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Fig. 5. Enhancement of TAA-specific T-cell responses in HCC patients

by CTLA-4 antibodies. (A) Summary of patients and peptides with an

increase of the number of IFN-p-producing T cells. Black, gray, white, and hatched boxes indicate the immune responses with an increase of
more than 10 specific spots, an increase of 1-10 specific spots, without change and a decrease of 1-10 specific spots, respectively. (B) Repre-
sentative results of six patients are shown. Black and white bars indicate the results of assays incubated with CTLA-4 antibodies and mouse
1gG2a isotype control, respectively. Data are expressed as the mean = SD of specific spots, except for patients 14 and 31. (C) Effects of
CTLA-4 antibodies on production of cytokine and chemokine. Cytokine and chemokine levels in the medium of ELISPOT assay were measured
using the Bio-plex assay. The graphs indicate the concentrations of cytokine and chemokine in the medium of ELISPOT assay using PBMCs of
patient 31 and peptide 13 (medium in ELISPOT assay with enhancement of T-cell response) (see A,B). The increase of cytokines and chemo-
kines after incubation with anti-CTLA-4 antibodies was confirmed in another three experiments using PBMCs of three other patients. (D) The
graphs indicate the concentrations of cytokine and chemokine in the medium of ELISPOT assay using PBMCs of patient 31 and peptide 22 (me-

dium in ELISPOT assay without enhancement of T-cell response) (see A).

specific CTLs, no patients achieved an objective tumor
response; therefore, the search for TAAs as suitable tar-
gets for HCC immunotherapy and identification of
their epitopes are important issues in therapy develop-
ment. However, to date, T-cell responses to previously
identified TAAs or their epitopes have been measured
simultaneously and comparatively in only one study
involving several patients with HBV-related HCC, 2
but no 1~ccll responses to the many other TAAs or
their epitopes have been evaluated.

In this study we performed a simultaneous, compar-
ative analysis of immune responses to 27 different
CTL epitopes derived from 14 previously reported
TAAs in the peripheral blood lymphocytes of 31
HCV-related HCC patients. We noted immune
responses to epitopes (peptides 4, 12, 13, 16, 17, 22,
24, and 27) derived from CypB, SART2, SART3,

p53, MRP3, AFP, and hTERT in more than two
patients (Fig. 1). These findings suggest the immuno-
genicity of these TAAs and their epitopes. In addition,
the frequencies of peripheral blood CTLs specific to
epitopes (peptides 4, 13, 16, 22, and 24) derived from
CypB, SART3, p53, MRP3, and AFP, as detected by
the ELISPOT assay, were high (>20 specific spots/
300,000 PBMCs), suggesting the high immunogenicity
of these TAAs and their epitopes.

Among these immunogenic antigens the expression
of p53, MRP3, AFP, and hTERT was reported in
HCC. 8194344 \We also previously confirmed that the
expression of SART2 and SART3 was observed in
100% of human HCC tissue (data not shown). As for
CypB, this protein is well known to be widely
expressed in normal and malignant tissue’; therefore,
it is considered to be expressed in HCC.
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Regarding tumor immunotherapy, it has recently
been reported that strong immune responses can be
induced at an earlier postvaccination time using, as
peptide vaccines, epitopes that frequently occur in pe-
ripheral blood CTL precursors.””> The epitopes (pep-
tides 4, 12, 13, 16, 22, 24, and 27) that were derived
from CypB, SART2, SART3, p53, MRP3, AFP, and
hTERT and considered to be highly immunogenic in
this study were capable of inducing epitope-specific
CTLs from the PBMCs of HCC patients, suggesting
that these epitopes can be candidates for peptide
vaccines.

Next, TAA-specific immune responses were com-
pared among three groups of subjects: HCC patients,
normal blood donors, and patients with chronic hepa-
titis C not complicated by HCC. The results showed
that there were no differences in the positive rate of
immune responses to CMV among the three groups
and no difference in the positive rate of immune
responses to HCV  between chronic hepatitis C
patients with and without HCC. However, TAA-spe-
cific immune responses were observed frequently only
in HCC patients, indicating that these immune
responses are specific to HCC.

In the present study we also analyzed factors influ-
encing host immune responses to these TAA-derived
epitopes. Previous studies have reported that treat-
ments, such as RFA and TAE, enhance HCC-specific
T-cell responses.m’”’38 However, TAAs and their epi-
topes, to which these enhanced immune responses
occur, have not been identified. Thus, we simultane-
ously measured immune responses to 27 different epi-
topes derived from 14 TAAs in 12 patients who were
available for analysis before and after treatment. The
results showed that the antigens and their epitopes to
which treatment-enhanced T-cell responses occur were
diverse and some of them were newly induced after
HCC treatment, suggesting that HCC treatments
could induce de novo T-cell responses and these TAAs
and their epitopes can be candidates as targets for
HCC immunotherapy.

Furthermore, it became clear that enhanced immune
responses to TAAs were induced not only by previ-
ously reported RFA and TAE, but also by cytotoxic
drug chemotherapy. The patients who received chemo-
therapy showed partial responses after the treatment;
therefore, we considered that it induced release of
TAA into the tumor environment by tumor necrosis
and/or apoptosis such as the mechanism reported in
RFA or TAE."”?"*® Thus, our findings suggest that
combined cancer chemotherapy and immunotherapy is
useful as a treatment for HCC.

