMI, kg/m ² | 23.2 (16.3–34.7) | 23.4 (19.5–40.6) | .439 | - | | | TG, mg/dL | 98 (30–323) | 116 (45–276) | .058 | | | | T-Chol, mg/dL | 167 (90–237) | 160 (81–214) | .680 | | | | LDL-Chol, mg/dL | 82 (36–134) | 73 (29–123) | .019 | | | | HDL-Chol, mg/dL | 42 (20–71) | 47 (18–82) | .098 | | | | FBS, mg/dL | 94 (60–291) | 96 (67–196) | .139 | | | | Insulin, μU/mL | 6.6 (0.7–23.7) | 6.8 (2–23.7) | .039 | untilina | | | HOMA-IR | 1.2 (0.3–11.7) | 1.2 (0.4–7.2) | .697 | | | | Fischer ratio | 2.3 (1.5–3.3) | 2.1 (1.5–2.8) | .005 | 8.91 (1.62–55.6) | . 011 | | Other laboratory parameters | 2.0 (1.0 0.0) | 2.1 (1.5–2.8) | .005 | 0.91 (1.02-33.0) | .011 | | AST level, IU/L | 46 (18–258) | 64 (21–283) | .017 | | | | ALT level, IU/L | 60 (16–376) | 82 (18–345) | .052 | annua an | | | γ-GTP level, IU/L | 36 (4–367) | 75 (26–392) | <.001 | | | | WBC, /mm ³ | 4800 (2100–11100) | 4800 (2500–8200) | .551 | | | | Hb level, g/dL | 14 (9.3–16.6) | 14.4 (11.2–17.2) | .099 | | | | PLT, ×104/mm ³ | 15.7 (7–39.4) | , , | | and definition in the last of | | | Viral factors | 15.7 (7-39.4) | 15.2 (7.6–27.8) | .378 | | | | ISDR mutations ≤1 vs ≥2 | 80 vs 44 | 24 va 0 | 070 | 4.40 (4.05.45.0) | 6.4.6 | | HCV-RNA, KIU/mL | 2300 (126–5000) | 34 vs 9 | .070 | 4.12 (1.25–15.9) | .019 | | Treatment factors | 2300 (126–5000) | 1930 (140–5000) | .725 | enterna. | | | | | | | | | | Total dose administered | 2840 (060, 7200) | 3840 (1030, 3880) | 04.0 | | | | Peg-IFN, μg
RBV, g | 3840 (960–7200) | 3840 (1920–2880) | .916 | | | | Achieved administration rate | 202 (134–336) | 202 (36–336) | .531 | - | | | | | | | | | | Peg-IFN, % | 0.4 | 22 | 075 | | | | ≥80%
<80% | 84 | 28 | .975 | ***** | | | <80% | 42 | 14 | | | | | RBV (%) | 7.0 | 0.4 | 7.45 | | | | ≥80% | 76
50 | 24 | .745 | | | | <80% | 50 | 18 | | | | | Achievement of EVR | 101/125 (81%) | 0/43 (0%) | <.001 | | | BMI, body mass index; CI, confidence interval; FBS, fasting blood sugar; γ-GTP, gamma-glutamyl transpeptidase; Hb, hemoglobin; HDL-chol, high density lipoprotein cholesterol; LDL-chol, low density lipoprotein cholesterol; PLT, platelets; T-chol, total cholesterol; TG, triglycerides; WBC, leukocytes. instructions. The primer sequence for real-time detection PCR is given in the Supplementary Materials and Methods section. HCV RNA was detected as described previously¹² and expression was standardized to that of glyceraldehyde-3-phosphate dehydrogenase. # Reporter Assay Construction of the interferon stimulated response element (ISRE)-luc reporter plasmid and Socs3-luc or Socs3 (FoxO binding element mutant [FBEmut])-luc reporter plasmids is described in the Supplementary Materials and Methods section. Huh-7 cells were transfected with the ISRE-luc reporter plasmid 24 hours before IFN-alfa treatment. Cells were treated with IFN-alfa (0 or 100 U/mL) and BCAA (2 mmol/L) in low-amino-acid media. After 24 hours, luciferase activities were measured using the Dual Luciferase assay system (Promega, Madison, WI). For Socs3 promoter activities, Huh-7 cells were transfected with Socs3-luc or Socs3 (FBEmut)-luc reporter plasmids together with the Foxo3a expression plasmid, and luciferase activities were measured after 24 hours. Values were normalized to the luciferase activity of the co-transfected pGL4.75 Renilla luciferase-expressing plasmid (Promega). #### Knockdown Experiments Huh-7 cells were transfected with Ctrl (Stealth RNAi Negative Control Low GC Duplex #2; Invitrogen) or alL-28B SNP at rs8099917. targets (regulatory associated protein of mTOR [Raptor] and Foxo3a) (Supplementary Materials and Methods) small interfering RNA (siRNA) using Lipofectamine RNAiMAX reagent (Invitrogen) according to the manufacturer's instructions. After 48 hours, cells were cultured in normal or low-amino-acid media for a further 24 hours. The knockdown effect was confirmed by Western blotting. # Chromatin Immunoprecipitation Assay Detailed experimental procedures are described in the Supplementary Materials and Methods section. # **HCV** Replication Analysis pH77S3 is an improved version of pH77S, a plasmid containing the full-length sequence of the genotype 1a H77 strain of HCV with 5 cell culture-adaptive mutations that promote its replication in Huh-7 hepatoma cells. ¹³ pH77S.3/Gaussia luciferase (GLuc)2A is a related construct in which the GLuc sequence, fused to
