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closely associated with SVR7* In contrast, amino
acid substitutions at positions 70 and 91 of the core
region have been reported to be associated with non-
virological response to therapy.”***$* The overall rate of
SVR was only 44% in patients with a low number of
substitutions in ISDR (0-1) but was increased 83%
in selected subgroups of younger patients (<60 years)
with the wild-type sequence at Core amino acid 70,
and higher concentrations of LDL cholesterol
(2120 mg/dL).”

Recent studies have shown that single nucleotide
polymorphisms located in the gene region encoding
interleukin 28B (IL28B, also called IFNA3) are strongly
associated with the response to PEG-IFN plus ribavirin
therapy.’>-% The latest decision tree model, starting with
one of the IL28B polymorphisms (£s8099917), includes
platelet counts, ISDR and serum HCV-RNA levels, but
does not include serum LDL cholesterol concentra-
tions.”® However, the total cholesterol, LDL cholesterol
and ApoB concentrations are significantly higher in
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chronic hepatitis C patients carrying another IL28B
major (responder) allele (CC in r$12979860) compared
with those with minor (non-responder) alleles (CT or
TT).*® Therefore, the association between serum LDL
cholesterol concentration and SVR may be reflected in
this decision tree model by the underlying link between
I1.28B genotypes and LDL cholesterol concentrations.
It is not clear why a higher probability of SVR is
predicted in patients with high serum cholesterol con-
centrations. As mentioned above, we cannot exclude the
possibility that the high cholesterol levels in patients
with HCV only reflect having the IL28B major
(responder) allele. Otherwise, it may just reflect the
wild-type sequence at Core amino acid 70 because sub-
stitution in the core protein correlated significantly with
low concentration of LDL cholesterol®® However, in
chronic hepatitis C patients, serum LDL cholesterol
concentrations correlate negatively with hepatic LDLR
mRNA expression®” and monocyte LDLR protein expres-
sion.” These results indicate that high serum cholesterol



Hepatology Research 2011; 41: 697-710

concentrations are associated with downregulated
LDLR, one of the putative receptors mediating HCV cell
entry. In addition, adequate amounts of natural LDLR
ligands, LDL and VLDL, might inhibit lipoprotein-
mediated HCV cell entry via LDLR

ABNORMAL CHOLESTEROL METABOLISM
IN HEPATOCYTES

TEATOSIS 1S FREQUENTLY observed in HCV infec-

tion.” A comprehensive analysis of HCV core gene
transgenic mice has shown that steatosis is mediated
in large part by the HCV core protein.”*** At least
four mechanisms have been suggested regarding the
development of steatosis via the HCV core protein: (i)
Inhibited tyrosine phosphorylation of insulin receptor
substrate (IRS)-1 causes insulin resistance, which
increases the peripheral release and hepatic uptake
of fatty acids;*® (ii) The suppression of MIP activity
inhibits the secretion of VLDL from the liver;*® (iii)
Upregulated sterol regulatory element-binding protein
(SREBP)-1c via the liver X receptor (LXR)-o. pathway
stimulates fatty acid synthesis in the liver.*” In addition,
the interaction between nuclear proteasome activator
PA28y and HCV core protein plays a critical role in the
activation of this LXRo pathway; (iv) Downregulated
peroxisome proliferator-activated receptor (PPAR)-o.
inhibits B-oxidation of fatty acids.***® On the other
hand, Huh-7 cells transfected with NS2'° or 4B
(NS4B)'' from HCV have shown that these nonstruc-
tural proteins also upregulate SREBP-1c and appear to
contribute to HCV-associated steatosis.

Steatosis is defined as an accumulation of lipid
droplets, consisting mainly of triglycerides. The above
mechanisms of steatosis may explain triglyceride accu-
mulation in livers infected with HCV. However, the
effects of HCV infection on hepatic cholesterol metabo-
lism are poorly understood. Significant amounts of
cholesterol are likely to be included within the lipid
droplets, but data regarding the quantity of cholesterol
in livers infected with HCV are limited. Woodhouse
et al. reported for the first time that cholesterol concen-
trations in HCV-infected human hepatoma cell line
Huh-7.5 were increased 56% compared with those
in non-infected Huh-7.5 cells.'? To understand the
changes in cholesterol metabolism as a consequence of
HCYV infection, key enzymes in the cholesterol biosyn-
thetic pathway (Fig. 2) including rate-limiting HMG-
CoA reductase (HMGCR) have been studied. In HCV
core gene transgenic mice, hepatic transcription levels of
HMGCR and HMG-CoA synthase (HMGCS) tended to
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be higher compared with contols, but the difference
was not statistically significant.*” Similar results were
reported in JFH1-infected Huh-7 cells, in which tran-
scription levels of HMGCR and squalene synthase
appeared to be somewhat elevated; although statistical
analysis was not performed because measurements were
only made in duplicate.'®®