HEPATOLOGY, April 2011

Analysis of the memory phenotypes of the T cells
thus induced showed that the phenotypes of T cells
whose frequency increased were mostly CD45RA™/
CCR7" T cells (central memory T cells). Previous
studies have reported that T cells with this phenotype
differentiate into effector memory T cells and effector
T cells, and that they require secondary stimulation by
antigen to exert stronger antitumor effects.”® There-
fore, our findings suggest that the antitumor effect of
tumor-specific T cells induced by HCC treatment is
insufficient, and a booster with TAAs or epitope-con-
taining peptides is a suitable method to further
enhance antitumor effects.

Finally, we investigated the effect of anti-CTLA-4
antibodies, which have recently been in clinical trials
as drugs enhancing antitumor immunity, on the host
immune response to HCC. Regarding the mechanism
of the antitumor activity of anti-CTLA-4 antibodies, it
has been reported that they maximize the antitumor
effect by blocking CTLA-4 on the surface of effector
and regulatory T cells.”” Because the number of pe-
ripheral blood regulatory T cells has been reported to
increase in HCC patients,”> TAA-specific CTLs that
should be present but may not be detected by the ELI-
SPOT assay. Therefore, in this study anti-CTLA-4
antibodies were added along with peptides to examine
their effect on the ELISPOT assay.

The addition of anti-CTLA-4 antibodies resulted in an
increase in the frequency of TAA-specific T cells in 60%
of HCC patients. Although most patients showed an
increase of only 1-10 TAA-specific T cells, the increased
number of T cells was statistically significant. In addition,
an increase of more than 10 TAA-specific T cells and a
conversion from a negative to a positive response were
observed in four patients. These results suggested that the
anti-CTLA-4 antibodies unmasked IFN-y production by
CTLs. However, the function might be limited because
the number of TAA-specific T cells was not changed and
even decreased in some patients.

The cytokine and chemokine profiling showed that
the addition of anti-CTLA-4 antibodies increased the
production of not only IFN-y but also cytokines, such
as TNF-o, IL-1, and IL-6, and chemokines such as
MIP-1; therefore, we speculate that the increased pro-
duction of these antitumor immunity substances also
plays a role in the unmasking of TAA-specific CTLs
by anti-CTLA-4 antibodies. These results suggest that
anti-CTLA-4 antibody is promising as a drug to
enhance antitumor immunity, and that the ELISPOT
assay with this antibody may serve as a more appropri-
ate test tool to detect more HCC-specific TAAs or
their epitopes.
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On the other hand, recent studies have shown the
important role of CD4" helper T cells in optimal
function and proliferation of CD8% T cells.*® There-
fore, the lack of CD4% helper T cells or anergic
CD4" T cells may explain the limited TAA-specific
CD8™" T-cell responses in HCC. Further studies using
CD4" T-cell-depleted PBMCs or CD8" T cells
expanded with TAA-derived peptide may enable iden-
tification of more immunogenic HCC-specific TAAs
and their epitopes.

In conclusion, the results of this study suggest that
CypB, SART2, SART3, p53, MRP3, AFP and
hTERT are promising TAAs in HCC immunotherapy,
that the administration of these TAAs or peptides con-
taining their epitopes as vaccines after HCC treatment
is likely to be effective, and that the concomitant use
of anti-CTLA-4 antibodies may further increase antitu-
mor immunity. We believe that the results of this
study provide useful information for the development
of immunotherapy for HCC.
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Abstract

Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) and
chronic liver disease worldwide. Recent developments and advances in HCV replication
systems in vitro and in vivo, transgenic animal models, and gene expression profiling
approaches have provided novel insights into the mechanisms of HCV replication. They
have also helped elucidate host cellular responses, including activated/inactivated signaling
pathways, and the relationship between innate immune responses by HCV infection and
host genetic traits. However, the mechanisms of hepatocyte malignant transformation
induced by HCV infection are still largely unclear, most likely due to the heterogeneity of
molecular paths leading to HCC development in each individual. In this review, we
summarize recent advances in knowledge about the mechanisms of hepatocarcinogenesis

induced by HCV infection.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malig-
nancy and the third leading cause of cancer death worldwide.' The
majority of HCCs arise from a background of chronic liver dis-
eases caused by infection with hepatitis B virus (HBV) or hepatitis
C virus (HCV).” Although both viruses are hepatotropic and
regarded as causative agents of HCC, the underlying mechanisms
of hepatocarcinogenesis are considered to be largely different,
partly due to differences in the nature of DNA viruses (with an
integration capacity for the host genome) and RNA viruses (with
no genome integration capacity).

Hepatitis C virus is an RNA virus that is unable to integrate
into the host genome but, instead, its proteins interact with
various host proteins and induce host responses that potentially
contribute to the malignant transformation of cells. In addition,
HCC usually develops in the setting of liver cirrhosis after long-
term continuous inflammation/regeneration processes; these
accelerate the turnover of hepatocytes with increased risk of rep-
lication errors and DNA damage. Furthermore, recent genome-
wide association studies have suggested that the natural course of
HCV infection might be modified by the genetic background
of the host.>* Thus, both host and virus factors are considered to
affect the process of hepatocarcinogenesis in a complex
manner.

In this review, we summarize the current knowledge of the
mechanisms of hepatocarcinogenesis induced by HCV infection.
We also focus on recent findings of transcriptomic characteristics
of HCV-related HCC and summarize the potential signaling path-
ways that are altered in this condition.