the 2A autocatalytic protease of foot-and-mouth virus RNA, was inserted in-frame between p7 and NS2 ¹⁴ (Supplementary Materials and Methods). A signal sequence in GLuc directs its secretion into cell culture media, allowing realtime, dynamic measurements of GLuc expression to be performed without the need for cell lysis. A 10- μ g aliquot of synthetic RNA transcribed from pH77S.3/GLuc2A was used for electroporation. Cells were pulsed at 260 V and 950 μ F using the Gene Pulser II apparatus (Bio-Rad Laboratories, Hercules, CA) and plated in fresh normal medium for 12 hours to recover. Cell medium was changed to $\times 1$ DMEM without serum for 8 hours, then changed to low-amino-acid medium containing 0–8 mmol/L BCAA for a further 24 hours. Cells and culture medium were collected and used for GLuc assays, real-time detection PCR, and Western blotting. The number of viable cells was determined by a (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl] -2H-tetrazolium, inner salt) assay (Promega). Continuously JFH-1-infecting Huh-7 cells were obtained by the infection of Huh-7 cells with JFH-1 cell culture-derived HCV at a multiplicity of infection of 0.01. Cells were maintained in normal medium by passaging every 3–4 days for approximately 6 months. About 20%–30% of the cells consistently were positive for HCV core protein (Supplementary Figure 4). Culture medium of JFH-1-infecting Huh-7 cells was changed to the low-amino-acid medium containing 0–8 mmol/L BCAA for 24 hours. Cells then were collected and used for assays. # Statistical Analysis Results are expressed as mean \pm standard deviation. Significance was tested by 1-way analysis of variance with the Bonferroni method, and differences were considered statistically significant at a P value of less than .05. ## Results # Fischer's Ratio as a Predictive Factor for Treatment Response The clinical characteristics of patients who received Peg-IFN and RBV combination therapy are shown in Table 1 and Supplementary Table 1, and explanations of these characteristics have been described previously.⁴ All patients were infected with HCV genotype 1b and had a high viral load (>100 IU/mL). We compared patients with SVR + TR against those with NR, as assessed by the overall plausibility of treatment response groups using Fisher's C statistic as previously described.⁴ We included data on the IL-28B polymorphism and plasma amino acid composition (aminogram). Univariate regression analysis showed that no single amino acid was associated significantly with treatment response; however, using Fischer's ratio, the BCAA (Ile+Leu+Val)/aromatic amino acids (Phe+Tyr) ratio was associated significantly with treatment response (P=.005) (Table 1). Of the 121 patients with IL-28B major type, SVR, TR, and NR were observed in 53%, 37%, and 10%, respectively, and among 33 patients with IL-28B minor type, SVR, TR, and NR were observed in 15%, 17%, and 68%, respectively (P<.001) (data not shown). Fischer's ratio of SVR, TR, and NR was 2.35 ± 0.38 , 2.30 ± 0.29 , and 2.10 ± 0.31 , respectively (P<.015) (data not shown). We selected IL-28B polymorphism, hepatic ISG expression, fibrosis stage, HCV RNA, interferon sensitivity determining region mutation, and Fischer's ratio as factors for multivariate analysis. Multivariate analysis revealed that the minor type of IL-28B polymorphism (TG or GG at rs8099917) (odds ratio, 19.7; P < .001), advanced fibrosis stage of the liver (F3–4) (odds ratio, 6.35; P = .001), high hepatic ISGs (\geq 3.5) (odds ratio, 5.26; P = .005), low Fischer's ratio (continuous range, 1.5–3.3) (unit odds, 8.91; P = .011), and presence of ISDR mutation (\leq 1) (odds ratio, 4.12; P = .019) independently contributed to NR (Table 1). The distribution of the Fischer's ratio according to fibrosis stage is shown in Supplementary Figure 1. The ratio decreased significantly in advanced fibrosis stage (F3-4) compared with early fibrosis stage (F1). No significant association between major or minor type of IL-28B polymorphism and different fibrosis stages of the liver was