The above data were obtained from core gene trans-
genic mice livers and human hepatoma cell lines.
However, cholesterol metabolism is subject to marked
interspecies variation'™ and is very different between
normal livers and hepatomas.'® Therefore, the mRNA
expression data in HCV-infected human liver reported
by Nakamuta et al. are extremely valuable.**” In their
reports, transcription levels of HMGCR, HMGCS,
famesyl-diphosphate synthase and squalene synthase
were all upregulated significantly in livers from chronic
hepatitis C patients compared with controls. De novo
cholesterol synthesis in the liver is mainly regulated by
SREBP-2, which is synthesized in the endoplasmic
reticulum and released as mature a transcription factor
to the nucleus by sterol-sensitive proteolysis.*®% In
Huh-7 cells transfected with NS4B, the protein expres-
sion levels of both precursor and mature forms of
SREBP-2 were increased."! In contrast, hepatic tran-
scription levels of SREBP-2 were not upregulated in core
gene transgenic mice.” Therefore, NS4B rather than core
protein may stimulate cholesterol biosynthesis in these
models. In the livers from chronic hepatitis C patients,
however, the upregulation of HMGCR is not associated
with the transcription level of SREBP-2. It is empha-
sized again that cholesterol metabolism is sometimes
regulated differently among human and rodent livers,
and the cultured human hepatoma cell line.

When hepatic transcription levels in chronic hepatitis
C patients is compared with controls,** a striking
abnormality in the regulation of cholesterol metabolism
is pointed out, namely, upregulation of enzymes
involved in the cholesterol biosynthetic pathway and
marked downregulation of LDLR. Under physiological
conditions, transcription of HMGCR, HMGCS, squalene
synthase and LDLR are coordinately regulated by
SREBP-2 because the 5’ flanking promoter regions of
these four genes contain closely-related sequences
designated as sterol regulatory elements.'**'” In fact,
significant positive correlations between HMGCR and
LDLR mRNA levels have been observed in livers from
chronic hepatitis C patients,¥ as well as in normal
human livers.!'***! The reason for the different transcrip-
tional balance of hepatic HMGCR and LDLR between
chronic hepatitis C patients and control subjects
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Figure 2 Cholesterol biosynthetic pathway and its feedback regulation. HMG-CoA reductase (HMGCR), HMG-CoA synthase
(HMGCS) and the LDL receptor (LDLR) are transcriptionally and coordinately upregulated by a transcription factor, SREBP-2 (as
a cleaved mature form). Statins competitively inhibit HMGCR activity, whereas intermediates and derivatives of cholesterol
downregulate HMGCR protein by two different mechanisms: (1) Cholesterol and oxysterols (yellow background) interact with
SREBP cleavage-activating protein (SCAP) and insulin-induced gene (INSIG), respectively, and suppress the maturation (activation)
of SREBP-2; (2) Oxysterols, some intermediate sterols (gray background) and a nonsterol intermediate, geranylgeraniol
(geranylgeranyl-OH), accelerate ubiquitination followed by degradation of HMGCR protein. Geranylgeranyl pyrophosphate
(geranylgeranyl-PP) is required for geranylgeranylation of host protein FBL2 that binds to NS5A in a reaction that is crucial for HCV
RNA replication. Oxysterols are natural ligands of LXRa, which upregulates key enzymes involved in fatty acid biosynthesis as well

as SREBP-1c. Abbreviations: ER, endoplasmic reticulum; A, sterol A* reductase.

remains unresolved. However, if hepatic cholesterol
concentrations are increased in patients, as reported by
the study of HCV-infected Huh-7.5 cells,'®* the abnor-
mality in patients is considered to reside in the regula-
tion of HMGCR rather than LDLR.