960

Epidemiology

Chronic HCV infection is a major risk factor for the development
of HCC worldwide. According to the World Health Organization
(WHO), approximately 170 million people are chronically
infected with HCV. Although epidemiological evidence has sug-
gested a clear, close relationship between HCV infection and
HCC,’¢ the prevalence of HCV infection in HCC patients differs
noticeably between geographical regions. Thus, HCV infection is
found in 70-80% of HCC patients in Japan, 70% in Egypt,
40-50% in Italy and Spain, about 20% in the United States (US),
and less than 10% in China.”” In industrialized countries including
the US, a recent increase in HCC incidence and mortality has been
observed, potentially due to the rising incidence of HCV infection
transmitted through contaminated blood.'

Hepatitis C virus increases the risk of HCC by promoting
inflammation and fibrosis of the infected liver that eventually
results in liver cirrhosis. Once HCV-related cirrhosis is estab-
lished, HCC develops at an annual rate of about 4-7%."" Other
factors including alcohol intake, diabetes, and obesity have also
been reported to increase the risk of HCC development by about
two- to fourfold, indicating a strong life-style effect on the process
of hepatocarcinogenesis.>!* Age and male gender are also con-
tributing risk factors for HCV-related HCC, although the detailed
mechanisms are still debatable.

Virus proteins and host responses

Hepatitis C virus belongs to the Flaviviridae family. It has a
positive-stranded linear RNA genome of about 9.6-kb containing a
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single large open reading frame encoding three structural (core,
El, and E2) and seven non-structural (p7, NS2, NS3, NS4A,
NS4B, NS5A, and NS5B) proteins. ™ The structural proteins form
the HCV virions, whereas non-structural proteins are involved in
the processes of viral replication, assembly, and maturation. HCV
proteins are known to be processed by host and viral proteases.
Both structural and non-structural proteins can interact with
various host cellular proteins to potentially promote the malignant
transformation of hepatocytes (see recent reviews™'™!%), In this
review, because of space limitations, we focus on the findings of
core and NSS5A proteins in terms of host responses potentially
evoked during the process of HCV-related hepatocarcinogenesis.

Core protein

Hepatitis C virus core is a 21-kDa nucleocapsid protein with an
RNA-binding capacity. In addition to its function in regulating
HCV-RNA translation and HCV particle assembly, core protein is
known to be involved in mediating the alteration of various host
cell signaling pathways, transcriptional activation, modulation of
immune responses, apoptosis, oxidative stress, and lipid metabo-
lism.” Several recent studies have indicated the statistically signifi-
cant high frequency of mutations in the core gene in HCV-infected
patients who developed HCC.''® However, the functional rel-
evance of mutant core proteins on the malignant transformation of
hepatocytes or the HCV life cycle has yet to be clarified.

Evidence of core protein as a causative agent of HCC was
initially obtained from the transgenic mice model in which core
gene overexpression, under the regulation of the HBV regulatory
element used as a promoter, resulted in steatosis of mouse livers in
early life, with subsequent development of adenoma and HCC."”
However, another mouse model using a different promoter and of
a different strain background resulted only in steatosis or different
phenotypes without HCC development.®**! Similar controversial
findings were reported in transgenic mice expressing HCV
polyprotein or structural protein with regards to the development
of HCC.%2? Thus, the role of core protein alone in the develop-
ment of HCC remains unclear in transgenic mouse models.

Although the direct role of core protein in the malignant trans-
formation of hepatocytes is still under investigation, it seems to be
related to the development of hepatic steatosis.!*?* Indeed, steato-
sis is one of the risk factors for the development of HCV-related
HCC,»%* and activation of the lipogenic pathway has been
reported in a subset of HCC cases.”” Core protein is associated
with the surface of lipid droplets in infected cells and might be
directly related to steatosis through several factors responsible for
lipid biogenesis and degradation, including peroxisome
proliferator-activated receptor alpha and sterol-regulatory element
binding protein-1.2'?*-3" Furthermore, core protein is reported to
interact with endoplasmic reticulum (ER) or mitochondrial outer
membranes and induce ER stress by perturbation of protein
folding or by the accumulation of reactive oxygen species (ROS)
through mitochondrial dysfunction.***> ROS produced in this way
might result in DNA damage to the host genome and accelerate the
process of hepatocarcinogenesis. Increased hepatic iron deposition
may also induce oxidative stress and lipid peroxidation, thus
increasing the risk of HCC development in HCV polyprotein
transgenic mice.*

Journal of Gastroenterology and Hepatology 26 (2011) 960-964

Mechanisms of hepatocarcinogenesis in HCV

Since the discovery of HCV, various studies have investigated
the role of core on host cells. Its effects have been demonstrated on
signaling pathways responsible for the cell cycle, and apoptosis
through interaction with several tumor suppressors including p53,
p73, and p21°* as well as apoptosis regulators such as tumor
necrosis factor-oo (TNF-ot) signaling or Bcl-2 members.
However, the data obtained from these studies are relatively incon-
sistent with each other and have varied across experimental
models. Core protein may influence the growth and proliferation
of host cells through activation of signaling pathways such as
Raf/mitogen activated protein kinase (MAPK),* Wnt/beta cate-
nin,'® and transforming growth factor-B (TGF-PB)."** These path-
ways are known to be activated in HCC.* The findings therefore
indicate a potential role for core in cell proliferation or suppression
of apoptosis during malignant transformation of hepatocytes in the
liver of chronic hepatitis C, where chronic inflammation and
regeneration of hepatocytes continuously occurs.