observed (Supplementary Figure 1A). In early fibrosis (F1-2) (Supplementary Figure 1B), 90% (80 of 89) of SVR+TR cases had the major type of IL-28B polymorphism, and 94% (16 of 17) of NR cases had the minor type. However, in the advanced fibrosis stage of the liver (F3-4) (Supplementary Figure 1C), 85% (23 of 27) of SVR+TR cases had the major type of IL-28B polymorphism and 50% (10 of 20) of NR cases had the minor type. Thus, in advanced fibrosis stages, factors other than the IL-28B polymorphism appear to contribute to NR. Interestingly, the Fischer's ratio was significantly lower in NR patients than SVR+TR patients in the advanced fibrosis stage of the liver. Therefore, Fischer's ratio could be an important predictor for NR that is independent of IL-28B polymorphism and histologic stage of the liver. # Fischer's Ratio and mTORC1 Signaling in CH-C Livers Hepatic gene expression in 91 of 168 patients (Supplementary Table 1) was obtained using Affymetrix genechip analysis as described previously.4 To examine the relationship between the plasma Fischer's ratio and mTORC1 signaling in the liver we evaluated the expression of key regulatory genes related to mTORC1 signaling. We found that expression of branched chain aminoacid transaminase 1 (BCAT1), an important catalytic enzyme of BCAA, was significantly negatively correlated with Fischer's ratio (Figure 1A). This indicates that the plasma Fischer's ratio is regulated in the liver as well as in peripheral muscle. Interestingly, the expression of c-myc, a positive regulator of BCAT1 (Figure 1C),15 was correlated negatively with the Fischer's ratio (Figure 1B). The expression of PDCD4, a negative transcriptional target of ribosomal p70 S6 protein kinase (S6K), downstream of mTORC1, was correlated significantly with BCAT1 (Figure 1D and E). Thus, in CH-C livers, BCAT1 is induced with progressive liver disease and mTORC1 signaling is repressed, a process that might involve c-myc. Fischer's ratio of the plasma therefore can be seen to reflect mTORC1 signaling in the liver. # Impaired IFN Signaling in Huh-7 Cells Grown in Low-Amino-Acid Medium Recent reports have shown the functional relevance of mTOR on IFN signaling and antiviral responses.^{9,10} To evaluate IFN-alfa signaling and the mTOR pathway, we used Huh-7 cells grown in different amino acid conditions (X1 DMEM, X1/5 DMEM, X1/30 DMEM, and $\times 1/100$ DMEM). The phosphorylated forms of mTOR (p-mTOR) and S6K (pS6K), an important downstream regulator of mTORC1 signaling, were decreased substantially in ×1/30 DMEM and ×1/100 DMEM (Figure 2A). Interestingly, the expression of the phosphorylated form of signal transducer and activator of transcription 1 (pSTAT1), an essential transducer of type 1 IFN signaling, also was decreased in these conditions (Figure 2A). Similarly, the expression of p-mTOR and pSTAT1 was repressed significantly in CH-C livers with a low Fischer's ratio compared with those with a high Fischer's ratio (Supplementary Figure 2, Supplementary Table 2). To examine whether decreased pSTAT1 expression might be owing to repressed mTORC1 signaling, we knocked down the expression of Raptor, a specific subunit of mTORC1. We achieved more than 50% knockdown of Raptor by specific siRNA (Figure 2B). Under these conditions, the expression of p-mTOR and pSK6 were repressed, which is consistent with previous reports. The expression of pSTAT1 also was repressed after Raptor knockdown (Figure 2B). Figure 1. Regression analysis of mTORC1-related gene expression in liver. Gene expression values were determined by probe intensities. (A) BCAT1 and Fischer's ratio. (B) c-myc and Fischer's ratio. (C) BCAT1 and c-myc. (D) PDCD4 and BCAT1. (E) Putative signaling of mTORC1-related genes in CH-C. Figure 2. mTORC1 and IFN signaling in Huh-7 cells in low-amino-acid medium. (A) p-mTOR, pS6K, and pSTAT1 expression in different amino acid media. (B) p-mTOR, pS6K, and pSTAT1 expression under Raptor knock-down conditions. (C) IFN-alfa stimulation and pSTAT1 expression in low-amino-acid media or under Raptor knock-down conditions. (D) IFN-alfa stimulation and ISRE reporter activities in normal and low-amino-acid media. (E) IFN-alfa stimulation and 2'5'OAS