Regarding the transcriptional regulation of HMGCR
in patients with HCV infection, upregulation was not
consistent with the mRNA expression of SREBP-2.% The
expression of SREBP-2 implies the amount of the pre-
cursor (inactive) form of SREBP-2 but not the mature
(active) form. The conversion from the precursor to
mature form is catalyzed by sterol-sensitive proteolysis
and is inhibited by the increased cell cholesterol or
oxysterols."? In livers infected with HCV, sterol-
sensitive proteolysis may be suppressed because of
increased tissue sterols. Therefore, HMGCR appears to
be upregulated independent of SREBP-2. Actually, regu-
lation of HMGCR by the cAMP/protein kinase A/cAMP-
responsive element binding protein (cAMP/PKA/CREB)
signaling pathway has been reported,'” but further
investigation is needed to clarify the mechanism.

Moreover, it is not yet clear whether or not HMGCR
activity is coordinately upregulated with mRNA expres-
sion of HMGCR in patients with HCV infection. Indeed,
our preliminary data of serum biomarker sterol concen-
trations suggest that endogenous cholesterol biosynthe-
sis is not upregulated in chronic hepatitis C patients.!'*

“There are at least three possible mechanisms that may
downregulate HMGCR activity post-transariptionally in
these patients. First, HCV NS4A and NS4B proteins can
inhibit protein synthesis in their host cells by transla-
tional shutoff.**"'¢ Second, under the condition of
increased cell sterols, degradation of HMGCR protein
is stimulated by sterol-accelerated ubiquitination."*”
Third, previous reports suggest that HCV infection
directly induces insulin resistance of the liver.!'s-'2
Insulin increases HMGCR phosphatase activity and
stimulates dephosphorylation of HMGCR protein,
resulting in increased HMGCR activity.'*' By contrast, as

in the case of insulin resistance, HMGCR activity may
decrease due to phosphorylation of the enzyme.

ANTI-HCV THERAPY BY
CHOLESTEROL MODULATORS

CV MODULATES CHOLESTEROL metabolism in

host hepatocytes and ultimately affects cholesterol
homeostasis in the whole body. Although it is not clear
whether or not the alteration of cholesterol metabolism
in chronic hepatitis C patients is essential for HCV rep-
lication, the inhibition of cholesterol biosynthesis in
host cells may suppress the replication of the virus
because cholesterol is an important molecule for the
structure and life cycle of HCV. In fact, it has been
reported that statins, competitive inhibitors of HMGCR,
suppress HCV replication in vitro.'”'2 However, the
anti-HCV activity of statins has been considered to occur
due to their anti-geranylgeranylation effects of cellular
proteins rather than their cholesterol lowering activ-
ity."**'* The inhibition of HMGCR by statins results in
reduced intracellular mevalonate concentrations and
consequently leads to a reduction of geranylgeranyl
pyrophosphate. This compound is required for gera-
nylgeranylation of a host protein called FBL2, which
binds to NS5A in a reaction crucial for HCV RNA repli-
cation (Fig. 2)."* The anti-HCV effects of statins are
reduced by the addition of mevalonate or geranylge-
raniol, but not farnesol, suggesting that HCV RNA
replication requires one or more geranylgeranylated
proteins.'2124135 I addition, GGTI-286, an inhibitor of
geranylgeranyltransferase I, exhibited a negative effect
on HCV replication in vitro.*¥ Curiously, however, while
pravastatin alone does not inhibit HCV replication,
pravastatin inhibits HMGCR activity as effectively as
other statins (i.e. atorvastatin, fluvastatin, simvastatin,
lovastatin and mevastatin).'**'** The reason for this has
not been elucidated, but the fact does not preclude the
possibility that anti-HCV activity would occur as a result
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of their pleiotropic effects, but not as a result of the
inhibition of HMGCR. In addition, the hydrophobicity
of the statin may be related to the anti-HCV efficacy, i.e.
pravastatin is water-soluble whereas other statins are
lipophilic.