NS5A protein

NS5A is a 56-58-kDa protein phosphorylated at serine residues by
serine-threonine kinase*® and is essential for replication of the
HCV genome. NS5A protein forms part of the viral replicase
complex and is localized mainly in the cytoplasm of infected cells
in association with the ER. NS5A can become a lower molecular
weight protein through post-translational modification, after which
it can undergo translocation to the nucleus where it acts as a
transcriptional activator. High frequencies of wild-type NS5A
genes were reported to be dominant in liver cirrhosis patients who
finally developed HCC compared with those who did not,*” but the
mechanistic significance of the NS5A wild/mutant genotypes in the
process of HCV-related hepatocarcinogenesis remains uncertain.

NS5A protein has been suggested to interact with various sig-
naling pathways including cell cycle/apoptosis*® and lipid metabo-
lism?$4%5 in host cells and shares some signaling targets with core
protein. NS5A is recognized as a transcriptional activator for many
target genes®! including p53 and its binding protein, TATA binding
protein (TBP). Transcription factor IID activities were reported to
be modified by NS5A in the suppression of p53-dependent tran-
scriptional transactivation and apoptosis.”*** NS5A may also inter-
act with pathways such as Bcl2,* phosphatidylinositol 3-kinase
(PI3-K), Wnt/beta catenin signaling,® and mTORY to activate
cell proliferation signaling and inhibit apoptosis.

Taken together, intriguing data concerning the function of core
and NS5A proteins on host cell signaling pathways, transcriptional
activation, apoptosis, oxidative stress, and lipid metabolism
described above suggest a diverse role for HCV proteins in the
pathophysiology of chronic hepatitis C that leads to malignant
transformation in infected hepatocytes. Key findings and present
concepts are summarized in Figure 1.

Transcriptomic characteristics of
HCV-related HCC

As described above, HCV proteins can evoke various host
responses in infected cells at transcriptional/translational/post-
translational levels. Furthermore, enhanced cell death/regeneration
processes are considered to induce DNA damage and accelerate
replication errors that cause frequent mutations and genomic alter-
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Signaling pathways potentially affected by hepatitis C virus
(HCV) proteins. EGF, epidermal growth factor; ER, endoplasmic reticu-
lum; IGF, insulin-like growth factor; MAPK, mitogen activated protein
kinase; mTOR, mammalian target of rapamycin; PI3-K, phosphatidyli-
nositol 3-kinase; PPAR, peroxisome proliferator-activated receptor;
ROS, reactive oxygen species; SREBP, sterol-regulatory element
binding protein; TBP, TATA binding protein.

Figure 1

ation in the host genome. The central dogma is defined as the flow
of genetic information from DNA to mRNA and then to protein, so
genetic/genomic  alterations and  transcriptional/translational
modifications are ultimately considered to affect the cellular sig-
naling pathway at the transcriptional level.

Over the past decade, several methods (including differential
display, serial analysis of gene expression [SAGE], and micro-
array) have been developed to allow comparative studies of gene
expression between normal and cancer cells on a genome-wide
scale,”™ and the analysis of a set of all RNA molecules (mainly
indicating mRNAs) is termed as whole transcriptome analysis.
Extensive transcriptome analysis of HCC and corresponding non-
cancerous livers has been performed, and the results have greatly
increased our knowledge about the transcriptome characteristics of
HCV-related HCC.

Early microarray and SAGE studies investigating the gene
expression patterns of chronic hepatitis B and C tissues indicated
that these two chronic hepatitis tissues had distinct gene expres-
sion profiles; the genes activated in chronic hepatitis C were cor-
related with signaling pathways associated with apoptosis,
oxidative stress responses, and Thl cytokine signaling.”*% An
early study comparing genes activated in HCV-related and HB V-
related HCCs showed that the genes associated with xenobiotic
metabolism were more abundantly expressed in HCV-related
HCC,%' suggesting a detoxification role, which is potentially
induced by chronic inflammation and generation of ROS resulting
from HCV infection. In contrast, HBV-related HCC might closely
correlate with the activation of imprint genes, including insulin-
like growth factor-II (IGF-II) as investigated by oligo-DNA
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microarray,*” suggesting a role of de-differentiation or epigenetic
alteration of the host genome in HBV-related HCC. Activation of
genes associated with interferon, oxidative stress, apoptosis, and
lipid metabolism signaling was detected in HCV-related HCC and
chronic hepatitis C specimens,”"%%® consistent with numerous
functional studies that have investigated the host response evoked
by HCV structural and non-structural proteins.*

Transcriptome analysis has also recently shed new light on the
transcriptional alteration events occurring in early stages of HCV-
related hepatocarcinogenesis. GPC3 (encoding Glypican 3) was
identified as one of the most activated transcripts in the early stage
of hepatocarcinogenesis,**®* while several recent studies showed
that gene signatures including GPC3 can successfully discriminate
HCCs from pre-malignant dysplastic nodules and cirrhosis
nodules.®% Close examination of genes differentially expressed
among cirrhotic nodules, dysplastic nodules, and early and
advanced HCV-related HCC tissues has also suggested roles for
Toll-like receptor signaling, Wnt signaling, bone morphogenetic
protein (BMP)/TGF-f signaling, JAK-STAT signaling, and DNA
repair/cell cycle responses in each step of the malignant transfor-
mation processes.”” These processes might therefore provide can-
didate molecular targets for the chemoprevention of HCV-related
HCC.