expression supplemented with BCAA or rapamycin in low-amino-acid medium. (F) Chromatin immunoprecipitation of 2'5'OAS promoter region by ISGF3γ. The induction of pSTAT1 by IFN-alfa (1000 U/mL) stimulation was impaired in $\times 1/5$ DMEM or in Raptor knocked-down condition, compared with the control (Figure 2C). Consistent with these results, IFN-alfa-induced ISRE-dependent transcriptional activity, as measured using an ISRE-luciferase reporter assay, was impaired significantly in $\times 1/5$ DMEM compared with $\times 1$ DMEM (Figure 2D). However, this activity could be rescued by the addition of 2 mmol/L BCAA (Figure 2D). These results were confirmed by determining the expression of the endogenous IFN-alfa responsive gene, 2'5'OAS, using quantitative reverse-transcription PCR. Figure 2E shows that BCAA treatment augmented 2'5'OAS expression in low levels of amino acids, and that this could be reversed by the addition of rapamycin, an inhibitor of mTORC1 (Figure 2E). Furthermore, chromatin immunoprecipitation (ChIP) experiments revealed that transcriptional augmentation by BCAA was mediated by the binding of the IFN-alfainducible transcription factor, ISGF3y, to the promoter region of 2'5'OAS (Figure 2F). These results indicate that amino acids in culture media play an essential role in IFN-alfa signaling through mTORC1 signaling, and that the addition of BCAA can overcome impaired IFN-alfa signaling in Huh-7 cells. # Induction of Socs3 in Low-Amino-Acid Medium in Hub-7 Cells Besides being involved in mTOR signaling, Foxo transcriptional factors mediate another important branch of nutrition-sensing signaling pathway.¹⁷ Therefore, we
evaluated forkhead box O3A (Foxo3a) expression in lowamino-acid conditions in Huh-7 cells. After 6 hours culture in $\times 1/5$, $\times 1/30$, and $\times 1/100$ DMEM, expression of the phosphorylated form of Foxo3a (pFoxo3a) decreased, whereas that of total Foxo3a increased in ×1/5 and ×1/30 DMEM, and the ratio of pFoxo3a to Foxo3a (pFoxo3a/Foxo3a) substantially decreased (Figure 3A and B). It has been reported that dephosphorylated Foxo3a is translocated to the nucleus before activation of its target genes. 18 In the present study, immunofluorescent staining Figure 3. Foxo3a and Socs3 signaling in Huh-7 cells in low-amino-acid medium. (A) Foxo3a and Socs3 expression in different amino acid media. (B) Relative change of pFoxo3a/Foxo3a and Socs3 expression in different amino acid media. (C) Immunofluorescence staining of Foxo3a in Huh-7 cells in normal and low-amino-acid media. (D) Relative change of Socs3 messenger RNA in Huh-7 cells in normal and low-amino-acid media. (E) Regression analysis of Socs3 in liver and Fischer's ratio. (F) Regression analysis of Socs3 and Foxo3a in liver. with an anti-Foxo3a antibody showed that Foxo3a diffused in both the cytoplasm and nucleus in normal amino acid medium, but localized in the nucleus in low-aminoacid medium ($\times 1/10$ DMEM) (Figure 3C). Interestingly, in low-amino-acid medium, transcription and protein expression of Socs3 increased significantly (Figure 3A, B, and D). The induction of Socs3 in a state of malnutrition also was confirmed in clinical samples. In CH-C livers there was a significant negative correlation between the plasma Fischer's ratio and Socs3 expression, implying that Socs3 expression increases during the malnutrition state induced by CH-C. There was also a significant correlation between Foxo3a and the transcriptional level of Socs3 in CH-C livers (Figure 3E and F), suggesting an in vitro and in vivo biological role for Foxo3a in the activation of Socs3 expression. These findings also were confirmed by Western blotting of CH-C livers (Supplementary Figure 2, Supplementary Table 2). # Socs3 Is a Transcriptional Target of Foxo3a The significant correlation between Socs3 and Foxo3a in CH-C livers prompted us to analyze the Socs3 promoter sequence and, in doing so, we identified a putative Foxo binding element (FBE) (Figure 4A). To investigate the functional relevance of Foxo3a in the transcriptional regulation of Socs3, we constructed reporter plasmids containing a luciferase coding region fused to the Socs3 promoter region (Socs3-luc). Socs3-luc promoter activity was increased substantially by the overexpression of Foxo3a (Figure 4B). The mutations introduced in the putative FBE (FBEmut) in the Socs3 promoter significantly reduced Foxo3a-induced Socs3 promoter activation (Figure 4B). Foxo3a then was knocked down by siRNA and Socs3 induction was evaluated. After suppression of Foxo3a (Supplementary Figure 3), Socs3 promoter activity was repressed significantly in low-amino-acid medium (×1/10 DMEM) (Figure 4C). Thus, Foxo3a appears to be indispensable for activating the Socs3 promoter under lowamino-acid conditions. Correlating with these results, ChIP assays using an anti-Foxo3a antibody showed a significant increase in the association between Foxo3a and the FBE of the Socs3 promoter in low-amino-acid conditions (×1/10 DMEM) (Figure 4D). Taken together, these results suggest that, besides mTORC1 signaling, the Foxo3a-mediated Socs3 signaling pathway might contribute to impaired IFN signaling in a state of malnutrition in CH-C. BCAA potentially restores this signaling (Figure 4E). # Effect of BCAA on HCV Replication in Huh-7 or Huh-7.5 Cells Based on the earlier-described results, we used 2 HCV in vitro replication systems to examine whether BCAA affects HCV replication in Huh-7 or Huh-7.5 cells. The first system used a recombinant infectious genotype 1a clone, H77S.3/GLuc2A (Supplementary Materials and Methods, Supplementary Figure 4), including reporter genes, whereas the second used continuously JFH-1-infecting Huh-7 cells (Supplementary Materials and Methods). The synthetic RNA transcribed from pH77S.3/GLuc2A was introduced into Huh-7.5 cells and replication of H77S.3/GLuc2A was evaluated in normal or low-amino-acid medium supplemented with BCAA. H77S.3/GLuc2A increased significantly by 2.6-fold in Huh-7.5 cells grown in low-amino-acid medium (×1/5 DMEM) compared with normal amino acid medium (×1 DMEM). Interestingly, BCAA repressed H77S.3/GLuc2A replication in a dose-dependent manner (Figure 5A). In agreement with these results, the expression of Mx-1 was increased significantly by the addition of BCAA (Figure 5B). Similar findings were observed in JFH-1-infecting Huh-7 cells (Materials and Methods, Supplementary Figure 4). Although no obvious increase in HCV replication was observed in low-amino-acid medium (×1/5 DMEM) com- pared with normal amino acid medium (×1 DMEM), JFH-1 replication was repressed significantly by the addition of BCAA in a dose-dependent manner (Figure 5D). The expression of Mx-1 was increased substantially by the addition of BCAA (Figure 5E), suggesting that BCAA significantly repressed HCV replication in cells with either naive or persistent HCV infection. Importantly, there were no significant differences in cell viability between the conditions (Figure 5C and F). To validate these findings, signaling pathways in HCV replicating cells were examined (Figure 6A and B). BCAA increased pS6K in a dose-dependent manner, implying its involvement in the activation of mTORC1 signaling. Related to this, expression of pSTAT1 was shown to be increased and the ratio of pSTAT1 to total STAT1 (pSTAT1/STAT1) increased 2.5- to 3-fold after the addition of BCAA. Thus, BCAA activated mTORC1 and the JAK-STAT signaling pathway in HCV-infected cells. In addition, the expression ratio of pFoxo3a to total Foxo3a (pFoxo3a/Foxo3a) increased 3- to 4-fold, indicating an increase in the cytoplasmic form of Foxo3a that is exposed to proteasome degradation. Concordant with these findings, we observed a decrease in the expression of Socs3. In addition, expression of the HCV core protein decreased as shown in Figure 6A and B. Thus, these results clearly show that BCAA repressed HCV replication through activation of IFN signaling and repression of Socs3-mediated IFN inhibitory signaling, as proposed in Figure 4E. #### Discussion Thompson et al⁵ showed that the IL-28B polymorphism, HCV RNA, nationality (Caucasian/Hispanic vs African American), hepatic fibrosis stage, and fasting blood sugar level are all significant variables for achieving SVR in patients infected with genotype 1 HCV. However, the significance of variable factors for treatment response in conjunction with