The anti-HCV effects of fluvastatin monotherapy have
been reported in patients with chronic hepatitis C, but
were modest, variable and often short-lived.”?® However,
another report has shown that fluvastatin monotherapy
did not exhibit anti-HCV activity in HIV/HCV
co-infected subjects.!” The effects of other statin mono-
therapies using atorvastatin,’*® simvastatin' or rosuvas-
tatin'3 have also been reported, but in vivo anti-HCV
activity was not proven at conventional doses. The com-
bination of statin with PEG-IFN plus ribavirin therapy
has also been studied. Sezaki et al. reported that fluvas-
tatin could be used to increase the response to PEG-IFN
plus ribavirin, especially in aged women who respond
poorly to PEG-IEN plus ribavirin therapy.’** Another
report by Milazzo et al. showed that fluvastatin in addi-
tion to PEG-IEN plus ribavirin therapy did not increase
the SVR but did significantly improve the RVR rate in
HIV/HCV co-infected patients.’* Thus, statin mono-
therapy is not sufficiently effective for treatment of HCV
infection, but the combination with PEG-IEN plus rib-
avirin may accelerate the elimination of HCV in some
cases.

Although it may depend on the dose and nature of the
statin, the administration of statins sometimes stimu-
lates fatty acid biosynthesis in host cells,’**-'*” which is
not preferable for the treatment of HCV infection.
Statins competitively inhibit HMGCR activity and
induce compensatory expression of HMGCR and
SREBP-2. This overexpression of SREBP-2 appears to
stimulate enzymes involved in fatty acid biosynthesis,
which are basically regulated by SREBP-1c¢.'*? Moreover,
the reduction of intracellular geranylgeranyl pyro-
phosphate concentrations by statins also appears to
be a factor that induces fatty acid biosynthesis because
geranylgeranyl pyrophosphate is an antagonist of
LXRo.1**'3 On the other hand, statins are known to
upregulate LDLR on the cell membrane, so that cell
entry of HCV virion may be enhanced. These varied
effects of statins may counterbalance the direct antiviral
activity of these compounds.

The anti-HCV effects of other inhibitors different from
statins have also been studied. Bezafibrate is a synthetic
ligand of PPARa. and is known to decrease serum VLDL
and LDL.'"*® Bezafibrate monotherapy of chronic hepa-
titis C patients significantly reduced serum HCV-RNA
titers and alanine aminotransferase levels.'*' This com-
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pound did not inhibit HMGCR activity in human liver
but was suggested to downregulate other enzymes
involved in the synthesis of cholesterol because serum
concentrations of lathosterol, a biomarker for choles-
terol biosynthesis, were decreased during bezafibrate
therapy.'*

The recent explosion of research into HMGCR
and related proteins has provided new insights into
the feedback regulation of cholesterol biosynthesis
(Fig. 2)."** Cholesterol and oxysterols simultaneously
downregulate HMGCR, HMGCS and LDLR by blocking
the activation of SREBP-2 in the endoplasmic reticu-
lum.** In contrast, oxysterols, some intermediate sterols
and a nonsterol intermediate, geranylgeraniol, can
accelerate ubiquitination and the subsequent degra-
dation of HMGCR protein.’*'*¢ The addition of
25-hydroxycholesterol, one of the oxysterols, to Huh-7
cells bearing HCV replicons can lead to an antiviral state
within the host cell.'*¥'* 25-Hydroxycholesterol ap-
pears to downregulate not only HMGCR and LDLR
but also fatty acid biosynthesis.'**'* Similar effects on
de novo cholesterol and fatty acid biosynthesis have been
observed by an antibiotic cerulenin. This compound
mainly inhibits HMGCS and fatty acid synthase,'* and
suppresses HCV replication in vitro.'*® U18666A is a
unique compound that has multiple actions on choles-
terol metabolism including the inhibition of intra-
cellular cholesterol trafficking and the activities of
2,3-oxidosqualene cyclase, sterol A%-A7 isomerase and
sterol A** reductase."” This compound also has anti-
HCV activity on cultured cells,"** which appears to be
due to the blockade of cholesterol availability and the
accumulation of intermediate sterols followed by down-
regulation of HMGCR.