Recent advances in transcriptome analysis have also provided
detailed information on the status of small noncoding RNAs,
microRNAs, that can regulate the expression of target genes and
viral replication in normal and cancer tissues. Expression of
microRNAs including miR-122 and —199a has been reported to
modulate HCV replication,®* " and miR-122 expression can be
regulated by host interferon signaling and responses.”! HCV
protein expression in turn could induce miRNAs and might affect
the tumor suppressor DLC1 and the chemosensitivity of malig-
nantly transformed cells.”>”® Several microRNAs were also differ-
entially expressed between HCV-related and HBV-related HCCs
as well as their corresponding non-cancerous liver tissues. The
candidate signaling pathways potentially altered by microRNAs in
HCV-related tissues were those associated with antigen presenta-
tion, cell cycle, and lipid metabolism,™ consistent with the mRNA
microarray data described above. MicroRNAs have also recently
been reported to successfully discriminate between HCC and cir-
rhotic liver tissues,” implicating their role in the early stages of
malignant transformation. These data suggest that microRNAs
may be good targets for the eradication of HCC as well as hepa-
tocytes infected with HCV.

Conclusion

The heterogeneity of genetic/transcriptomic/proteomic events
observed in hepatocytes or cell lines expressing HCV proteins and
HCV-related HCCs reported thus far has suggested that complex
mechanisms underlie malignant transformation induced by HCV
infection. These potentially act through convoluted virus-host
interactions including HCV replication with host cell cycles, apo-
ptosis, proliferation, quality control of protein synthesis, lipid
metabolism, and DNA damage responses. Indeed, HCC is a het-
erogeneous disease in terms of drug sensitivity, metastatic capac-
ity, and clinical outcome. The heterogeneity of HCV-related HCC
may closely correlate with the origin of malignantly transformed
cells where multifaceted cellular reactions including apoptosis and
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cell proliferation are induced by HCV infection. An in-depth
understanding of these molecular complexities associated with
HCV-related HCC may provide the opportunity for effective
chemoprevention of HCC among those with HCV-cirrhosis, and to
design tailor-made treatment options for HCV-related HCC
patients in the future.
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Hepatocellular carcinoma (HCC) is one of the most common
cancers with an estimated worldwide incidence of 1,000,000
cases per year.'
chronic liver disease such as chronic viral hepatitis due to
hepatitis C virus (HCV) or hepatitis B virus (HBV) infec-
tion.””” Liver cirrhosis patients with any etiology are consid-
ered to be at an extremely high risk for HCC®® Indeed,
~7% of liver cirrhosis patients with HCV infection develop
HCC annually,*'' and the advancement of reliable HCC
screening methods for high-risk patients is crucial for the
improvement of their overall survival.'?

Currently, imaging diagnostic techniques such as ultraso-
nography, computed tomography, magnetic resonance image
and angiography are the gold standards for the early detec-
tion of HCC."»'* In addition, tumor markers such as alpha-
fetoprotein (AFP) and des-gamma carboxyl prothrombin
(DCP) have been used for the screening of HCCP 18
although their sensitivity and specificity are not sufficiently
high. Recently, a gene expression profiling approach shed
new light on Glypican 3, a heparin sulfate proteoglycan anch-
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Most HCCs develop as a consequence of

ta suggest

ored to the plasma membrane, as a potential HCC marker,
and its clinical usefulness as a molecular target as well as a
tumor marker is presently under investigation.'

There are several options available for the treatment of
HCC, including surgical resection, liver transplantation,
radiofrequency ablation, transcatheter arterial chemoemboli-
zation and chemotherapy, while taking the HCC stage and
liver function into consideration. Recently, molecular therapy
targeting the Raf kinase/vascular endothelial growth factor
receptor (VEGFR) kinase inhibitor sorafenib improved the
survival of patients with advanced HCC,>**! emphasizing the
importance of deciphering the molecular pathogenesis of
HCC for the development of effective treatment options.

Here, we investigated the gene expression profiles of HCC
by serial analysis of gene expression (SAGE) to discover a
novel gene activated in HCC*™ We identified a gene,
c190rf10, overexpressed in HCC and determined that the
encoded 17-kDa protein (c190rfl0) is a secretory protein.
Murine cI190rfI10 was originally discovered to encode a cyto-
kine interleukin (IL)-25/stroma-derived growth factor (SF20)
in 2001.%° The gene c190rf10 was mapped in the H2 complex
region of mouse chromosome 17 between C3 and Ir5, and
the hypothetical protein was predicted as globular protein.”®
However, the subsequent study failed to reproduce its prolif-
erative effect on lymphoid cells, and the paper was retracted
by the authors in 2003.2**” Nevertheless, independent studies
revealed that c190rf10 was indeed produced by synoviocytes,
macrophages and adipocytes, although the function of
c190rf10 remained elusive.®®* In our study, we identified
that cI90rfl10 was overexpressed in AFP-positive HCC
samples. Our data imply that c190rfl0 could activate the
mitogen-activated protein kinase (MAPK)/Akt pathway and
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enhance cell proliferation in HCC cell lines, suggesting that
c190rf10 may be a growth factor produced by tumor epithe-
lial cells and/or stromal cells, and, therefore, would be a good
target for the treatment of HCC.