the IL-28B polymorphism has not been evaluated fully. In the present study, in addition to previously examined variables,4 we included the plasma Fischer's ratio as a nutritional parameter. Multivariate analysis showed that the minor type of IL-28B polymorphism, advanced fibrosis stage, high hepatic ISGs, low Fischer's ratio, and ISDR mutation (≤1) independently contributed to NR (Table 1). Interestingly, among patients of similar fibrosis stage (F3-4), the Fischer's ratio was significantly lower in NR than SVR+TR cases. Therefore, the plasma value of Fischer's ratio was associated with the treatment response that was independent of the IL-28B polymorphism and histologic stage of the liver, although patients with advanced hepatic fibrosis are likely to be nutritionally affected. As a nutrient sensor signaling pathway, the protein kinase mTOR plays an essential role in maintaining homeostasis and regulates protein synthesis in response to nutrient conditions. mTOR is the catalytic subunit of 2 distinct complexes, mTORC1 and mTORC2. In addition 0.5 x1 DMEM x1/10 DMEM Figure 4. Socs3 promoter assay. (A) Primary structure of putative Foxo binding element in Socs3 promoter region. (B) Socs3-luc and Socs3 (FBEmut)-luc activities after overexpression of Foxo3a in Huh-7 cells. (C) Relative Socs3 messenger RNA (mRNA) expression after knockdown of Foxo3a in normal and low-amino-acid media. (D) Chromatin immunoprecipitation of Socs3 promoter region by Foxo3a in normal and low-amino-acid media. (E) Model of impaired IFN signaling by repressed mTORC1 signaling and increased Socs3 signaling under CH-C state of malnutrition. Socs3 Figure 5. Effect of BCAA on HCV replication in cells in low-amino-acid medium. (A) Effect of BCAA on H77S.3/GLuc2A replication in Huh-7.5 cells, (B) Mx-1 expression in H77S.3/GLuc2A-transfected Huh-7.5 cells supplemented with BCAA. (C) Viability of Huh-7.5 cells. (D) Effect of BCAA on JFH-1 replication continuously infecting Huh-7 cells. (E) Mx-1 expression in continuously JFH-1-infecting Huh-7 cells supplemented with BCAA. (F) Viability of Huh-7 cells. to these metabolic aspects, recent reports have shown that mTORC1 participates in IFN signaling and antiviral defense responses,9,10 although the precise signaling pathway has not yet been clarified. In the present study, we evaluated mTORC1 signaling in CH-C livers using gene expression profiling of 91 patients (Figure 1, Supplementary Table 1). We observed a significant negative correlation between plasma Fischer's ratio and hepatic expression of BCAT1, an important catalytic enzyme of BCAA (Figure 1A). Moreover, BCAT1 expression was correlated positively with PDCD4 expression, which in turn is regulated negatively by pS6K at the transcriptional level (Figure 1D).16 Thus, the expression of BCAT1 appears to be a negative indicator of mTORC1 signaling in the liver, and the plasma Fischer's ratio is partially reflected by mTORC1 signaling in the liver and muscle. Interestingly, the expression of c-myc was correlated significantly with BCAT1 (Figure 1C) as reported previously.15 Several studies observed up-regulated c-myc expression in advanced stages of CH-C19 but, on the other hand, c-myc recently was shown to be a
target of mTORC1 in hepatic cells.17 The existence of a feedback mechanism between c-myc and mTORC1 signaling to maintain liver homeostasis (Figure 1E) is plausible, although the precise mechanisms need to be confirmed. Impaired mTORC1 signaling is suggested to affect the IFN-alfa-induced signaling pathway. To address this, the relationship between mTORC1 and IFN signaling was assessed using a cell culture system. In low-amino-acid medium ($\times 1/5$, $\times 1/30$, and $\times 1/100$ DMEM), expression of pSTAT1 was decreased substantially, correlating with the impaired mTORC1 signaling represented by decreased p-mTOR and pS6K expression in Huh-7 cells (Figure 2A). The relationship between mTORC1 and IFN signaling was confirmed further by the knock-down experiment of Raptor, a specific subunit of mTORC1 (Figure 2B), although a more precise analysis should be performed to confirm this relationship. Importantly, when Huh-7 cells were stimulated by IFN-alfa, pSTAT1 