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Supplementary Materials and Methods

Plasma Amino Acid Analysis

Plasma sample amino acid concentrations were
measured by high-performance liquid chromatogra-
phy-electrospray ionization-mass spectrometry fol-
lowed by derivatization.! An MSQ Plus LC/MS system
(Thermo Fischer Scientific, Waltham, MA) equipped
with an electrospray ionization source was used in
positive ionization mode for selected ion monitoring.
Xcalibur version 1.4 SR1 software (Thermo Fischer
Scientific, Yokohama, Japan) was used for data collec-
tion and processing. The high-performance liquid
chromatography separation system consisted of an
L-2100 pump, L-2200 autosampler, and L-2300 col-
umn oven (Hitachi High-Technologies Corporation,
Tokyo, Japan). A Wakosil-II 3C8-100HG column (100,
2.1, 3 mm; Wako Pure Chemical Industries, Osaka,
Japan) was used for the separation, and the mobile
phase consisted of eluent A (25-mmol/L ammonium
formate in water, pH 6.0) and eluent B (water:acetoni-
trile = 40:60).

Western Blotting

The expression of HCV core protein, Socs3,
Foxo3a, phospho-Foxo3a (Ser253) (pFoxo3a), STATI,
pSTAT1 (Tyr701), S6K, pS6K, p-mTOR (Ser2448), Rap-
tor, and B-actin were evaluated with mouse anti-core
(Affinity BioReagents, Golden, CO), mouse anti-Socs3
(Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-
Foxo3a, rabbit anti-B-actin (Sigma-Aldrich, St Louis,
MO), rabbit anti-phospho-Foxo3a (Ser253), rabbit anti-
STAT1, rabbit anti-p-STAT1 (Tyr701), rabbit anti-p70
S6K, rabbit anti-pS6K, rabbit anti-p-mTOR (Ser2448),
and rabbit anti-Raptor (Cell Signaling Technology, Bev-
erly, MA), respectively. Densitometric analysis was con-
ducted directly on the blotted membrane using a charge
coupled device camera system (LAS-3000 Mini; Fujifilm,
Tokyo, Japan) and Scion Image software (Frederick, MD).

Primer Sequences for PCR and siRNA

Primer sequences for PCR and siRNA were as
follows: 2'5'OAS: forward 5'- CTC AGA AAT ACC CCA
GCC AAA TC-3', reverse 5'-GTG GTG AGA GGA CTG
AGG AA-3'; Socs3: forward 5'-TAC CAC CTG AGT CTC
CAG CTT CTC-3', reverse 5'-CCT GGC AGT TCT CAT
TAG TTC AGC ATT C-3'; Foxo3a: forward 5'-TGC TGT
ATG CAA GAA CTT TCC AGT AGC AG-3’, reverse 5'-
ACT CTA GCC CCC ATG CTA CTA GTG-3'; glyceralde-
hyde-3-phosphate dehydrogenase: forward 5'-GAA GGT
GAA GGT CGG AGT-3', reverse 5'-GAA GAT GGT GAT
GGG ATT TC-3', siFoxo3a (SASI_Hs01_00119127;
Sigma) sense: 5'-GAA UGA UGG GCU GAC UGA
AdTdT-3', antisense: 5'-UUC AGU CAG CCC AUC AUU
CdTdT-3’. Small interfering Raptor was purchased as
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part of KIAA1303 siGENOME SMART pool siRNA re-
agents from Dharmacon, Inc (Lafayette, CO).

Construction of ISRE-Luc Reporter and
FBEmut-luc Reporter Plasmids

Oligonucleotides containing the ISRE tandem re-
peat sequence (sense 5'-TCG AGA ACT GAA ACT GAA
ACT GAA ACT GAA ACT GAA ACT GAA ACT GAAACT
GAA ACT GAA A-3', antisense 5'-AGC TTT TCA GTT
TCA GTT TCA GTT TCA GTT TCA GTT TCA GTT TCA
GTT TCA GTT TCA GTT C-3’, consensus 5'-GAA Ann
GAA ACT-3') were annealed, and integrated into Xho I
and Hind III sites of the pGL4.23 luciferase vector (Pro-
mega). The human Socs3 promoter region (-109/+217)
was amplified by genomic PCR using specific primers
(forward, S'-TGC TGC GAG TAG TGA CTA AAC ATT
ACA AG-3' and reverse, 5'-CCG TGA AGT CCA CAA
AGG AGC CTT C-3') and cloned into the EcoR V site of
the pGL4.10-luc2 reporter vector (Promega). The Socs3
FBE mutant reporter vector was created by substituting 2
adenines in the putative FBE with guanines (wild-type
sequence 5’-CTAAACA-3', mutated sequence 5'-CT-
GAGCA-3").

ChIP Assay

For the ChIP assay using the anti-ISGF3+y anti-
body, 1 X 10¢ Huh-7 cells were treated with IFN-alfa (0 or
100 U/mL) and BCAA (2 mmol/L) in low-amino-acid
medium for 6 hours. For ChIP using the anti-Foxo3a
antibody, 1 X 10° Huh-7 cells were cultured in low-
amino-acid medium for 24 hours.

Cells were cross-linked with 1% formaldehyde in PBS
for 10 minutes at 37°C, and the reaction was stopped
with 250 mmol/L glycine for 10 minutes. Cells were
suspended in sodium dodecyl sulfate-lysis buffer (1%
sodium dodecyl sulfate, 10 mmol/L ethylenediaminetet-
raacetic acid [EDTA], 50 mmol/L Tris-HCl [pH 8.1]),
complete protease inhibitor cocktail (Roche Applied Sci-
ence), and incubated for 30 minutes at 10°C. Cell lysate
was sonicated with Bioruptor (Cosmo Bio, Tokyo, Japan)
to obtain chromatin fragments and diluted 10-fold in
ChIP dilution buffer (0.01% sodium dodecyl sulfate, 1.1%
Triton-X 100, 1.2 mmol/L EDTA, 16.7 mmol/L Tris-HCl
[pH 8.1], 150 mmol/L NaCl, complete protease inhibitor
cocktail). Chromatin fragments were incubated with 2 ug
ISGF3y antibody (Santa Cruz Biotechnology), 2 ug
Foxo3a antibody (H-144; Santa Cruz Biotechnology), or
normal rabbit immunoglobulin G for 18 hours at 4°C.
Dynabeads (30 pL) protein G (Invitrogen) was added and
incubated for 1 hour at 4°C. The beads were washed with
low-salt-wash buffer (0.1% sodium dodecyl sulfate, 1%
Triton-X 100, 2.0 mmol/L EDTA, 20 mmol/L Tris-HCl
[pH 8.1], 150 mmol/L NaCl), high-salt-wash buffer (0.1%
sodium dodecyl sulfate, 1% Triton-X 100, 2.0 mmol/L
EDTA, 20 mmol/L Tris-HCI [pH 8.1], 500 mmol/L NaCl),
LiCl wash buffer (250 mmol/L LiCl, 1% NP-40, 1% de-
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oxycholate, 1.0 mmol/L EDTA, 1.0 mmol/L Tris-HCl [pH
8.1]) and Tris-EDTA buffer. Immunoprecipitated chro-
matin fragments were eluted with elution buffer (1%
sodium dodecyl sulfate, 100 mmol/L NaHCO3, 10
mmol/L dithiothreitol), and reverse cross-linked by incu-
bating for 6 hours at 65°C in elution buffer containing
200 mmol/L NaCl. DNA fragments were purified and
quantified by real-time detection PCR with primers for
putative ISRE in the 2'5’OAS promoter region (forward,
5'-AAA TGC ATT TCC AGA GCA GAG TTC AGA G-3',
reverse, 5'-GGG TAT TTC TGA GAT CCA TCA TTG
ACA GG-3") or putative FBE in the Socs3 promoter
region (forward, 5'-TGC TGC GAG TAG TGA CTA AAC
ATT ACA AG -3/, reverse, 5'-AGC GGA GCA GGG AGT
CCA AGT C -3"). Values were normalized by the measure-
ment of input DNA.

PH778.3/GLuc2A

pH77S.2 is a modification of pH77S? containing
an additional mutation within the E2 protein (N476D in
the polyprotein) that promotes infectious virus yields
from RNA-transfected cells (Yi et al, unpublished data).
To monitor replication, the GLuc sequence, fused at its C
terminus to the foot-and-mouth disease virus 2A auto-
protease, was inserted between p7 and NS2 of pH77S.2
(Supplementary Figure 4). To insert the GLuc-coding
sequence between p7 and NS2 in pH77S.2, followed by
the foot-and-mouth disease virus 2A protein-coding se-
quence, Mlu I, EcoR V, and Spe I restriction sites were
created between the p7 and NS2 coding sequences by
site-directed mutagenesis. DNA coding for GLuc was
subcloned into the Mlu I and EcoR V sites of the modi-
fied plasmid after PCR amplification using the primers:
5'- ATA ATA TTA CGC GTA TGG GAG TCA AAG TTC
TGT TTG CC-3' (sequence corresponding to the N-termi-
nal GLuc is italicized and that corresponding to Mlu I is
underlined) and 5'-ATA AAT AGAT ATC GTC ACC ACC
GGC CCC CTT GAT CTT-3' (C terminal GLuc is italicized
and EcoR V is underlined). A DNA fragment encoding
the 17 amino acids of the foot-and-mouth disease virus
2A protein was generated by annealing the following
complementary oligonucleotides: 5'- ATA TGA TAT CAA
CTT TGA CCT TCT CAA GTT GGC CGG CGA CGT
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CGA GTC CAA CCC AGG GCC CAC TAG CAT AT-3'
and 5'-ATA TGC TAG TGG GCC CTG GGT TGG ACT
CGA CGT CGC CGG CCA ACT TGA GAA GGT CAA
AGT TGA TAT CAT AT-3' (underlined sequences indi-
cate EcoR V and Spe I sites). The annealed oligonucleo-
tides were digested by both restriction enzymes and the
product inserted into the corresponding sites of pH77S.2
containing GLuc to generate pH77S.2/GLuc2A. Q41R is
a cell-culture adaptive mutation within the NS3 protease
domain of pH77S. Because it is not essential for produc-
tion of infectious virus (Yi et al, unpublished data),
pH77S.2 and pH77S.2/GLuc2A constructs underwent
this mutation by site-directed mutagenesis of a PCR
fragment spanning the Afe I and BsrG I sites to replace
Gln,; with wild-type Arg. The resulting plasmids
(pH775.2/R41Q and pH77S.2/GLuc2A/R41Q) were re-
designated pH77S.3 and pH77S.3/GLuc2A, respec-
tively.>* GLuc has several advantages over other lu-
ciferase reporter enzymes in that it is smaller and allows
more sensitive detection than either firefly or Renilla
luciferase.>* In addition, a signal sequence directs its
secretion into cell-culture media, allowing real-time dy-
namic measurements of GLuc expression without the
need for cell lysis. H77S.3/GLuc2A RNA produces infec-
tious virus, although with lower efficiency than H77S.3
RNA (10-fold less).
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Introduction