PERSPECTIVES

UNIQUE FEATURE of HCV is that the viral life
cycle depends on host cholesterol metabolism.
Therefore, monitoring and controlling host cholesterol
metabolism in chronic hepatitis C patients contributes
to the treatment of this viral infection. Serum choles-
terol concentration can be a marker of resistance to
therapy. Recent technical innovations have made it
possible to obtain metabolite profiling of human
serum,**> which may lead to the discovery of more
sensitive and reliable biomarkers to evaluate host
and/or viral conditions. As for drugs, many clinical trials
targeting lipid metabolic pathways are being conducted
using statins, eicosapentaenoic acid (EPA)"™* or bispho-
sphonate.* EPA suppresses transcription of SREBP-1¢%
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and bisphosphonate inhibits geranylgeranyl pyrophos-
phate synthase.'>® In addition to U18666A, a number of
preclinical compounds that inhibit enzymes in choles-
terol biosynthesis have been reported e.g. squalene
synthase inhibitors (ER-27856,'° RPR-107393%%),
squalene epoxidase inhibitor (NB-598'), sterol
A7 reductase inhibitors (AY-9944,' BM15.766,'®
YM-9429'%") etc. Moreover, downregulation of SR-BI
may inhibit cell entry of the HCV virion and may con-
stitute an additional adjuvant therapy. SR-BI expression
is directly upregulated by the farnesoid X receptor (EXR;
bile acid receptor)'®*'*® and an antagonist of FXR has
already been discovered.'**

Finally, cholesterol metabolism regulates fatty acid
synthesis through activation of LXRo. (Fig. 2). The
natural ligands of LXRq are believed to be oxysterols.
The activation of LXRo by the interaction with oxys-
terols causes upregulation of key enzymes involved in
fatty acid biosynthesis as well as SREBP-1c. Although
serum oxysterol concentrations in chronic hepatitis C
patients were not significantly elevated in our prelimi-
nary investigations,''* oxysterol levels between serum
and liver may be quite different, as suggested by choles-
terol and triglyceride levels in the patients. If the hepatic
oxysterol concentrations are high in the patients, lower-
ing the levels by the inhibition of synthesis or by the
promotion of metabolism into more polar and inactive
compounds (bile acids etc.) may be another way to
improve metabolic abnormalities in these patients.
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Abstract

Background and Aim: The survival rate of patients with hepatocellular carcinoma (HCC)
improved through the 1990s in Japan, primarily due to advances in the detection of small
HCC under the establishment of surveillance systems. We investigated how the character-
istics of patients with HCC changed and whether this trend is continuing after the year
2000.

Methods: The characteristics and survival rates of patients with initial HCC (not a recur-
rence) who were diagnosed after the year 2000 until 2008 were analyzed and compared
with those of patients in whom HCC was diagnosed in the 1990s or before.

Results: In comparison to 8 years before the year 2000, the percentage of patients with
better liver function at diagnosis of HCC increased after the year 2000, whereas the size of
maximal HCC tumors did not change in comparison to patients before the year 2000. The
survival rate of patients continued increasing after the year 2000.

Conclusions: The prognosis of patients with HCC continues to improve after the year
2000. This is not due to further improvements in the detection of small-sized HCC; the
detection of small HCC had reached a plateau in the 1990s. Rather, this improvement
appears to be due in part from the continued increase in the distribution of patients with

better liver function at diagnosis.

Introduction

Hepatocellular carcinoma (HCC) is among the most common
cancers worldwide. It is the sixth most common cancer in the
world, and the third most common cause of cancer-related
death.'? In Japan, HCC is the third most common cause of death
from cancer in men, and the fifth in women.* The prognosis of
patients with HCC has improved due to improvements in the
management of such patients, including the development of
novel treatment options or techniques and increased early detec-
tion of HCC.

We previously observed the improvement of the survival rate of
patients with HCC during the years 1976-2000, particularly in the
1990s.* In that observation, we found that the increase in the early
detection of HCC associated with the establishment of surveil-
lance systems for HCC was the strongest contributing factor in the
improvement of patient survival.*® However, it has not been
revealed whether this trend persists after the year 2000 into the
2]st century.

In the present study, we investigated how the characteristics of
patients with HCC changed and whether the improvement of
patient survival continues after the year 2000.

Journal of Gastroenterology and Hepatology 26 (2011) 1765-1771

Methods

Patients and analyses

The entire protocol was approved by the hospital ethics committee
and carried out in compliance with the Declaration of Helsinki.
Between 1981 and 2008, a total of 2013 patients were diagnosed as
having initial HCC (not a recurrence) at Ogaki Municipal Hospital
(Ogaki, Japan). Diagnosis was confirmed by histological findings
on the basis of resected hepatic tumors or ultrasonography-guided
needle biopsy specimens. In cases in which resection was not
indicated and it was necessary to avoid biopsy of the tumor
because of the possibility of needle tract seeding of the cancer cells
in association with biopsy, especially in patients with advanced
tumors, the diagnosis of HCC was based on the imaging findings

-of selective hepatic angiography and computed tomography (CT).