induction was repressed significantly in low-amino-acid medium (×1/5 DMEM) or in Raptor knocked-down conditions (Figure 2C). It therefore could be speculated that IFN treat- Figure 6. Expression of S6K, STAT1, Foxo3a, Socs3, and HCV core in H77S.3/GLuc2A-transfected Huh-7.5 cells or continuously JFH-1-infecting Huh-7 cells supplemented with BCAA. ment of patients with liver malnutrition and impaired mTORC1 signaling would lead to reduced induction of ISGs. Importantly, BCAA was able to restore impaired IFN signaling through increased binding of ISGF3 γ to its targets (Figure 2*D*–*F*). Besides cross-talk of mTORC1 and IFN signaling, we revealed that Foxo3a also is involved in the IFN inhibitory pathway. In low-amino-acid medium, expression of pFoxo3a (ser253) was decreased substantially whereas that of Socs3 was increased. A decreased pFoxo3a/Foxo3a ratio indicates nuclear accumulation of Foxo3a before activation of its target genes, and this was confirmed by immunofluorescent staining (Figure 3C). The expression of Foxo3a was significantly positively correlated with that of Socs3 in CH-C liver (Figure 3F). These findings prompted us to identify a putative FBE in the Socs3 promoter region (Figure 4A). In fact, Socs3 promoter reporter activity was activated by overexpression of Foxo3a, and mutation of FBE impaired Foxo3adependent Socs3 promoter activation. Conversely, induction of Socs3 was not observed when expression of Foxo3a was knocked down by siRNA in low-amino-acid medium. Socs3 induction in low-amino-acid medium was owing to increased binding of Foxo3a to the FBE, which was confirmed by ChIP (Figure 4D). Therefore, in addition to impaired mTORC1 signaling, the Foxo3amediated Socs3 IFN inhibitory pathway might be involved in impaired IFN signaling in patients with liver malnutrition (Figure 4E). Finally, we examined whether BCAA could restore impaired IFN signaling and inhibit HCV replication in cells under conditions of malnutrition. Importantly, BCAA could repress replication of the recombinant genotype 1a-derived HCV, H77S.3/GLuc2A, in a dose-dependent manner (Figure 5A). H77S.3/GLuc2A RNA produces infectious virus14 and, therefore, the results indicate that BCAA might act on a naive HCV infection. Moreover, BCAA inhibited JFH-1-infected Huh-7 cells in which JFH-1 continuously was infecting in a dose-dependent manner. These results indicate that BCAA had an inhibitory effect on either naive or persistent HCV infection irrespective of genotypes (1a and 2a). Consistent with these results, BCAA induced the expression of pSTAT1 and Mx protein in a dose-dependent manner, and repressed Socs3 expression through increasing the ratio of pFoxo3a (ser243) to Foxo3a in a dose-dependent manner (Figures 5 and 6). Therefore, BCAA potentially could restore impaired IFN signaling and inhibit HCV replication in a CH-C state of malnutrition. In conclusion, we addressed the clinical significance of the nutritional state of the liver on the treatment response of Peg-IFN and RBV combination therapy for CH-C. Although further studies are required to fully define the precise mechanisms underlying mTOR and IFN signaling, we showed that plasma values of Fischer's ratio are a useful nutritional parameter associated with treatment response. Fischer's ratio reflects mTORC1 signaling in the liver, which is correlated with IFN signaling and related to Socs3 IFN inhibitory signaling through Foxo3a. The potential usefulness of BCAA for the augmentation of IFN signaling could suggest a new therapeutic application for advanced-stage CH-C. # **Supplementary Material** Note: To access the supplementary material accompanying this article, visit the online version of *Gastroenterology* at www.gastrojournal.org, and at doi: 10.1053/j.gastro.2011.03.051. # Appendix A The Hokuriku Liver Study Group is composed of the following members: Drs Takashi Kagaya, Kuniaki Arai, Kaheita Kakinoki, Kazunori Kawaguchi, Hajime Takatori, and Hajime Sunakosaka (Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan); Drs Touru Nakahama and Shinji Kamiyamamoto (Kurobe City Hospital, Kurobe, Toyama, Japan); Dr Yasuhiro Takemori (Toyama Rosai Hospital, Uozu, Toyama, Japan); Dr Hikaru