Chronic hepatits G virus (HCV) infection is a major cause of
mortality and morbidity throughout the world infecting around
3.1% of the world’s population [1]. The development of much
needed specific antiviral therapies and an effective vaccine has
been hampered by the lack of a suitable small animal model. ‘The
determinants restricting HCV tropism to human and chimpanzee
hosts arc unknown. Replication of HCV strain JFHI1 has been
demonstrated in mouse cells only upon antibody selection [2],
highlighting the very limited replication efficiency. Human CD81
and occludin have been implicated as important entry receptors
for retrovirus particles bearing HCV  glycoproteins, HCV
pseudoparticles (HCVpp), into NIH3T3 murine cells [3].
However, HCV infection, spontancous replication and particle
production by mousc cells have not yet been reported.

In mammalian cells, the host detects and responds to infection
by RNA-viruses, including HCV, by primarily recognizing viral
RNA through several distinct pathogen recognition receptors
(PRRs), including the cell surface and endosomal RNA sensors
Toll-like receptors 3 and 7 (TLR3 and TLR7), and the
cytoplasmic RNA sensors retinoic acid-inducible gene I (RIG-)
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and melanoma differentiation associated gene 5 (MDADJS) [4]. The
detection of virus infection by these receptors leads to the
induction of interferons (IFNs) and their downstream IFN-
inducible anti-viral genes through distinct signaling pathways
[5]. Type 1 IFN is an important regulator of viral infections in the
innate immune system [6]. Another type of IFN, IFN-lambda,
affects the prognosis of HCV infection, and its response to antiviral
therapy [7,8].

Mutations impairing the function of the RIG-I gene and the
induction of IFN were essential in establishing HCV infectivity in
human HuH7.5 cells [9]. Similarly, the HCV-NS3/4a protease is
known to cleave IPS-1 adaptor molecule, inducing further
downstrcam blocking of the IFN-inducing signaling pathway
[10]. These data clearly demonstrate that the host RIG-I pathway
is crucial for suppressing HCV proliferation in human hepato-
cytes. Using a similar strategy, we investigated whether suppress-
ing the antiviral host innate immunc system conferred any
advantage on HCV proliferation in mouse hepatocytes. We
examined the possibility of HCV replication in mice lacking the
expression of key factors that modulate the type I IFN-inducing
pathways. Only gene silencing of the IFN receptor (IFNAR) or
IPS-1 was sufficient to establish spontancous HCV replication in
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mousc hepatocytes. To establish a cell line permissive for HCV
replication, which is required for further e vitro studics of the HCV
life cycle in mouse hepatocytes, we immortalized IFNAR- and
IPS-1-knockout (ko) mice hepatocytes with SV40 T antigen. Upon
expression of the human (h)CD81 gene, these newly established
cell lines were able to support HCV infection for the first time in
mousc hepatocytes. Viral factors required for HCV replication in
mousc hepatocytes were also analyzed.

Results

IPS-1-mediated IFN signaling is important for HCV
replication in mouse hepatocytes

As a first step in establishing HCV infection in mice, we tested
the susceptibility of mouse hepatocytes to persistent expression of
HCYV proteins after RNA transfection. In vitro transcribed chimeric
J6JFH1 RNA, in which the HCV structural and non-structural
regions were from J6 and JFHI1 isolates respectively, was
transfected into hepatocytes from wild-type mice. We used a
highly sensitive polyclonal antibody derived from HCV-patient
serum for the detection of HCV proteins. No HCV proteins were
detected five days after transfection (Fig. 1 A), suggesting that wild-
type mousc hepatocytes were unable to maintain HCV replication.
We then tried to find and block the pathway used by mouse
hepatocytes for the detection of viral-RNA and the induction of
IFN response. Mousce hepatocytes did not show the expression of
either TLR3 or TLR7 as detected by RT-PCR, unlike IPS-1 and
RIG-I which was fairly detected (Fig. S1), suggesting that the
cytoplasmic RIG-1/1PS-1 pathway is the main pathway utilized by
mouse hepatocytes for the detection of RNA viruses. We then
checked the susceptibility of hepatocytes from TICAM-1ko, IPS-
lko and IFNARko mice to the prolonged expression of HCV
proteins (Fig. 1B-D). Only IPS-1- and IFNARko mouse
hepatocytes showed expression of J6JFHI proteins five days after
transfection (Fig. 1), indicating the importance of impaired IPS-1
and/or IFNAR receptors for HCV persistence. Similarly, the
detection of the J6JFH1-RNA in transfected hepatocyte lines from
various knockout mice showed higher levels in IPS-1 or IFNAR
knockout cells compared to TICAM-1lknockout cells in which a
rapid decline of J6JFHI-RNA levels was noticed similar to the
non-replicating control JFHIGND construct (Fig. S2). These data

A Wild Type C

TICAMIko

Mouse Hepatocytes for HCV

clearly suggest that the RIG-I/IPS-1 but not TLR3/TICAM-1 is
the main pathway utilized for the detection of HCV-RNA and the
induction of anti-viral immune responsc in mouse hepatocytes. Its
suppression  significantly improves HCV replication in mouse
hepatocytes.

Establishment and characterization of immortalized
mouse hepatocyte cell lines lacking expression of the
IFNAR or IPS-1 gene

We further established mouse hepatocyte lines with disrupted
IFNAR or IPS-1 genes through immortalization with SV40T
antigen, and used these cell lines to study factors required for the
HCV Iife cycle. Hepatocytes were transduced with SV407T-
expressing lentivirus  vectors. Six weceks after transduction,
hepatocytes transduced with SV40T showed continuous prolifer-
ation and clonally proliferating hepatocyte lines were sclected.
SV40T-immortalized IFNARko and IPS-lko clones were desig-
nated IRK (Fig. 2 A) and IPK (Fig. 2 B), respectively. 20 IRK and
19 IPK clones were picked up, of which IRK clones 2 and 4 (IRK2
and IRK4) and IPK clones 10 and 17 (IPK10 and IPK17) were
most closely related to primary mouse hepatocytes in term of
differentiation (Fig. 2 C) and were used in the following
experiments. Expression of SV40T was confirmed by RT-PCR
analysis (data not shown). IRK2, IRK4, IPK10 and IPK17, but
not the non-hepatocytic NIH3T3 cells, displayed albumin and
hepatocyte nuclear factor 4 (HNF4) expression similar to that
observed in liver tissue, but did not express the bile duct marker,
cytokeratin. IRK and IPK cells did not show expression of [IFNAR
and IPS-1 respectively (Fig. 2 C).

Replication of the HCV genome in IRK and IPK cells

To assess the permissiveness of the established cell lines to HCV
replication, we transduced IRK4 and IPK17 cells with J6JFH1
RNA and monitored the HCV protein and RNA levels by IF
(Fig. 3 A) and real time RT-PCR (Fig. 3 B). The number of cells
expressing HCV proteins, as detected by IF, increased over time,
indicating the continuous proliferation of J6JFHI1 in these cells.
However, the ratio between infected and non-infected cells did not
significantly change over time for 7 days after transfection.
Similarly, the amount of total J6JFH]1 RNA in 1 ug of total
cellular RNA was reasonably constant. By contrast, the level of

IPS-1ko

IFNARko

Figure 1. IF detection of of J6JFH1 proteins’ expression 5 days after transfection of J6JFH1-RNA through electroporation into wild
type (A), TICAM-1ko (B), IPS-1ko (C), and IFNARko (D), freshly isolated primary hepatocytes. A highly sensitive polyclonal antibody
extracted from HCV-patient serum (AbS3) was used for the detection. Staining of the uninfected hepatocytes from different Ko mice was also

performed and they showed negative for HCV proteins (data not shown).

doi:10.1371/journal.pone.0021284.g001
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Figure 2. Morphological characteristics of IRK-4 (A) and IPK-17 (B) cells. (C) RT analysis for the expression of albumin, HNF4, cytokeratin,
interferon A receptor, and IPS-1 in 2 IFNAR-KO cell lines (IRK2 and 4), 2 IPS-1-KO cell lines (IPK-10 and 17), total liver, and NIH3T3 cells.

doi:10.1371/journal.pone.0021284.9g002

JFHIGND RNA carrying a mutation in NS5B hampering HCV
replication, rapidly declined, indicating the requirement of
continuous HCV replication for the maintenance of HCV
positivity in the transfected mouse hepatocytes. Similar data were
obtained from IRK2 and IPK10 cells (data not shown).