These included hypervascularity on angiographic images and a
high-density mass on arterial-phase dynamic CT images, and a
low-density mass on portal-phase dynamic CT images. When
findings indicative of HCC were not obtained by means of
dynamic CT or angiography, CT during hepatic arteriography and
CT during arterial portography or T1- and T2-weighted imaging
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associated with superparamagnetic iron oxide-enhanced magnetic
resonance imaging (MRI) were performed after the 1990s.

Individual decisions regarding treatment were made primarily
on the basis of the treatment guidelines for HCC in Japan. Patients
were initially assessed for eligibility for hepatic resection. In
hepatic resection, the tumor was resected with an ample margin as
hepatectomy, and enucleation of the HCC tumor without margin
was not performed as surgical treatment. Only patients who had
class A liver function by Child-Pugh classification® (with some
exceptions) and 15-min retention of indocyanin green test of
=30%, and had no more than three HCC tumors, were considered
for surgical treatment. When patients declined or were deemed
ineligible for surgical treatment, they underwent non-surgical
treatment. Patients were first considered to be offered locoregional
ablative therapies (LLAT). Patients who had no more than three
HCC tumors with a maximal tumor size =3 cm were considered
for LAT. Before the year 1995, percutaneous ethanol injection
(PEIT) was performed for all patients as LAT, because other
modalities for LAT were not available. Some patients underwent
percutaneous microwave thermocoagulation (PMCT) during
1996-2000. After the year 2000 when radiofrequency ablation
(RFA) became available for LAT, all patients underwent RFA with
some exceptions. Patients who were ineligible for both surgery
and LAT were offered transcatheter arterial chemoembolization
(TACE). No patient underwent liver transplantation as a treatment,
because it is extremely difficult to find a cadaveric donor for
transplantation in Japan due to religious reasons. In addition,
living-donor liver transplantation was not performed at our insti-
tution during the study period. No patients received molecular-
targeted drugs during the study period.

The etiology of underlying liver disease, characteristics and the
progression of HCC, liver function at the time of HCC diagnosis,
and patient survival rates were analyzed on the basis of clinical
records. The Child—Pugh classification was determined as an indi-
cator of liver function. Tumor staging was performed according to
the American Joint Committee on Cancer (AJCC) classification
system.” In cases in which pathological evaluation was not avail-
able, vascular invasion was assessed by means of dynamic CT and
angiography. The initial treatment for HCC was also investigated.
Patients were stratified into seven periods by year of HCC diag-
nosis: 1981-1984, 1985-1988, 1989-1992, 1993-1996, 1997-
2000, 2001-2004, and 2005-2008.

All patients were followed up from 0.1 months to 241.1 months
(median follow-up period: 19.1 months) at our institution after
diagnosis and treatment. Patients were followed up with ultra-
sonography, and CT or MRI was performed every 3-6 months.
In addition, regular monitoring of serum tumor markers
(o-fetoprotein  [AFP] and des-gamma-carboxy prothrombin
[DCP]) was performed every 3 months. When the elevation of
tumor markers was observed, additional imaging examinations
(usually by CT or MRI) were performed to check the presence of
HCC. When the recurrence of HCC was confirmed, patients under-

went treatment for recurrent HCC, as well as the treatment for

initial HCC.
Statistical analysis

Values were expressed as mean * standard deviation, unless oth-
erwise indicated. Differences in percentages between groups were
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analyzed by the y*-test. Differences in mean quantitative values
were analyzed by Mann—Whitney U-test. The date of HCC diag-
nosis was defined as time zero in the calculation of patient survival
rates. Surviving patients and patients who died from a cause other
than liver disease were censored. Patients who died from an HCC-
related cause or liver failure were not censored. The Kaplan—Meier
method® was used to calculate survival rates, and the log-rank test’
was used to analyze differences in survival.