Material and Methods

SAGE and HCC samples

HCC and normal liver SAGE libraries that we had constructed
were reanalyzed using SAGE 2000 software. The size of each
SAGE library was normalized to 300,000 transcripts per
library. Monte Carlo simulation was used to select genes whose
expression levels were significantly different between the two
libraries. Each SAGE tag was annotated using the gene-map-
ping website SAGE Genie database (http://cgap.ncinih.gov/
SAGE/) and the SOURCE database (http://smd.stanford.edu/
cgi-bin/source/sourceSearch) as previously described.® An
additional 15 SAGE libraries of normal and cancerous tissues
from various organs were retrieved using the National
Center for Biotechnology Information SAGEmap (http://
www.ncbi.nlm.nih.gov/SAGE/).

Fifteen HCC tissues (four HBV-related and 11 HCV-
related) and the corresponding noncancerous liver tissues
were obtained from HCC patients who received hepatectomy.
Four normal liver tissues were obtained from patients under-
going surgical resection of the liver for the treatment of
metastatic colon cancer. Additionally, 36 HCC tissues (17
HBV-related and 19 HCV-related) were obtained from HCC
patients undergoing hepatectomy. These samples were snap
frozen in liquid nitrogen immediately after resection and
used for quantitative real-time detection PCR (RTD-PCR).
Total RNA was extracted using a ToTALLY RNA™ kit
(Ambion, Austin, TX).

The study protocol conformed to the ethical guidelines of
the Declaration of Helsinki (1975) and was approved by the
institutional ethical review board committee. All patients
provided written informed consent for the analysis of the
specimens.

Laser capture microdissection and RNA isolation

Laser capture microdissection (LCM) was performed as pre-
viously described.” Briefly, 20 HCV-related surgically
resected HCC tissues were frozen in OCT compound (Sakura
Finetech, Torrance, CA).**> Inflammatory cells and cancerous
cells in HCC tissues were separately excised by LCM using a
Laser Scissors CRI-337 (Cell Robotics, Albuquerque, NM)
under a microscope. Total RNA was isolated from these cells
using a microRNA isolation kit (Stratagene, La Jolla, CA)
in accordance with the supplied protocol, with slight
modifications.>!

Construction of C190RF10 expression plasmid and
recombinant adenovirus vector

PCR was performed on a Marathon ¢cDNA library from
Huh7 cells using the following primers: sense primers:
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5-GACCCTAGTCCAACATGGCGGCGCCC-3' (the first PCR),
5-ATGGCGGCGCCCAGCGGAGGGTGGAACGGC-3"  (the
nested second PCR) and antisense primers: 5-CACCGGA
GATGAGAAGGTGCCACCCGC-3' (the first PCR), 5-CAG
GGCTGCTGGTCACAGCTCAGTGCGCG-3'  (the nested
second PCR). The 5 and 3’ends of the cDNA were isolated
using a SMART RACE ¢DNA Amplification kit (Clontech,
Mountain View, CA) according to the manufacturer’s recom-
mendations. The PCR products were cloned into a TA vector
(Invitrogen, Carlsbad, CA) to generate the pcDNA3.1-
cI901rfl10 expression plasmid. Using this plasmid, a C-termi-
nally FLAG-tagged construct of c190rfl10 was generated and
inserted in a pSI mammalian expression vector (Promega,
Madison, WI), which was driven by the SV40 promoter
(pSI-c190710).

The replication-incompetent recombinant adenovirus vec-
tor expressing FLAG-tagged cI90rfl10 (Ad. cI190rf10-FLAG)
was generated by homologous recombination using the
AdMax system (Microbix, Toronto, Canada) as previously
described.” The generated recombinant adenovirus was puri-
fied by limiting dilution, and the titer of viral aliquots was
determined by the 50% tissue culture infectious dose method
as previously described.”

RTD-PCR

RTD-PCR was performed as previously described.”® Briefly,
template ¢cDNA was synthesized from 1 pg of total RNA
using SuperScript™ 1l RT (Invitrogen). RTD-PCR of
c190rf10 (Hs. 00384077_m1), AFP (Hs00173490_m1), GPC3
(Hs01018938_m1), KRT19 (Hs00761767_s1) and the ACTB
internal control (Hs99999903_m1) was performed using a
TagMan® Gene Expression Assay kit (Applied Biosystems,
Foster City, CA). The expression of selected genes was meas-
ured in triplicate by AACT method using the 7900 Sequence
Detection System (Applied Biosystems).

Cell lines and transfection of plasmids

Human liver cancer cell lines HuH1, Huh7, Hep3B, HLE and
HLF as well as HEK293 and NIH3T3 were cultured in Dul-
becco’s modified Eagle’s medium (Invitrogen) supplemented
with 10% heat-inactivated fetal bovine serum (Invitrogen) in
5% CO, at 37°C. Transfection of plasmids was performed
using FuGENE™ 6 (Roche Diagnostics, Indianapolis, IN)
according to the manufacturer’s instruction. Briefly, 5 x 10°
cells were seeded in a six-well plate 12 hr before transfection,
and 3 pg of plasmid DNA was used for each transfection. All
experiments were repeated at least twice.