IPS-1-dependent/Interferon-independent pathway is

responsible for HCV's cytopathic effect

In comparison to IPS-lko hepatocytes, J6JFHI1-RNA in
IFNARko were lower and decreased further after its transfection,
while higher stable levels of J6JFH1-RNA were maintained in IPS-
1ko cells (Fig. 3 B and Fig. S2). Similarly, larger numbers of HCV-
positive cclls were detected in IPS-1ko hepatocytes compared with
their IFNARko counterparts (Fig. 3 A), suggesting that the IPS-1
disruption benefits HCV replication in a distinct manner from
IFNAR disruption. To measure the interferon induction after
RNA virus infection in those cells, we used a highly infectious
RINA-Virus (VSV) and measured the induction of interferon after
its infecton. All the interferons measured showed similar
suppression of induction in IFNARko and IPS-lko hepatocytes
(Fig. 4). Surprisingly, ccllular cytopathic ceffect that was monitored
after transfection of JEJFHI1-RNA was markedly reduced in IPS-
ko but not in IFNARko hepatocytes after transfection (Fig. 5A).
This suppression was accompanied by an increase of JGJFHI-
RNA levels in IPS-lko cells, suggesting that minimal cellular
damage induced by HCV replication in IPS-1-/- cells led to the
improvement of HCV proliferation in mouse hepatocytes
(Fig. 5B).Reduction of HCV-induced cellular cytotoxicity (Fig.5C),
and improvement of HCV replication (Fig.5D) in wild type, and
IFNAR-KO cells were found when we cultured the cells with a
pan-caspase inhibitor, zVAD-fink, 2 days before and after HCV-
RNA transfection. We reasonced that the IPS-1 pathway rather
than the IFNAR pathway capacitates hepatocytes to induce HCV-
derived apoptotic cell death and its disruption resulted in the
circumvention of cell death.

@ PLoS ONE | www.plosone.org

Human CD81 is required for HCV infection of mouse
hepatocytes

Similar to the primary mouse hepatocytes, immortalized mouse
hepatocytes showed the expression of all the mouse counterparts of
human HCV entry receptors (Fig. $3). Human CD81 and
hOccludin, but not other human HCV receptors such as SR-B1
or claudinl, have previously been reported to be essential for
HCVpp entry into NIH3T3 mouse cells [3]. We then expressed
hCD81 and/or hOccludin in IRK2 and IRK4 cells using
lentivirus vectors. Using a MOI of 10, 95% transfection efficiency
was achieved (Fig. S4) with lentivirus vector. We next tested the
cffect of these proteins on HCV particle (HCVec) infection.
Human CD81 alonc was found to be required for J6JFHI
infection into all IRK and IPK cells tested (Fig. S5 and Fig. 6 A,
and B). For the first time in mouse hepatocytes, HCV proteins
were detected in nearly 1% of the cells used for infection. These
data demonstrated the importance of hCD81 in establishing
HCVcc infection in mouse hepatocytes.

Viral factors affecting HCV replication in mouse
hepatocytes

After successfully establishing J6JFH1 infection in mouse
hepatocytes, we attempted to infect these cells with other strains
of HCV. Human CD81-expressing IPK17 cells were infected with
full-length JFHIFL, however, no infection was detected (data not
shown). This might be due to a problem in infection and/or
replication. We further examined the replication efficiency of
JFHIFL, the subgenomic JFH1 replicon and the J6JFHI chimera
in two different mousc hepatocyte lines and the HuH7.5.1 cell line.
The persistent expression of HCOV proteins was detected seven
days after RNA transfection. Although HCV proteins were
detected in HuH?7.5.1 cells in all cases (Fig. 7 C), only J6JFHI
proteins were detected in the mouse hepatocyte lines, suggesting
for the first time the importance of the J6 structural region for the
replication of HCV in mouse hepatocytes (Fig. 7 A, and B).

June 2011 | Volume 6 | Issue 6 | 21284
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Figure 3. Proliferation of HCV in IRK4 and IPK17 cells over time as detected by immunofluorescence staining of NS5a protein using
the CL1 rabbit polyclonal antibody (A) and by quantitative real-time RT-PCR analysis of HCV-RNA levels (B). JFHIGND was used as a
negative control to exclude non replicating HCV-RNA. The data plotted represent the average +/— STD of 3 different experiments.

doi:10.1371/journal.pone.0021284.g003

Discussion

Gene silencing of either IPS-1 or IFNAR significantly improves
HCV replication and persistence in mouse hepatocytes compared
with wild-type or TICAM-1ko mice. This result demonstrated the
importance of the IPS-1 pathway rather than the TICAM-I1
pathway in the induction of type 1 IFN by HCV infection, and
revealed that the IFNAR amplification pathway confers resistance
to HCV in mousce hepatocytes independently of TICAM-1. In
accordance with our data, HCV-NS3/4A protcasc is known to
cleave the IPS-1 and/or RIG-I-complement molecules including
DDX3 and Riplet in humans to overcome the host innate immune
response, showing the importance of RIG-1/IPS-1 pathway
suppression in the establishment of HCV infection [10,11,12].

To further study factors affecting the HCV life cycle in mousc
hepatocytes, we established IPK and IRK immortalized mouse
hepatocyte lines by transduction with SV401 antigen. 'The
established hepatocytes cell lines showed expression of HNLE4, a
major hepatocyte transcription factor, required for hepatocyte
differentiation  and  liver-specific gene expression  [13]. The
maintenance of hepatocellular functions was demonstrated by
continuous cxpression of hepatocyte specific  differentiation
marker, albumin, and the lack of expression of the bile duct
marker, cytokeratin. The close resemblance of these cell lines to

@ PLoS ONE | www.plosone.org

primary mousc hepatocytes is crucial to ensure the physiological
relevance of factors identified in these cell lines that affect the
HCV life cycle.

It is worth noting that HCV replication in IPS-1ko was higher
than that in IFNARko hepatocytes. Since IPS-1 is present
upstream of IFNAR in the IFN-amplification pathway, this higher
J6JFHI replication efficiency in IPS-1ko hepatocytes suggested the
presence of an additive factor affecting HCV replication other
than the induction of IFINAR-mediated type IIFN. This enhanced
replication cfficiency was also not accompanied by the induction
of other interferon types, but was correlated with the reduction of
HCV-induced apoptosis in mousc hepatocytes. This data clearly
demonstrates that IPS-1 is playing an important role in the
regulation of HCV infection in mouse hepatocytes through two
different pathways, the IFN-induction pathways and another new
IFN-independent pathway, leading to apoptotic cell death and
climination of HCV-harboring hepatocytes. 'The cytopathic effect
of HCV infection in human cells is still contradictory. Although,
some reports showed the induction of apoptosis and cell death by
HCV infection in human hepatocytes [14,15,16], others showed
suppression of apoptosis by HCV proteins {17,18]. This difference
may be due to the different cell lines used in the different studics.
Almost all the studics reporting HCV-induced apoptosis used

June 2011 | Volume 6 | Issue 6 | e21284
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Figure 4. Wild type, IFNARko, and IPS-1ko mice hepatocytes were infected with mock or VSV virus, 2 and 6 hours later, total RNA
was extracted from the cells, and interferon alpha, beta, gamma and lambda mRNA induction levels were measured by real-time
RT-PCR. Similar results were obtained from 2 different experiments, each was performed in duplicates. The data plotted represent the mean

duplicate readings in one of them.
doi:10.1371/journal.pone.0021284.g004

hepatocellular carcinoma cell lines. Since it has been established
that the inability to undergo apoptosis is essential for the
development of cancer [19,20,21], our use of immortalized, non-
cancerous hepatocytes may make it possible to reproduce the
physiological response of the cells to HCV infection more closely.
The IPS-1 regulation of cell death following the introduction of
HCV-RNA may also regulate the cffector cell function. It is likely
that hepatocyte debris generated secondary to intrinsic production
of viral dsRNA in HCV-infected hepatocytes affect the antiviral
effector response of the immune systemn through maturation of
dendritic cells [22]. Hence, the effector cell activation may be
enhanced by the induction of cell death through the IPS-1
pathway in hepatocytes which may facilitate producing dsRINA-
containing debris.

In comparison to the JFHIGND construct with deficient
replication that showed a rapid reduction in its RNA levels over
time after transfection into mouse hepatocytes, JOJFH1I RNA was
detected at four-log higher levels and was maintained at a
relatively stable levels in IPS-lko hepatocytes. Although the
number of mouse cells expressing HCV proteins was found to
increase over time, as detected by IF, the ratio between HCV-
negative and -positive cells did not show any significant change for
7 days after transfection and increased after 10 days (data not
shown). This indicates a negative sclection of HCGV-bearing cells
over time which may be due to slower cellular replication, or loss
of HCV replication. Another possibility may be that HCV
infection is affected by the presence of an inhibitory factor possibly
triggered by HCV replication or the lack of a human host factor
required for HCV replication. Due to the initial replication of

@ PLoS ONE | www.plosone.org

HCV in the transfected IPK and IRK mouse hepatocytes for the
first 7 days and the establishment of infection, we favor the
presence of a possible inhibitory factor that may be triggered by
HCV replication. Another factor that also limits HCV spread in
mouse hepatocytes is the failure of HCV to produce infectious
particles in these cells (data no shown).

Using this newly established immortalized mouse hepatocyte
line, we found that although J6JFH1, JFH1FL and the subgenomic
JFH1 replicon all share a similar non-structural region derived
from isolate JFHI1 that is required for HCV replication, and
although all of these constructs can replicate efficiently in
HuH7.5.1 cells, strikingly, only J6JFHI carrying the J6 structural
region replicated in mouse hepatocytes. This indicates the
importance of the J6 structural region and/or the chimeric
construct between J6 and JFHI1 for HCV replication in mouse
hepatocytes. Structural regions arc known to be important for
HCYV entry and/or particle formation [23], but this is the first time
that their importance in replication in HCV-bearing cells has been
demonstrated. This finding clearly shows the importance of non-
hepatoma cell lines with less genetic abnormalities and mutations
for the discovery of new aspects of the life cycle of HCV.