Oguri (Koseiren Namerikawa Hospital, Namerikawa, Toyama, Japan); Drs Yatsugi Noda and Hidero Ogino (Toyama Prefectural Central Hospital, Toyama, Japan); Drs Yoshinobu Hinoue and Keiji Minouchi (Toyama City Hospital, Toyama, Japan); Dr Nobuyuki Hirai (Koseiren Takaoka Hospital, Takaoka, Toyama, Japan); Drs Tatsuho Sugimoto and Koji Adachi (Tonami General Hospital, Tonam, Toyama, Japan); Dr Yuichi Nakamura (Noto General Hospital, Nanao, Ishikawa, Japan); Drs Masashi Unoura and Ryuhei Nishino (Public Hakui Hospital, Hakui, Ishikawa, Japan); Drs Hideo Morimoto and Hajime Ohta (National Hospital Organization Kanazawa Medical Center, Kanazawa, Ishikawa, Japan); Dr Hirokazu Tsuji (Kanazawa Municipal Hospital, Kanazawa, Ishikawa, Japan); Drs Akira Iwata and Shuichi Terasaki (Kanazawa Red Cross Hospital, Kanazawa, Ishikawa, Japan); Drs Tokio Wakabayashi and Yukihiro Shirota (Saiseikai Kanazawa Hospital, Kanazawa, Ishikawa, Japan); Drs Takeshi Urabe and Hiroshi Kawai (Public Central Hospital of Matto Ishikawa, Hakusan, Ishikawa, Japan); Dr Yasutsugu Mizuno (Nomi Municipal Hospital, Nomi, Ishikawa, Japan); Dr Shoni Kameda (Komatsu Municipal Hospital, Komatsu Ishikawa, Japan); Drs Hirotoshi Miyamori and Uichiro Fuchizaki (Keiju Medical Center, Nanao, Ishikawa, Japan); Dr Haruhiko Shyugo (Kanazawa Arimatsu Hospital, Kanazawa, Ishikawa, Japan); Dr Hideki Osaka (Yawata Medical Center, Komatsu, Ishikawa, Japan); Dr Eiki Matsushita (Kahoku Central Hospital, Tsubata, Ishikawa, Japan); Dr Yasuhiro Katou (Katou Hospital, Komatsu, Ishikawa, Japan); Drs Nobuyoshi Tanaka and Kazuo Notsumata (Fukuiken Saiseikai Hospital, Fukui, Japan); Dr Mikio Kumagai (Kumagai Clinic, Tsuruga, Fukui, Japan); and Dr Manabu Yoneshima (Municipal Tsuruga Hospital, Tsuruga, Fukui, Japan). ## References Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002;347:975–982. - Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009;41: 1105–1109. - Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009;461:399–401. - Honda M, Sakai A, Yamashita T, et al. Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology 2010:139:499–509. - Thompson AJ, Muir AJ, Sulkowski MS, et al. Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 2010;139:120-129 e18. - Nishitani S, Ijichi C, Takehana K, et al. Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction. Biochem Biophys Res Commun 2004;313:387– 389 - Matsumura T, Morinaga Y, Fujitani S, et al. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res 2005;33:27–32. - Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–175. - Colina R, Costa-Mattioli M, Dowling RJ, et al. Translational control of the innate immune response through IRF-7. Nature 2008;452: 323–328. - Kaur S, Lal L, Sassano A, et al. Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling. J Biol Chem 2007;282:1757–1768. - Shimbo K, Kubo S, Harada Y, et al. Automated precolumn derivatization system for analyzing physiological amino acids by liquid chromatography/mass spectrometry. Biomed Chromatogr 2009; 24:683–691. - Shirasaki T, Honda M, Mizuno H, et al. La protein required for internal ribosome entry site-directed translation is a potential therapeutic target for hepatitis C virus replication. J Infect Dis 2010:202:75–85. - Yi M, Villanueva RA, Thomas DL, et al. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci U S A 2006;103:2310– 2315. - Shimakami T, Welsch C, Yamane D, et al. Protease inhibitorresistant hepatitis C virus mutants with reduced fitness from impaired production of infectious virus. Gastroenterology 2011; 140:667–675. - Eden A, Simchen G, Benvenisty N. Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 1996; 271:20242–2045. - Dowling RJ, Topisirovic I, Alain T, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science
2010;328:1172–1176. - Teleman AA, Hietakangas V, Sayadian AC, et al. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 2008;7:21–32. - Zhang X, Gan L, Pan H, et al. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 2002;277: 45276-45284. - Farinati F, Cardin R, Bortolami M, et al. Oxidative damage, proinflammatory cytokines, TGF-alpha and c-myc in chronic HCV-related hepatitis and cirrhosis. World J Gastroenterol 2006;12: 2065–2069.