Purification of c190rf10-FLAG fused protein and

production of anti-c190rf10 antibody

Approximately 500 ml of culture supernatant obtained from
HEK293 cells infected with Ad. CI9ORFI0-FLAG at a multi-
plicity of infection of 20 was applied to an anti-FLAG affinity
gel column (Sigma-Aldrich, St. Louis, MO). The column was
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Table 1. ESTS overexpressed in the HCC library
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- UniGene ID

Tag sequence‘ pvalue ,f HCC ;ormal hver T Na s ! i

TGGGCAGGTG  «0.00001 33 0 >33 Chromosome 5 open readmg Frame 13 Hs.483067
_GCAMAATATC  <0.00001 31 2 =  Liver cancer- assocsated noncoding mRNA, partial sequence H5.214343
AGCCTGCAGA 0.0002 12 ‘ 1 12 ‘Chromosome 19 open readmg frame 10 Hs.465645
TTGTGCACGT 0000228 12 1 12 CDNA FLJ45284 fis, clone BRHIP3001964 . Hs.514273
ACATTCTTGT . 0000042 . 0 Transcrlbed locus strongly 5|m|lar to XP 496055 1

ACAAGTACCC  0.001161 1 0 Hs.483067
GAGGTGAAGG 10 0 >10 KIAA1914 Hs.501106
GCTGGAGGAG po10 0 ~10  Transcribed locu Hs.520115

subjected to elution by competition with FLAG peptide
(5 pg/ml), and each 1 ml fraction of the eluted aliquot was
collected to obtain the most concentrated c19orfl0-FLAG
protein in accordance with the manufacturer’s protocol. The
anti-c190rf10 antibodies were developed by immunizing rab-
bits with repeated intradermal injections of purified
c190rf10-FLAG. Protein concentration was measured by the
Bradford method.

Silencing gene expression by short interfering RNA

The selected short interfering RNA (siRNA) targeting
CI9ORF10 (Si-CI9ORF10; Silencer Select siRNAs $31855)
and the irrelevant control sequence (Si-Control; Silencer
Select siRNAs 4390843) was obtained from Applied Biosys-
tems. Transfection of these siRNAs was performed using
FuGENE™ 6 (Roche Diagnostics) as previously described.*
Briefly, 2 x 10° cells were seeded in a six-well plate 12 hr
before transfection. A total of 100 pmol/l of siRNA duplex
was used for each transfection. The experiments were per-
formed at least twice.

Cell proliferation assay

Cell proliferation was evaluated in quadruplicate using a Cell
Titer 96 MTS Assay kit (Promega). Briefly, 2 x 10> HLE or
HuH7 cells were harvested in a 96-well plate 12 hr before the
transfection or addition of the recombinant proteins. Trans-
fection of siRNAs or plasmids was performed using FuGE-
NE™ 6 (Roche Diagnostics). After incubation with MTS/
PMS solution at 37°C for 2 hr, the absorbance at 450 nm
was measured. The experiments were performed at least
twice.

Cell cycle analysis

Cells were fixed using 80% ice-cold ethanol and incubated
with propidium iodide for 10 min. DNA content was ana-
lyzed using a FACS Caliber flow cytometer (BD Biosciences,
San Jose, CA) counting 10,000 stained cells. The distribution
of cells in each cell cycle phase was determined using FlowJo
software (Tree Star, Ashland, OR).

Western blotting

Cells were lysed in radioimmunoprecipitation assay (RIPA)
buffer, and the extracts were subsequently electrophoresed on
sodium dodecyl sulfate-10% polyacrylamide gels and trans-
ferred onto protean nitrocellulose membranes. The blots were
then incubated for 1 hr with an appropriate primary mono-
clonal antibody: phospho-PI3K  (#4228), phospho-Akt
(#4060), phospho-GSK-3B (#9323), phospho-c-Raf (#9427),
phospho-MEK1/2 (#9154), phospho-p44/42 MAPK (Erk1/2)
(#4370), Cdk4 (CDK4 (#2906)), Cdké (#3136}, cyclinD1
(#2926), cyclinD3 (#2936), phospho-Rb (#9308), phospho-
P53 (# 9286), phospho-cdc2 (#9111) and B-actin (#4970)
(Cell Signaling Technology, Allschwil, Switzerland) and anti-
FLAG antibodies (Sigma-Aldrich, St. Louis, MO). The blots
were washed and exposed to peroxidase-conjugated second-
ary antibodies, such as anti-mouse or rabbit IgG antibodies,
and visualized using the ECL™ kit (Amersham Biosciences,
Piscataway, NJ). All experiments were performed at least
twice.

Statistical analyses

Unpaired t-tests and Kruskal-Wallis tests were performed on
the RTD-PCR and cell proliferation data using GraphPad
Prism software (www.graphpad.com).