Although, the co-cxpression of human CD81 and Occludin
genes was found to be important for HCVpp entry into murine
NIH3T3 cells [3], the expression of hCD81 alone was sufficient for
J6JFHI entry into mouse hepatocytes. This may be explained by
the different cell lines used in the different studies. In contrast to
NIH3T3 cells, we used immortalized hepatocytes that showed
close physiological resemblance to primary mouse hepatocytes and
showed the expression of all the mouse counterparts of HCV entry
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Figure 5. Measurement of J6JFH1 mediated cytopathic effect in wild type, IFNARko, and IPS-1ko mouse hepatocytes. Cultrure
medium were left untreated (A;B) or treated with 20 uM of zVAD-fmK (C;D) 2 days before and after J6JFH1-RNA transfection. One day after
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D), the data shown represent the mean +/— STD of 3 different experiments.

doi:10.1371/journal.pone.0021284.g005

receptors. A study from a different group showed that adaptive
mutations in HCV envelope proteins allowing its interaction with
murine CD81 is enough for efficient HCVpp entry without the
expression of any human entry receptors in murine cells [24]. This
report, together with ours, suggest that CD81 is the main human
host restriction factor for HCV entry, and that overcoming this
problem cither by HCV adaptation to murine CD81, or the
expression of human CD81 in murine hepatocytes is essential for
HCV entry. Although our lentivirus transfection efficiency with
CD81 was around 95% in IPK and IRK clones, only 1% of the cells
were prone to infection with HCVee. Also, HCVpp showed lower
entry levels in those cells compared to HuH7.5.1 cells (Fig. S6). ‘This
suggests that hCD81 expression is the minimum and most crucial
requirement for HCV entry into mousc hepatocytes. The discovery
and expression of other co-receptors facilitating HCV entry in
human cells is still required for efficient and robust HCV infection.

In summary, the suppression of IPS-1 is important for the
cstablishment of HCV infection and replication in mouse
hepatocytes through the suppression of both interferon induction
and interferon independent J6JFH1-induced cytopathic effect. We
have established hepatocytes lines from IPS-1 and IFNARko mice
that support HCV replication and infection. These cell lines will
be very uscful in identifying other species restriction factors and

@ PLoS ONE | www.plosone.org

viral determinants required for further establishment of a robust
and cfficient HCV life cycle in mouse hepatocytes. Using those
cells, we showed for the first time the importance of HCV
structural region for viral replication. IRF3ko mouse embryo
fibroblasts (MEFs) were previously shown to support HCV
replication morc efficiently than wild MEFs [25]. Since the
knockout of IPS-1 mainly suppresses signaling in response to virus
RNA detection, and maintains an intact IFN response to other
stimulants, it may result in minimum interference to adaptive
immune responses as compared to IRF3 or IFNARko. Therefore,
further development of hCD8l-transgenic IPS-lko mice may
serve as a good model for the study of immunological responses
against HCV infection. This mouse model can be used as a
backbone for any further future models supporting robust HCV
infectivity for the study of HCV pathogenesis, propagation and
vaccine development.

Material and Methods

Cell culture

HuH7.5.1 cells were cultured in high-glucose Dulbecco’s modified
Eagle’s medium (DMEM; Gibco/Invitrogen, Tokyo, Japan) supple-
mented with 2 mM L-glutamine, 100 U of penicillin/ml, 100 pg of
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Figure 6. J6JFH1 infection into IRK-4 and IPK17 cells. HCV-
NS5A protein detection in mouse IRK4 (A,B) and IPK17 (C,D)
and human 7.5.1 cells (E,F). The cells were transduced with
lentivirus expressing human CD81 gene at 10 MOL. 48 hours later the
cells were infected with 100 times concentrated supernatant medium,
collected during 1 week after transfection of HuH7.5.1 cells with
J6JFHT-RNA (A, C, and E) or JFHIGND-RNA (B, D, and F).
doi:10.1371/journal.pone.0021284.g006

streptomycin/ml and 10% fetal bovine serum. Mousce primary
hepatocytes were isolated from the liver using collagenase
perfusion through the inferior vena cava (IVC), while clamping
the animal’s intrathoracic extension. Hepatocyte isolation and
perfusion control were performed as previously described [26].
Primary and immortalized hepatocytes were cultured in a similar
medium  supplemented  with:  HEPES  (Gibeo/Invitrogen),
20 mmol/L; L-proline, 30 pg/mL; insulin (Sigma, St. Louis,
MO, USA), 0.5 pg/ml; dexamcthasone (Wako, Osaka, Japan),
11077 mol/L; NaHCO;, 44 mmol/L; nicotinamide (Wako),
10 mmol/L; EGF (Wako), 10 ng/ml; L-ascorbic acid 2-phos-
phate (Wako), 0.2 mmol/L; and MEM-non essential amino acids
(Gibco/Invitrogen), 1%.

Gene-disrupted mice

All mice were backerossed with C57BL/6 mice more than seven
times before use. Toll-like receptor adaptor molecule 1 (FICAM-
1) ko [27] and IPS-1ko mice [28] were gencrated in our laboratory
(detailed information regarding the IPS-1 mice will be presented
clsewhere). All mice were maintained under specific-pathogen-frec
conditions in the animal facility of the Hokkaido University
Graduate School of Medicine (Japan).

@ PLoS ONE | www.plosone.org
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RNA extraction, reverse transcriptase polymerase chain
reaction (RT-PCR) and real-time RT-PCR

RNA was cxtracted from cultured cells using ‘I'rizol rcagent
(Invitrogen, San Diego, CA, USA) according to the manufactur-
cr’s protocol. Using 1 pg of total RNA as a template, we
performed RT-PCR  and real-time R'IT-PCR as previously
described 29,30].

In vitro RNA transcription, transfection and preparation of
J6JFH1 and Jfh1 viruses

In vitro RNA transcription, transfection into HuH7.5.1 or mouse
hepatocytes, and preparation of J6JFHT and JFHI viruscs, were all
performed as previously reported [31]. RINA transfection into
human and mousc hepatocytes was performed by clectroporation
using a Gene Pulser 1 (Bio-Rad, Berkeley, California) at 260 V
and 950 Cap.

HCV infection

J6JFH1 and JIFHI1 concentrated medium were adjusted to
contain a similar RNA copy number by real-time RT-PCR.
2x10" cells/well were cultured in 8-well glass chamber slides.
After 24 hours, the medium was removed and replaced by
concentrated medium containing JFHI or J6JFHI viruses. After
three hours, the concentrated medium was removed, cells were
washed with PBS and incubated in fresh medium for 48 hours,
before the detection of infection.

Lentivirus construction, titration and infection

The gene encoding ‘T antigen from simian virus was cloned
from plasmid CSII-EF-SVT [32]. The genes encoding human
CD81 and occludin were cloned from HulH-7.5.1 cells using the
Zero Blunt TOPO PCR Cloning Kit (Invitrogen) according to the
manufacturer’s protocol. These genes were then inserted into the
5FP reporter gene-containing lentiviral expression (pLBIG) vector
using the LeoRI and Xhol restriction sites for SV40T and hCD8I,
and the Xbal and Xhol restriction sites for hOccludin. Lentivirus
expression vectors were then constructed as previously described
27]. GFP cxpression was used for the titration of lentivirus
veetors, and a multiplicity of infection (MOI) of 10 was used for
the infection of mouse cells. Forty-cight hours after the transfection
of hCD81 and/or hOccludin, cells were trypsinized and counted.
Then, 2x10" cells/well were cultured in 8-well glass chamber
slides for HCV infection and 5x10" cells/well were cultured in
12-well plates, along with 1 ml of medium containing HCVpp, for
HCV entry experiments.

HCVpp construction and the detection of luciferase
expression
HCVpp containing the El and E2 proteins from HCV isolate

J6 and expressing the luciferase reporter gene were a kind gift from

Dr. Thomas Pictschmann at the TWINCORE Center for
Experimental and Clinical Infection Rescarch, Germany. The
production of HCVpp and the measurement of luciferase levels
were performed as previously described [33].

Indirect immunofluorescence (IF)

IF expression of HCV proteins was detected in the infected cells
using antibodics in the scrum of chronic HCV patients or rabbit
IgG anti-NS5A  antibody (CI-1) (both kind gifts from K.
Shimotohno, Chiba Institute of Technology, Japan). Goat anti-
human IgG Alexa 594 and goat anti-rabbit Alexa 594 (Invitrogen)
were used as secondary antibodics, respectively. Fluorescence
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Figure 7. Detection of HCV-NS5A protein in IRK-2 (A), IRK-4 (B) and HuH-7.5 cells (C) by IF 5 days after transfection with J6JFH1, FL-

JFH1 or subgenomic JFH1-RNA.
doi:10.1371/journal.pone.0021284.g007

detection was performed on a ZEISS LSM 510 Mecta confocal -

microscope (Zeiss, Jena, Germany).

Detection of cell death

Culture medium was collected from HCV infected and control
cells and used for measuring lactate dechydrogenase (LDH) levels
using an LDH cytotoxicity detection kit (Takara Biomedicals,
"T'okyo, Japan). Light absorbance was then measured according to
the manufacturer’s protocol.

Ethic Statement

This study was carricd out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The
protocol was approved by the Committee on the Ethics of Animal
Experiments in the Animal Safety Center, Hokkaido University,
Japan. All mice were used according to the guidelines of the
institutional animal carc and usc committec of Hokkaido
University, who approved this study as ID number: 08-0243, «
Analysis of immunc modulation by toll-like receptors”.

Supporting Information

Figure S1 R'T detection of TLR3, TLR7, RIG-1, and IPS-1
expression in mousc hepatocytes. GAPDH cxpression was used as
internal control, and RNA from CD1lc+ spleenocytes (dendritic
cells) was used as positive control.

(T1F)

Figure 82 Proliferation of HCV in IPS-1, TICAM-1(I'RIF) and

IFNAR-knockout mouse hepatocytes over time as detected by
quantitative rcal-time RT-PCR analysis of HCV-RNA levels.

@ PLoS ONE | www.plosone.org

JFHIGND transfection into IPS-1 knockout cells was used as a

negative control to exclude non replicating HCV RNA. The data
plotted represent the average +/— STD of 3 different experi-
ments.

(TTE)

Figure 83 Rl detection of CD81, Occludin, Claudin 1, SRBI,
and LDL receptor expression in primary, IRK4 and IPK17 mouse
hepatocytes. GAPDH expression was used as internal control.
(I'1F)

Figure 84 Estimation of the transfection efficiency of lentivirus
vector expressing green fluorescent protein (GFP) as a reporter,
together with hCD81 or hOccludin. 48 hours after transfection
with the lentivirus vector, cells were trypsinized and GFP positive
cells were detected by BD FACSCalibur (BD Biosciences).