The Cox proportional hazards model'® was used for the multi-
variate analysis of factors related to survival. The variables ana-
lyzed were the period of the diagnosis of HCC (1981-2008),
patient age and sex, Child—Pugh class, tumor stage by AJCC, and
initial treatment. Data analyses were performed with the JMP
statistical software package (version 6.0, Macintosh version; SAS
Institute, Cary, NC, USA). All P-values were derived from two-
tailed tests, and P < 0.05 was accepted as statistically significant.

Results

Patient characteristics and HCC

The demographic characteristics of the 2013 patients included in
this study are summarized in Table 1. The study patients included
1495 men and 518 women, with a mean age of 65.0 * 9.6 (range:
21-93) years. Liver function at diagnosis of HCC was Child-Pugh
class Ain 1137 (56.5%) patients. HCC was stage 1 in 797 (39.6%)
patients and stage II in 574 (28.5%) patients, according to the
TNM stage classification of the AJCC.

With the exception of 356 (17.7%) patients who had not
received treatment, all patients underwent treatment for HCC
within 2 weeks after the diagnosis of HCC. Treatment included
hepatectomy in 459 (22.8%) patients and LAT in 392 (19.5%)
patients. Among patients receiving LAT, 190 patients were treated
by PEIT and 189 patients were treated by RFA. HCC was treated
by TACE in 618 (30.7%) patients. The diagnosis of HCC in 459
patients who underwent hepatectomy was based on a histological
examination of tumor tissue taken from resected specimens. In
patients treated by LAT, the diagnosis of HCC was made based on
fine-needle biopsy of specimens from 162 of the 392 patients
(41.3%). In the remaining 230 patients treated by LAT, the diag-
nosis was made based on the imaging findings. HCC was diag-
nosed by the imaging findings in all 618 patients who underwent
TACE. A histological diagnosis was made in 21 of the 188 patients
(11.2%) who underwent treatment other than surgery, LAT, or
TACE, and 20 of the 356 patients (5.6%) who did not undergo
treatment. In total, HCC was diagnosed histologically in 662
(32.9%) patients.

Characteristics and treatment for HCC
by period

‘We analyzed the trends in the characteristics of patients with HCC
by period. The numbers of patients who were diagnosed as having
initial HCC (not a recurrence) were 141 patients during the period
1981-1984, 220 during 1985-1988, 292 during 1989-1992, 305
during 1993-1996, 334 during 1997-2000, 366 during 2001~
2004, and 355 during 2005-2008. This number increased during
the 1980s and 1990s and peaked during 2001-2004. Patient age at
the diagnosis was increasing throughout the study period. The
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Table 1 Clinical characteristics of study patients (n=2013)

Hepatocellular carcinoma in Japan

Age (mean = SD, years) (range)

Sex ratio {female/male)

Etiology of underlying liver disease (HBV/HCV/HBV, HCV/non-HBV,
non-HCV/non-HBV)

Child—-Pugh class (A/B/C)

Albumin (mean = SD, g/dL)

Total bilirubin {mean = SD, mg/dL)

Diagnostic modality (histology/other)

AJCC tumor stage (I/1INI/1V)

Tumor size (mean * SD, cm) (range)

Tumor size (= 2 cm/>2cm and = 5cm/>5cm)

Tumor number (single/multiple)

Vascular invasion (absent/present)

65.0 + 9.6 (21-93)
518 (25.7%)/1495 (74.3%)
368 (18.3%)/1175 (58.4%)/23 (1.1%)/223 (11.1%)/224 (11.1%)

1137 (566.5%)/650 (32.3%)/226 (11.2%)

3.50 = 0.56

1.19£1.28

662 (32.9%)/1351 (67.1%)

797 {39.6%)/574 {28.5%)/554 (27.5%)/88 {4.4%)
5.70 = 3.37 (0.5-29.4)

572 (28.4%)/677 (33.6%)/764 (38.0%)

870 (43.2%)/1143 (56.8%)

1398 (69.4%)/615 (30.6%)

Initial treatment

No treatment 356 (17.7%)
Hepatectomy 459 (22.8%)
LAT 392 (19.5%)
TACE 618 (30.7%)
Other 188 (9.3%)

'Category of Child-Pugh class A includes patients without cirrhosis. Other treatment included repeated arterial infusion chemotherapy (n=93),
one-shot arterial infusion of anticancer drug (n=61), systemic chemotherapy (n=26), and radiation (n=8). AJCC, American Joint Committee on
Cancer; HBV, hepatitis B virus; HCV, hepatitis C virus; LAT, locoregional ablative therapy, including percutaneous ethanol injection, percutaneous
microwave thermocoagulation, and radiofrequency ablation; non-HBV, hepatitis B virus was negative (hepatitis C virus was not tested before
1990); non-HBV, non-HCV, both hepatitis B virus and hepatitis C virus were negative; SD, standard deviation; TACE, transcatheter arterial
chemoembolization.