(I'1F)

Figure 85 HCV infection of IRK2 cells transfected with
lentivirus expressing hCD81 and/or hOccludin. IRK2 cells were
transfected with lentivirus expressing empty vector (A), hCD81 (B),
hOccludin (C) or hCD81 and hOccludin (D) at a MOI of 10. After
48 hours, the cells were infected with concentrated JGJFHI
transfected 7.5.1 culture medium. After a further three hours, cells
were washed with PBS and incubated in fresh medium. After
another 48 hours, HCV infection was examined through the
detection of HCV-NS5a protein expression by immunofluores-
cence staining.

(TIE)

Figure 86 HCVpp cntry into mousc cells. A similar number of
IPK17 and HuH7.5.1 were cultured in triplicate. IPK 17 cells were
only transfected with lentivirus  expressing hCD81, while
HuH7.5.1 cells were transfected with empty vector at a MOI of
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10. After 48 hours, the medium was replaced with a new medium
containing mock VSVG-pp or HCVpp expressing luciferase. After
another 48 hours, pscudoparticles entry was determined by
measuring the luciferase activity. In order to compare the HCVpp
entry between IPK17 and HuH7.5.1 cells, the luciferase
expression from VSV-Gpp entry was used an internal control,
while that from HCVpp was plotted relatively.

(T1F)
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The microRNA miR-122 and DDX6/Rck/p54, a microRNA effector, have been implicated in hepatitis C virus
(HCV) replication. In this study, we demonstrated for the first time that HCV-JFH1 infection disrupted
processing (P)-body formation of the microRNA effectors DDX6, Lsm1, Xrnl, PATL1, and Ago2, but not the
decapping enzyme DCP2, and dynamically redistributed these microRNA effectors to the HCV production
factory around lipid droplets in HuH-7-derived RSc cells. Notably, HCV-JFH1 infection also redistributed the
stress granule components GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1), ataxin-2
(ATX2), and poly(A)-binding protein 1 (PABP1) to the HCV production factory. In this regard, we found that
the P-body formation of DDX6 began to be disrupted at 36 h postinfection. Consistently, G3BP1 transiently
formed stress granules at 36 h postinfection. We then observed the ringlike formation of DDX6 or G3BP1 and
colocalization with HCV core after 48 h postinfection, suggesting that the disruption of P-body formation and
the hijacking of P-body and stress granule components occur at a late step of HCV infection. Furthermore,
HCYV infection could suppress stress granule formation in response to heat shock or treatment with arsenite.
Importantly, we demonstrate that the accumulation of HCV RNA was significantly suppressed in DDX6, Lsm1,
ATX2, and PABP1 knockdown cells after the inoculation of HCV-JFH1, suggesting that the P-body and the
stress granule components are required for the HCV life cycle. Altogether, HCV seems to hijack the P-body and

the stress granule components for HCV replication.

Hepatitis C virus (HCV) is the causative agent of chronic
hepatitis, which progresses to liver cirrhosis and hepatocellular

carcinoma. HCV is an enveloped virus with a positive single-

stranded 9.6-kb RNA genome, which encodes a large polypro-
tein precursor of approximately 3,000 amino acid (aa) residues.
This polyprotein is cleaved by a combination of the host and
viral proteases into at least 10 proteins in the following order:
core, envelope 1 (E1), E2, p7, nonstructural 2 (NS2), NS3,
NS4A, NS4B, NS5A, and NS5B (12, 13, 21). The HCV core
protein, a nucleocapsid, is targeted to lipid droplets (LDs), and
the dimerization of the core protein by a disulfide bond is
essential for the production of infectious virus (24). Recently,
LDs have been found to be involved in an important cytoplas-
mic organelle for HCV production (26). Budding is an essen-
tial step in the life cycle of enveloped viruses. The endosomal
sorting complex required for transport (ESCRT) system has
been involved in such enveloped virus budding machineries,
including that of HCV (5).

DEAD-box RNA helicases with ATP-dependent RNA-un-
winding activities have been implicated in various RNA met-
abolic processes, including transcription, translation, RNA
splicing, RNA transport, and RNA degradation (32). Previ-
ously, DDX3 was identified as an HCV core-interacting pro-
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tein by yeast two-hybrid screening (25, 29, 43). Indeed, DDX3
is required for HCV RNA replication (3, 31). DDX6 (Rck/
p54) is also required for HCV replication (16, 33). DDX6
interacts with an initiation factor, eukaryotic initiation factor
4E (elF-4E), to repress the translational activity of mRNP
(38). Furthermore, DDX6 regulates the activity of the decap-
ping enzymes DCP1 and DCP2 and interacts directly with
Argonaute-1 (Agol) and Ago2 in the microRNA (miRNA)-
induced silencing complex (miRISC) and is involved in RNA
silencing. DDX6 localizes predominantly in the discrete cyto-
plasmic foci termed the processing (P) body. Thus, the P body
seems to be an aggregate of translationally repressed mRNPs
associated with the translation repression and mRNA decay
machinery.

In addition to the P body, eukaryotic cells contain another
type of RNA granule termed the stress granule (SG) (1, 6, 22,
30). SGs are aggregates of untranslating mRNAs in conjunc-
tion with a subset of translation initiation factors (eIF4E, eIF3,
elF4A, elFG, and poly(A)-binding protein [PABP]), the 40S
ribosomal subunits, and several RNA-binding proteins, includ-
ing PABP, T cell intracellular antigen 1 (TIA-1), TIA-1-related
protein (TIAR), and GTPase-activating protein (SH3 do-
main)-binding protein 1 (G3BP1). SGs regulate mRNA trans-
lation and decay as well as proteins involved in various aspects
of mRNA metabolisms. SGs are cytoplasmic phase-dense
structures that occur in eukaryotic cells exposed to various
environmental stress, including heat, arsenite, viral infection,
oxidative conditions, UV irradiation, and hypoxia. Impor-
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tantly, several viruses target SGs and stress granule compo-
nents for viral replication (10, 11, 34, 39). Recent studies sug-
gest that SGs and the P body physically interact and that
mRNAs may move between the two compartments (1, 6, 22,
28, 30).

miRNAs are a class of small noncoding RNA molecules ~21
to 22 nucleotides (nt) in length. miRNAs usually interact with
3’-untranslated regions (UTRs) of target mRNAs, leading to
the downregulation of mRNA expression. Notably, the liver-
specific and abundant miR-122 interacts with the 5'-UTR of
the HCV RNA genome and facilitates HCV replication (15,
17, 19, 20, 31). Ago2 is at least required for the efficient miR-
122 regulation of HCV RNA accumulation and translation
(40). However, the molecular mechanism(s) for how DDXG6
and miR-122 as well as DDX3 positively regulate HCV repli-
cation is not fully understood. Therefore, we investigated the
potential role of P-body and stress granule components in
HCV replication.

MATERIALS AND METHODS

Cell cultare. 293FT cells were cultured in Dulbecco’s modified Eagle’s me-
dium (DMEM; Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS). HuH-7-derived RSc cured cells, in which cell culture-generated
HCV-JFH1 (JFHI strain of genotype 2a) (37) could infect and effectively rep-
licate, were cultured in DMEM with 10% FBS as described previously (3-5, 23).

Plasmid econstruction. To construct pcDNA3-FLAG-DDX6, a DNA fragment
encoding DDX6 was amplified from total RNAs derived from RSc cells by
reverse transcription (RT)-PCR using KOD-Plus DNA polymerase (Toyobo)
and the following pairs of primers: 5'-CGGGATCCAAGATGAGCACGGCC
AGAACAGAGAACCCTGTT-3' (forward) and 5-CCGCTCGAGTTAAGGT
TTCTCATCTTCTACAGGCTCGCT-3’ (reverse). The obtained DNA frag-
ments were subcloned into either BamHI-Xhol site of the pcDNA3-FLAG
vector (2), and the nucleotide sequences were determined by BigDye termination
cycle sequencing using an ABI Prism 310 genetic analyzer (Applied Biosystems,
Foster City, CA).

RNA interference. The following small interfering RNAs (siRNAs) were used:
human ATXN2/ATX2/ataxin-2 (SiGENOME SMRT pool M-011772-01-005),
human PABP1/PABPCI (siGENOME SMRT pool M-019598-01-005), human
Lsml (siGENOME SMRT pool M-005124-01-005), human Xrnl (SiGENOME
SMRT pool M-013754-01-005), human G3BP1 (ON-TARGETplus SMRT pool
L-012099-00-005), human PATL1 (siGENOME SMRT pool M-015591-00-005),
and siGENOME nontargeting siRNA pool 1 (D-001206-13-05) (Dharmacon,
Thermo Fisher Scientific, Waltham, MA), as a control. siRNAs (25 nM final
concentration) were transiently transfected into RSc cells (3-5, 23) using Oligo-
fectamine (Invitrogen) according to the manufacturer’s instructions. Oligonucleo-
tides with the following sense and antisense sequences were used for the cloning of
short hairpin RNA (shRNA)-encoding sequences targeted to DDX6 (DDXG6i) as
well as the control nontargeting shtRNA (shCon) in a lentiviral vector: 5'-GATCC
CCGGAGGAACTAACTCTGAAGTTCAAGAGACTTCAGAGTTAGTTCCT
CCTTTTTGGAAA-3' (sense) and 5'-AGCTTTTCCAAAAAGGAGGAACTAA
CTCTGAAGTCTCTTGAACTTCAGAGTTAGTTCCTCCGGG-3' (antisense)
for DDX6i and 5'-GATCCCCGAATCCAGAGGTAATCTACTTCAAGAGA
GTAGATTACCTCTGGATTCITTTTGGAAA-3' (sense) and 5'-AGCTTTTC
CAAAAAGAATCCAGAGGTAATCTACTCTCTTGAAGTAGATTACCTC
TGGATTCGGG-3' (antisense) for shCon. The oligonucleotides described
above were annealed and subcloned into the BgHI-HindIlII site, downstream
from an RNA polymerase I promoter of pSUPER (8), to generate pSUPER-
DDX6i and pSUPER-shCon, respectively. To construct pLV-DDXG6i and pLV-
shCon, the BamHI-Sall fragments of the corresponding pSUPER plasmids were
subcloned into the BamHI-Sall site of pRDI292, an HIV-1-derived self-inacti-
vating lentiviral vector containing a puromycin resistance marker allowing for the
selection of transduced cells (7). pLV-DDX3i, described previously (3), was
used.

Lentiviral vector production. The vesicular stomatitis virus G protein (VSV-
G)-pseudotyped HIV-1-based vector system was described previously (27, 44).
The lentiviral vector particles were produced by the transient transfection of the
second-generation packaging construct pCMV-AR8.91 (27, 44), the VSV-G-
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envelope-expressing plasmid pMDG2, as well as pRDI292 into 293FT cells with
FuGene6 reagent (Roche Diagnostics, Mannheim, Germany).

HCYV infection experiments. The supernatants were collected from cell cul-
ture-generated HCV-JFH1 (37)-infected RSc cells (3-5, 23) at 5 days postinfec-
tion and stored at —80°C after filtering through a 0.45-pm filter (Kurabo, Osaka,
Japan) until use. For infection experiments with HCV-JFH1, RSc cells (1 X 10°
cells/well) were plated onto 6-well plates and cultured for 24 h. We then infected
the cells at a multiplicity of infection (MOI) of 1 or 4. The culture supernatants
were collected at 24 h postinfection, and the levels of the core protein were
determined by an enzyme-linked immunosorbent assay (ELISA) (Mitsubishi
Kagaku Bio-Clinical Laboratories, Tokyo, Japan). Total RNA was also isolated
from the infected cellular lysates by using an RNeasy minikit (Qiagen, Hilden,
Germany) for analysis of intracellular HCV RNA. The infectivity of HCV-JFH1
in the culture supernatants was determined by a focus-forming assay at 48 h
postinfection. HCV-JFHI-infected cells were detected by using anti-HCV core
(CP-9 and CP-11 mixture).

Quantitative RT-PCR analysis. The quantitative RT-PCR analysis of HCV
RNA was performed by real-time LightCycler PCR (Roche) as described pre-
viously (3-5, 14, 23). We used the following forward and reverse primer sets for
the real-time LightCycler PCR: 5'-ATGAGTCATGTGGCAGTGGA-3" (for-
ward) and 5'-GCTGGCTGTACTTCCTCCAC-3' (reverse) for DDX3, 5'-ATG
AGCACGGCCAGAACAGA-3' (forward) and 5'-TTGCTGTGTCTGTGTGC
CCC-3' (reverse) for DDX6, 5'-TGACGGGGTCACCCACACTG-3' (forward)
and 5'-AAGCTGTAGCCGCGCTCGGT-3' (reverse) for B-actin, and 5'-AGA
GCCATAGTGGTCTGCGG-3' (forward) and 5'-CTTTCGCAACCCAACGC
TAC-3’ (reverse) for HCV-JFHI.

Preparation of anti-PATLI antibody. The anti-PATL1 antiserum was raised in
rabbits using the glutathione S-transferase (GST)-fused PATLI Ct (C-terminal
region of PATL1, aa 450 to 770) as an antigen, and immunoglobulins were
affinity purified by using the maltose-binding protein (MBP)-fused PATL1 Ct
that was immobilized on an N-hydroxysuccinimide (NHS) column (GE Health-
care Bio-Sciences AB, Uppsala, Sweden).

Preparation of LDs. Lipid droplets (LDs) were prepared as described previ-
ously (26). Cells were pelleted by centrifugation at 1,500 rpm. The pellet was
resuspended in hypotonic buffer (50 mM HEPES [pH 7.4], 1 mM EDTA, 2 mM
MgCl,) supplemented with a protease inhibitor cocktail (Nacalai Tesque, Kyoto,
Japan) and was incubated for 10 min at 4°C. The suspension was homogenized
with 30 strokes of a glass Dounce homogenizer using a tight-fitting pestle (Whea-
ton, Millville, NJ). A 1/10 volume of 10X isotonic buffer {0.2 M HEPES (pH 7.4),
1.2 M potassium acetate (KoAc), 40 mM magnesium acetate [Mg(0Ac),], and 50
mM dithiothreitol (DTT)} was added to the homogenate. The nuclei were
removed by centrifugation at 2,000 rpm for 10 min at 4°C. The supernatant was
collected and centrifuged at 16,000 X g for 10 min at 4°C. The supernatant was
mixed with an equal volume of 1.04 M sucrose in isotonic buffer (50 mM HEPES,
100 mM KCI, 2 mM MgCl,, and protease inhibitor cocktail). The solution was set
in a 13.2-ml Polyallomer centrifuge tube (Beckman Coulter, Brea, CA). One
milliliter of isotonic buffer was loaded onto the sucrose mixture. The tube was
centrifuged at 100,000 X g in an SW41Ti rotor (Beckman Coulter) for 1 h at 4°C.
After the centrifugation, the LD fraction on the top of the gradient solution was
recovered in phosphate-buffered saline (PBS). The collected LD fraction was
used for Western blot analysis.

Western blot analysis. Cells were lysed in a buffer containing 50 mM Tris-HCl
(pH 8.0), 150 mM NaCl, 4 mM EDTA, 1% Nonidet P-40, 0.1% sodium dodecyl
sulfate (SDS), 1 mM DTT, and 1 mM phenylmethylsulfony! fluoride. Superna-
tants from these lysates were subjected to SDS-polyacrylamide gel electropho-
resis, followed by immunoblot analysis using anti-DDX3 (catalog no. 54257 [NT]
and 5428 [IN]; Anaspec, San Jose, CA), anti-DDX6 (A300-460A; Bethyl Labo-
ratories, Montgomery, TX), anti-adipose differentiation-related protein (ADFP;
GTX110204; GeneTex, San Antonio, TX), anti-calnexin (NT; Stressgen, Ann
Arbor, MI), anti-HCV core (CP-9 and CP-11; Institute of Immunology, Tokyo,
Japan), anti-B-actin antibody (A5441; Sigma, St. Louis, MO), anti-ATX2/SCA2
antibody (A302-033A; Bethyl), anti-PABP (sc-32318 [10E10]; Santa Cruz Bio-
technology, Santa Cruz, CA), anti-PABP (ab21060; Abcam, Cambridge, United
Kingdom), anti-G3BP1 (611126; BD Transduction Laboratories, San Jose, CA),
anti-LSM1 (LS-C97364, Life Span Biosciences, Seattle, WA), anti-HSP70
(610607; BD), anti-XRN1 (A300-443A; Bethyl), or anti-PATLI antibody.

Immunofluorescence and confocal microscopic analysis. Cells were fixed in
3.6% formaldehyde in PBS, permeabilized in 0.1% NP-40 in PBS at room
temperature, and incubated with anti-DDX3 antibody (54257 [NT] and 5428
[IN}; Anaspec), anti-DDX3X (LS-C64576; Life Span), anti-DDX6 (A300-460A;
Bethyl), anti-HCV core (CP-9 and CP-11), anti-ATX2/SCA2 antibody (A302-
033A; Bethyl), anti-ataxin-2 (611378; BD), anti-PABP (ab21060; Abcam), anti-
G3BP1 (A302-033A; Bethyl), anti-LSM1 (LS-C97364; Life Span), anti-XRN1
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(A300-443A; Bethyl), anti-Dcp2 (A302-597A; Bethyl), anti-human Ago2 (011-
22033; Wako, Osaka, Japan), or anti-PATL1 antibody at a 1:300 dilution in PBS
containing 3% bovine serum albumin (BSA) for 30 min at 37°C. The cells were
then stained with fluorescein isothiocyanate (FITC)-conjugated anti-rabbit anti-
body (Jackson ImmunoResearch, West Grove, PA) at a 1:300 dilution in PBS
containing BSA for 30 min at 37°C. Lipid droplets and nuclei were stained with
borondipyrromethene (BODIPY) 493/503 (Molecular Probes, Invitrogen) and
DAPI (4',6-diamidino-2-phenylindole), respectively, for 15 min at room temper-
ature. Following extensive washing in PBS, the cells were mounted onto slides
using a mounting medium of 90% glycerin-10% PBS with 0.01% p-phenylene-
diamine added to reduce fading. Samples were viewed under a confocal laser
scanning microscope (LSM510; Zeiss, Jena, Germany).

Statistical analysis. A statistical comparison of the infectivities of HCV in the
culture supernatants between the knockdown cells and the control cells was
performed by using the Student ¢ test. P values of less than 0.05 were considered
statistically significant. All error bars indicate standard deviations.

RESULTS

HCYV infection hijacks the P-body components. To investi-
gate the potential role of P-body components in the HCV life
cycle, we first examined the alteration of the subcellular local-
ization of DDX3 or DDX6 by HCV-JFHI infection using
confocal laser scanning microscopy as previously described (2),
since both DDX3 and DDX6 were identified previously as
P-body components (6). For this, we used HuH-7-derived RSc
cells, in which cell culture-generated HCV-JFH1 (JFH1 strain
of genotype 2a) (37) can infect and effectively replicate (3, 4,
23). HCV-JFH1-infected RSc cells at 60 h postinfection were
stained with anti-HCV core antibody, anti-DDX3, and/or anti-
DDX6. Lipid droplets (LDs) and nuclei were stained with
BODIPY 493/503 and DAPI (4',6-diamidino-2-phenylindole),
respectively. Samples were viewed under a confocal laser scan-
ning microscope. Although we observed that endogenous
DDX3 localized in faint cytoplasmic foci in uninfected RSc
cells, DDX3 relocalized, formed ringlike structures, and colo-
calized with the HCV core protein in response to HCV-JFH1
infection (Fig. 1A). On the other hand, endogenous DDX6 was
localized in the evident cytoplasmic foci termed P bodies in the
uninfected cells (Fig. 1A). DDX6 also relocalized, formed
ringlike structures, and colocalized with the core protein in
response to HCV-JFH1 infection (Fig. 1A). Although we
failed to observe that most of the P bodies of DDX6 perfectly
colocalized with DDX3 in uninfected RSc cells (Fig. 1B), we
observed a few P bodies of DDX6 colocalized with DDX3 in
the uninfected cells (Fig. 1B, arrowheads). Intriguingly, we
found that endogenous DDX3 colocalized with endogenous
DDXG6 in HCV-JFH1-infected cells (Fig. 1B). To further con-
firm this finding, pHA-DDX3 (41) and pcDNA3-FLAG-
DDX6 were cotransfected into 293FT cells. Consequently, we
observed that hemagglutinin (HA)-DDX3 colocalized with
FLAG-DDXG6 in 293FT cells coexpressing HA-DDX3 and
FLAG-DDX6 (Fig. 1B), suggesting cross talk of DDX3 with
DDX6. Recently, LDs have been found to be involved in an
important cytoplasmic organelle for HCV production (26).
Indeed, both DDX3 and DDX6 were recruited around LDs in
response to HCV infection, while these proteins did not colo-
calize with LDs in uninfected naive RSc cells (Fig. 1C). Fur-
thermore, both DDX3 and DDX6 accumulated in the LD
fraction of the HCV-JFH1-infected RSc cells; however, we
could not detect both proteins in the LD fraction from unin-
fected control cells (Fig. 1D), suggesting that DDX3 and

J. VIrROL.

DDXG6 are recruited around LDs in response to HCV infec-
tion.