Table 2 Clinical characteristics of study patients between periods 1992-2000 and 2001-2008

Periods 1992-1996 and 1997-2000 {n = 639) Periods 2001-2004 and 2005-2008 (n = 721)

64.7 + 8.8 (36-93) 68.2 = 9.3 (21-917)
172 (26.9%)/467 (73.1%) 203 (28.2%)/518 (71.8%)
94 (14.7%)/463 (72.5%)/12 (1.9%)/70 (10.9%) 114 (15.8%)/503 (69.8%)/9 (1.2%)/95 (13.2%)

Age (mean =+ SD, years) (range)’

Sex ratio {female/male)

Etiology of underlying liver disease
(HBV/HCV/HBY, HCV/non-HBV, non-HCV)

Child-Pugh class (A/B/C)? 380 (59.5%)/197 (30.8%)/62 (3.7%) 497 (68.9%)/169 (23.5%)/55 (7.6%)

Albumin {mean *+ SD, g/dL)® 3.31 £ 0.62 3.69 = 1.09

Total bilirubin (mean = SD, mg/dL) 1.33£1.76 1.20 +1.37

AJCC tumor stage (I/1ANI/IV)* 266 (41.6%)/190 (29.7%)/157 (24.6%)/26 (4.1%) 369 (51.2%)/199 (27.6%)/124 (17.2%)/29 (4.0%)

Tumor size (mean = SD, cm) (range) 4.28 + 3.39 (0.5-19.0) 4.07 = 3.25 (0.5-19.2)

Tumor size (=2 cm/>2 cm and <5 cm/>5cm) 221 (34.6%)/221 (34.6%)/197 (30.8%) 237 (32.9%)/300 (41.6%)/184 (25.5%)

Tumor number (single/multiple)® 282 (44.1%)/357 (65.9%) 392 (54.4%)/329 (45.6%)

Vascular invasion (absent/present)® 487 (76.2%)/152 {23.8%) 599 (83.1%)/122 (16.9%)

AFP (median, ng/mL) (range)’ 38.0 (0.0-595 000) 24.7 {0.8-2 402 000)

DPC (median, mAU/mL) (range)® 62.0 (10.0-8 000) 38.2 (10.0-75 000)
Antiviral therapy for HBV infection® 8 (7.5%) 72 (58.5%)
Antiviral therapy for HCV infection' 36 (7.6%) 73 (14.3%)
Eradication of HCV by antiviral therapy 8 (1.7%) 17 (3.3%)

P < 0.0001; 2P=0.0013; 3P < 0.0001; *P=0.0011; 3P = 0.0002; 8P = 0.0020; ’P= 0.0003; 8P = 0.0027; °P < 0.0001; '°FP=0.0012. "Category of Child-
Pugh class A includes patients without cirrhosis. AFP, o-fetoprotein; AJCC, American Joint Committee on Cancer; DCP, des-gamma-carboxy
prothrombin; HBV, hepatitis B virus; HCV, hepatitis C virus; non-HBV, non—HC\/_, both hepatitis B virus and hepatitis C virus were negative; SD, standard
deviation.

mean age was 60.6 9.1 during the period 1981-1984, The prevalence of patients with Child—Pugh class A liver function
61.4 % 10.0 during the period 1985-1988, 62.3 * 9.2 during the at diagnosis and the prevalence of patients with AJCC tumor stage
period 1989-1992, 63.8 + 8.5 during the period 1993-1996, I continued increasing after the period 1985—1988. In contrast, the
65.5 = 9.0 during the period 1997-2000, 68.0 = 9.1 during the prevalence of patients with maximal tumor size < 2 cm markedly
period 2001-2004, and 68.5 * 9.5 during the period 2005-2008. increased between the period 1985-1988 and the period 1989-
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