These results suggest that HCV-JFH1 infection disrupts P-
body formation. Therefore, we further examined whether or
not HCV-JFH1 disrupts the P-body formations of other
microRNA effectors, including Ago2; the Sm-like protein
Lsm1, which is a subunit of heptameric-ring Lsm1-7, involved
in decapping; the 5'-to-3’ exonuclease Xrnl; the decapping
activator PATL1; and the decapping enzyme DCP2 (6, 21, 30).
As expected, HCV-JFHI1 disrupted the P-body formations of
Ago2, Lsml, and Xrnl as well as PATL1 (Fig. 2). Lsm1, Xrnl,
or PATLI1 relocalized, formed ringlike structures, and colocal-
ized with the HCV core protein in response to HCV-JFH1
infection, whereas they were localized predominantly in P bod-
ies in uninfected RSc cells (Fig. 2). In fact, we observed that
DDX6 colocalized with Ago2, a P-body marker (Fig. 2). In
contrast, HCV-JFHL1 failed to disrupt the P-body formation of
DCP2 (Fig. 2). Thus, these results suggest that HCV disrupts
P-body formation through the hijacking of P-body compo-
nents.

HCYV hijacks stress granule components. Since Nonhoff et
al. recently reported that DDXG6 interacted with ataxin-2
(ATX2) (28), we examined the potential cross talk among
DDX6, ATX2, and HCV. Although ATX2 and G3BP1, a well-
known stress granule component (36), were dispersed in the
cytoplasm at 37°C, both proteins formed discrete aggregates
termed stress granules and colocalized with each other in re-
sponse to heat shock at 43°C for 45 min, indicating that ATX2
is also stress granule component (Fig. 3A). We did not observe
prominent colocalization between DDX6 and ATX2 at 37°C
(Fig. 3B). In contrast, we found that DDX6 was recruited,
juxtaposed, and partially colocalized with stress granules of
ATX2 in response to heat shock at 43°C for 45 min in the
uninfected RSc cells (Fig. 3B). Notably, ATX2 was recruited,
formed the ring-like structures, and partially colocalized with
DDXG6 in response to HCV-JFH1 infection even at 37°C (Fig.
3B). Furthermore, we noticed that ATX2 was recruited around
LDs in HCV-JFHI1-infected cells at 72 h postinfection, while
ATX2 did not colocalize with LDs in uninfected cells (Fig. 3C),
suggesting the colocalization of ATX2 with the HCV core
protein in infected cells. Indeed, ATX2 colocalized with the
HCYV core protein in HCV-JFHI1-infected RSc cells at 37°C
(Fig. 3D). Moreover, HCV-JFH1 infection induced the colo-
calization of the core protein with other stress granule com-
ponents, G3BP1 or PABP1 as well as ATX2 (Fig. 4 and 5). To
further confirm our findings, we examined the time course of
the redistribution of DDX6 and G3BP1 after inoculation with
HCV-JFHL. Consequently, we still detected the P-body forma-
tion of DDX6 and dispersed G3BP1 in the cytoplasm, and we
did not observe a colocalization between the HCV core protein
and DDXG6 at 12 and 24 h postinfection (Fig. 4). In contrast, we
found that the P-body formation of DDX6 began to be dis-
rupted at 36 h postinfection (Fig. 4). Consistently, G3BP1
formed stress granules at 36 h postinfection (Fig. 4). We then
noticed a ringlike formation of DDX6 or G3BP1 and colocal-
ization with the HCV core protein after 48 h postinfection
(Fig. 4), suggesting that the disruption of P-body formation
and the hijacking of P-body and stress granule components
occur in a late step of HCV infection.

We then examined whether or not HCV-JFH1 infection
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FIG. 1. Dynamic recruitment of DDX3 and DDX6 around lipid droplets (LDs) in response to HCV-JFHI1 infection. (A) HCV-JFH1 disrupts
the P-body formation of DDXG6. Cells were fixed at 60 h postinfection and were then examined by confocal laser scanning microscopy. Cells were
stained with anti-HCV core (CP-9 and CP-11 mixture) and either anti-DDX3 (54257 and 54258 mixture) or anti-DDX6 (A300-460A) antibody and
then visualized with FITC (DDX3 or DDX6) or Cy3 (core). Images were visualized by using confocal laser scanning microscopy. The two-color
overlay images are also exhibited (merged). Colocalization is shown in yellow. (B) HCV-JFHT1 recruits DDX3 or DDX6 around LDs. Cells were
stained with either anti-DDX3 or anti-DDX6 antibody and were then visualized with Cy3 (red). Lipid droplets and nuclei were stained with
BODIPY 493/503 (green) and DAPI (blue), respectively. A high-magnification image is also shown. (C) Colocalization of DDX3 with DDXG6.
HCV-JFH1-infected RSc cells at 60 h postinfection were stained with anti-DDX3X (LS-C64576) and anti-DDX6 (A300-460A) antibodies. 293FT
cells cotransfected with 100 ng of pcDNA3-FLAG-DDX6 and 100 ng of pHA-DDX3 (41) were stained with anti-FLAG-Cy3 and anti-HA-FITC
antibodies (Sigma). (D) Association of DDX3 and DDXG6 with LDs in response to HCV-JFHL1 infection. The LD fraction and whole-cell lysates
(WCL) were collected from uninfected RSc cells (control) or HCV-JFH1-infected RSc cells at 5 days postinfection. The results of Western blot
analyses of DDX3, DDX6, and the HCV core protein as well as the LD marker ADFP and the endoplasmic reticulum (ER) marker calnexin in
the LD fraction are shown.
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Uninfected RSc cells
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HCV-JFH1-infected RSc cells

DDX6 Merged

HCV Core Xrnt

HCV Core

could affect the stress granule formation of G3BP1, ATX2, or
PABP1 in response to heat shock or treatment with arsenite.
These stress granule components dispersed in the cytoplasm at
37°C, whereas these proteins formed stress granules in re-
sponse to heat shock at 43°C for 45 min or treatment with 0.5
mM arsenite for 30 min (Fig. 5). In contrast, stress granules
were not formed in HCV-JFH1-infected cells at 72 h postin-
fection in response to heat shock at 43°C for 45 min (Fig. 5),
suggesting that HCV-JFHL1 infection suppresses stress granule
formation in response to heat shock or treatment with arsenite.

Ago2 DDX6 Merged

HCV Core

HCV Core

HCV Core

FIG. 2. HCV disrupts the P-body formation of microRNA effectors. Uninfected RSc cells and HCV-JFHI-infected RSc cells at 72 h
postinfection were stained with anti-human AGO2 (011-22033) and anti-DDX6 (A300-460A) antibodies. The cells were also stained with
anti-HCV core and anti-Lsm1 (LS-C97364), anti-Xrn1 (A300-443A), anti-PATL1, or anti-DCP2 (A302-597A) antibodies and were examined by
confocal laser scanning microscopy.

Intriguingly, G3BP1, ATX2, or PABP1 still colocalized with
the HCV core protein even under the above-described stress
conditions (Fig. 5). Furthermore, Western blot analysis of cell
lysates of uninfected or HCV-JFHI-infected cells at 72 h
postinfection showed similar protein expression levels of
ATX2, PABP1, HSP70, DDX3, DDX6, and Lsml but not
G3BP1 (Fig. 6), suggesting that HCV-JFH1 infection does not
affect host mRNA translation.

P-body and stress granule components are required for
HCY replication. Finally, we investigated the potential role of
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FIG. 3. Dynamic redistribution of ataxin-2 (ATX2) around LDs in response to HCV-JFH1 infection. (A) ATX2 is a stress granule component.
RSc cells were incubated at 37°C or 43°C for 45 min. Cells were stained with anti-G3BP1 (A302-033A) and anti-ATX2 (A93520) antibodies and
were examined by confocal laser scanning microscopy. (B) Dynamic redistribution of DDX6 and ATX2 in response to heat shock or HCV
infection. RSc cells after heat shock at 43°C for 45 min or 72 h after inoculation with HCV-JFH1 were stained with anti-DDX6 and anti-ATX2
(A93520) antibodies. (Cy HCV relocalizes ataxin-2 to LDs. HCV-JFH1-infected RSc cells at 72 h postinfection were stained with anti-ATX2
(A93520) antibody and BODIPY 493/503. (D) ATX2 colocalizes with the HCV core protein. HCV-JFH1-infected RSc cells at 72 h postinfection
were stained with anti-ATX2/SCA2 (A301-118A) and anti-HCV core antibodies.

P-body and stress granule components in the HCV life cycle.
We first used lentiviral vector-mediated RNA interference to
stably knock down DDXG6 as well as DDX3 in RSc cells. We
used puromycin-resistant pooled cells 10 days after lentiviral
transduction in all experiments. Real-time LightCycler RT-
PCR analysis of DDX3 or DDX6 demonstrated a very effective
knockdown of DDX3 or DDX6 in RSc cells transduced with
lentiviral vectors expressing the corresponding shRNAs (Fig.
7A). Importantly, shRNAs did not affect cell viabilities (data
not shown). We next examined the levels of HCV core and the
infectivity of HCV in the culture supernatants as well as the
level of intracellular HCV RNA in these knockdown cells 24 h
after HCV-JFH1 infection at an MOI of 4. The results showed
that the accumulation of HCV RNA was significantly sup-
pressed in DDX3 or DDXG6 knockdown cells (Fig. 7B). In this
context, the release of the HCV core protein and the infectivity
of HCV in the culture supernatants were also significantly
suppressed in these knockdown cells (Fig. 7C and D). This
finding suggested that DDXG6 is required for HCV replication,
like DDX3. To further examine the potential role of other
P-body and stress granule components in HCV replication, we
used RSc cells transiently transfected with a pool of siRNAs
specific for ATX2, PABP1, Lsm1, Xrnl, G3BP1, and PATL1
as well as a pool of control siRNAs (siCon) following HCV-

JFHI infection. In spite of the very effective knockdown of
each component (Fig. 7E), the siRNAs used in these experi-
ments did not affect cell viabilities (data not shown). Conse-
quently, the accumulation of HCV RNA was significantly sup-
pressed in ATX2, PABP1, or Lsm1 knockdown cells (Fig. 7F),
indicting that ATX2, PABP1, and Lsm1 are required for HCV
replication. In contrast, the level of HCV RNA was not af-
fected in Xrnl knockdown cells (Fig. 7F), suggesting that Xrnl
is unrelated to HCV replication. Furthermore, we observed a
moderate effect of siG3BP1 and siPATL1 on HCV RNA rep-
lication (Fig. 7F). Altogether, HCV seems to hijack the P-body
and stress granule components around LDs for HCV replica-
tion.

DISCUSSION

So far, the P body and stress granules have been implicated
in mRNA translation, RNA silencing, and RNA degradation
as well as viral infection (1, 6, 22, 30). Host factors within the
P body and stress granules can enhance or limit viral infection,
and some viral RNAs and proteins accumulate in the P body
and/or stress granules. Indeed, the microRNA effectors
DDX6, GW182, Lsml, and Xrnl negatively regulate HIV-1
gene expression by preventing the association of viral mRNA
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FIG. 4. Dynamic redistribution of DDX6 and G3BP1 in response to HCV-JFH1 infection. RSc cells at the indicated times (hours) after
inoculation with HCV-JFH1 were stained with anti-HCV core and either anti-DDX6 (A300-460A) or anti-G3BP1 (A302-033A) antibodies.

with polysomes (9). In contrast, miRNA effectors such as
DDXG6, Lsml, PatL1, and Ago2 positively regulate HCV rep-
lication (Fig. 7B and F) (16, 31, 33). We have also found that
DDX3 and DDX6 are required for HCV RNA replication (3)
(Fig. 7B) and that DDX3 colocalized with DDX6 in HCV-
JFH1-infected RSc cells (Fig. 1B), suggesting that DDX3 co-
modulates the DDX6 function in HCV RNA replication. In
this regard, the liver-specific miR-122 interacts with the 5'-
UTR of the HCV RNA genome and positively regulates HCV
replication (15, 17, 19, 20, 31). Since miRNAs usually interact
with DDX6 and Ago2 in miRISC and are involved in RNA
silencing, DDX6 and Ago2 may be required for miR-122-

dependent HCV replication. Indeed, quite recently, a study
showed that Ago2 is required for miR-122-dependent HCV
RNA replication and translation (40). However, little is known
regarding how miR-122 and DDX6 positively regulate HCV
replication. Accordingly, we have shown that these miRNA
effectors, including DDX6, Lsm1, Xrnl, and Ago2, accumu-
lated around LDs and the HCV production factory and colo-
calized with the HCV core protein in response to HCV infec-
tion (Fig. 1 and 2). However, the decapping enzyme DCP2 did
not accumulate and colocalize with the core protein (Fig. 2).
Consistent with this finding, Scheller et al. reported previously
that the depletion of DCP2 by siRNA did not affect HCV
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FIG. 5. HCV suppresses stress granule formation in response to
heat shock or treatment with arsenite. Naive RSc cells or HCV-JFH1-
infected RSc cells at 72 h postinfection were incubated at 37°C or 43°C
for 45 min. Cells were also treated with 0.5 mM arsenite for 30 min.
Cells were stained with anti-HCV core and anti-G3BP1 (A), anti-
ATX2 (B), or anti-PABP1 (ab21060) (C) antibodies and were exam-
ined by confocal laser scanning microscopy.

HIJACKING P-BODY AND STRESS GRANULE COMPONENTS BY HCV 6889
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FIG. 6. Host protein expression levels in response to HCV-JFH1
infection. The results of the Western blot analyses of cellular lysates
with anti-ATX2/SCA2 antibody (A301-118A), anti-PABP1 (ab21060),
anti-HSP70 (610607), anti-HCV core, anti-B-actin, anti-DDX3 (54257
[NT] and 5428 [IN] mixture), anti-DDX6 (A300-460A), anti-G3BP1
(611126), or anti-LSM1 (LS-C97364) antibody in HCV-JFH1-infected
RSc cells at 72 h postinfection as well as in naive RSc cells are shown.

production (33). Since HCV harbors the internal ribosome
entry site (IRES) structure in the 5'-UTR of the HCV genome
instead of a cap structure, unlike HIV-1, DCP2 may not be
recruited on the HCV genome and utilized for HCV replica-
tion. Otherwise, DCP2 may determine whether or not DDX6
and miRNAs positively or negatively regulate target mRNA.

Furthermore, we have demonstrated that HCV infection
hijacks the P-body and stress granule components around LDs
(Fig. 1, 2, 4, and 5). We have found that the P-body formation
of DDX6 began to be disrupted at 36 h postinfection (Fig. 4).
Consistently, G3BP1 formed stress granules at 36 h postinfec-
tion. We then observed the ringlike formation of DDX6 or
G3BP1 and colocalization with the HCV core protein after
48 h postinfection, suggesting that the disruption of P-body
formation and the hijacking of P-body and stress granule com-
ponents occur at a late step of HCV infection. Furthermore,
HCYV infection could suppress stress granule formation in re-
sponse to heat shock or treatment with arsenite (Fig. 5). In this
regard, West Nile virus and dengue virus, of the family Flavi-
viridae, interfere with stress granule formation and P-body
assembly through interactions with T cell intracellular antigen
1 (TIA-1)/TIAR (11). Moreover, PABP1 and G3BP1, stress
granule components, are known to be common viral targets for
the inhibition of host mRNA translation (34, 39). In fact,
HIV-1 and poliovirus proteases cleave PABP1 and/or G3BP1
and suppress stress granule formation during viral infection
(34, 39). On the other hand, HCV infection transiently induced
stress granules at 36 h postinfection (Fig. 4) and did not cleave
PABP1 (Fig. 6); however, HCV could suppress stress granule
formation in response to heat shock or treatment with arsenite
through hijacking their components around LDs, the HCV
production factory (Fig. 5). Consistently, Jones et al. showed
that HCV transiently induces stress granules of enhanced
green fluorescent protein (EGFP)-G3BP at 36 h after infection
with the cell culture-generated HCV (HCVcc) reporter virus
Jc1FLAG2 (p7-nsGluc2A); however, those authors did not
show the recruitment of EGFP-G3BP to LDs (18). Although
we do not know the exact reason for this apparent discrepancy,
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FIG. 7. Requirement of P-body and stress granule components for HCV replication. (A) Inhibition of DDX3 or DDX6 mRNA expression by
the shRNA-producing lentiviral vector. Real-time LightCycler RT-PCR for DDX3 or DDX6 was also performed for B-actin mRNA in RSc cells
expressing shRNA targeted to DDX3 (DDX3i) or DDX6 (DDXG6i) or the control nontargeting shRNA (shCon) in triplicate. Each mRNA level
was calculated relative to the level in RSc cells transduced with the control nontargeting lentiviral vector (shCon), which was assigned as 100%.
Error bars in this panel and other panels indicate standard deviations. (B) Levels of intracellular genome-length HCV-JFH1 RNA in the cells at
24 h postinfection at an MOI of 4 were monitored by real-time LightCycler RT-PCR. Results from three independent experiments are shown. Each
HCV RNA level was calculated relative to the level in RSc cells transduced with a control lentiviral vector (shCon), which was assigned as 100%.
(C) The levels of HCV core in the culture supernatants from the stable knockdown RSc cells 24 h after inoculation of HCV-JFH1 at an MOT of
4 were determined by ELISA. Experiments were done in triplicate, and columns represent the mean core protein levels. (D) The infectivity of HCV
in the culture supernatants from stable-knockdown RSc cells 24 h after inoculation of HCV-JFH1 at an MOI of 4 was determined by a
focus-forming assay at 24 h postinfection. Experiments were done in triplicate, and each virus titer was calculated relative to the level in RSc cells
transduced with a control lentiviral vector (shCon), which was assigned as 100%. (E) Inhibition of ATX2, PABP1, Lsm1, Xrn1, G3BP1, or PATLI
protein expression by 72 h after transient transfection of RSc cells with a pool of control nontargeting siRNA (siCon) or a pool of siRNAs specific
for ATX2, PABPI1, Lsm1, Xrnl, G3BP1, or PATL1 (25 nM), respectively. The results of Western blot analyses of cellular lysates with anti-ATX2,
anti-PABP1, anti-Lsm1, anti-Xrnl, anti-G3BP1, anti-PATLI1, or anti-B-actin antibody are shown. (F) Levels of intracellular genome-length
HCV-JFH1 RNA in the cells at 48 h postinfection at an MOI of 1 were monitored by real-time LightCycler RT-PCR. RSc cells were transiently
transfected with a pool of control siRNA (siCon) or a pool of siRNAs specific for ATX2, PABP1, Lsm1, Xrnl, G3BP1, and PATL1 (25 nM). At
48 h after transfection, the cells were inoculated with HCV-JFH1 at an MOI of 1 and incubated for 2 h. The culture medium was then changed
and incubated for 22 h. Experiments were done in triplicate, and each HCV RNA level was calculated relative to the level in RSc cells transfected
with a control siRNA (siCon), which was assigned as 100%. Asterisks indicate significant differences compared to the control treatment (%, P <
0.01).
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