Results

Identification of C190RF10 overexpression in HCC by SAGE
To comprehensively explore the candidate novel genes acti-
vated in HCC, we reanalyzed two SAGE libraries derived
from HCC tissues and normal liver tissues.™ After normal-
ization of each SAGE library size to 300,000 tags, we com-
pared the HCC and normal liver libraries to obtain the list of
genes overexpressed in HCC. We identified 79 genes signifi-
cantly overexpressed in the HCC library by more than ten-
fold when compared to the normal liver library (Supporting
Information Table 1). Among them, we explored expressed
sequence tags (ESTs) as candidates for novel HCC-related
genes to identify eight unique tags corresponding to seven
ESTs (Table 1). We especially focused on the EST chromo-
some 19 open reading frame 10 (cI%0rf10) because the
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Figure 1. (g) Structure of a c190rf10 gene and a c¢190rf10 protein. The DNA sequence of ¢190rf10 and amino acid alignment of the
encoded c190rf10 protein are shown. C190rf10 is predicted to have a molecular weight of 17 kDa and contain a signal peptide cleavage
site (indicated as a black arrow). (b) C190rf10 gene expression profiles in various tissues by SAGE. Y-axis indicates the number of tags
corresponding to ¢190rf10 in each tissue. (¢, d) RTD-PCR analysis of c190rf10. RNA was isolated from 34 tissue samples: 15 HCC, 15
corresponding noncancerous liver samples and four normal liver samples. Differential expression of each gene among normal liver tissues,
noncancerous liver tissues and HCC tissues was examined using the Kruskal-Wallis test and unpaired t-test. The mean value of gene
expression data in each group is indicated (c). C190rf10 was overexpressed in 10 of 15 examined HCC tissues compared to the

noncancerous liver tissues (d).

sequence presumably encoded a secretory protein with a sig-
nal peptide sequence (Fig. 1a).

When we examined the expression profiles of c190rf10
using retrieved SAGE data from various cancers and their
normal counterparts, we identified that cI90rfl0 was abun-
dantly expressed in human HCC (Fig. 1b). We further exam-
ined the publicly available EST profiles of c190rf10 (http://
www.ncbinlm.nih.gov/unigene) and confirmed its tendency
to be overexpressed in HCC compared to the normal liver
(data not shown). We validated the overexpression of
¢190rf10 in 15 independent HCC tissues and adjacent non-
cancerous liver tissues by RTD-PCR. Gene expression of
c190rf10 was significantly higher in the HCC tissues than in

Int. J. Cancer: 129, 1576-1585 (2011) © 2010 UICC

the normal liver tissues and adjacent noncancerous liver tis-
sues (p = 0.014 and 0.048, respectively; Fig. lc). Cl9orfl10
expression was elevated in HCC tissues compared to the ad-
jacent noncancerous liver tissues in 10 of 15 patients (66.7%;

Fig. 1d).

Overexpression of C190RF10 in AFP-positive HCC

As HCC is a heterogeneous mixture of cancer epithelial cells
and stromal cells, and a previous report indicated that
c1901fl0 is expressed in fibroblast-like synoviocytes. We,
therefore, evaluated the expression of ¢190tf10 in tumor epi-
thelial cells and stromal cells separately using LCM and
RTD-PCR in 20 HCC tissues (Fig. 2a). Although tumor
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Figure 2. (a) Representative photomicrographs of an HCC tissue used for LCM (toluidine blue staining). Inflammatory mononuclear cells and
stromal cells were separately captured (left: Pre-LCM, right: Post-LCM). (b) RTD-PCR analysis of c190rf10 expression in inflammatory
mononuclear cells and tumor epithelial cells in 20 HCV-related HCC tissues. Tumor-inflammatory mononuclear cells and stromal cells were
isolated using LCM. RNAs were isolated from these cells as well as parenchymal tissues from the same liver, followed by RTD-PCR for
c190rf10 gene expression. Expression of the c190rf10 gene was higher than that observed in HCC-infiltrating inflammatory mononuclear
cells. *p < 0.05. (c—e) Scatter plot analysis of c190rf10, AFP, KRT19 and GPC3 expression in HCC. RNA was isolated from 17 HBV-related
HCC and 19 HCV-related HCC. (f) RTD-PCR analysis of c190rf10 in AFP-negative (HLE and HLF) and -positive (HuH1, HuH7 and Hep3B) liver

cancer cell lines.

stromal cells expressed cI90rf10 at some level, the expression
levels were significantly higher in tumor epithelial cells than
in stromal cells (p = 0.006) (Fig. 2b).

To explore the relationship of c190rf10 with other estab-
lished HCC markers, we investigated the gene expression of
c190rf10, AFP (alpha-fetoprotein), KRTI19 (cytokeratin 19)
and GPC3 (glypican 3). Because only 1 of 15 HCC tissues
analyzed above (Fig. 1d) was AFP positive (data not shown),
we further investigated the expression of c¢190rfI10 in an addi-
tional 36 HCC tissues using RTD-PCR. Interestingly,
c1901rfl10 expression was significantly positively correlated
with AFP (r = 0.44, p = 0.008), but not with KRT19 (r =
0.08, p = 0.66) nor GPC3 (r = 0.11, p = 0.54) (Figs. 2c-2e).

Furthermore, when we examined the expression of c190rf10
in AFP-positive (HuH1, HuH7 and Hep3B) and -negative
(HLE and HLF) HCC cell lines, we identified the overexpres-
sion of cI90rfl0 in AFP-positive HCC cell lines (Fig. 2f).
These data suggested that cI190rf10 is overexpressed and may
play some role in AFP-positive HCCs.

C190rf10 regulates MAPK/Akt pathways and activates

cell proliferation

To explore the functional role of c190rfl0 in HCC, we per-
formed c1901f10 overexpression and knockdown studies using
c19orf10-low HLE cells and c190rf10-high Hep3B and HuH?7
cells, respectively. When we transfected HLE cells with

Int. J. Cancer: 129, 1576-1585 (2011) © 2010 UICC
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Figure 3. (a) RTD-PCR analysis of c190rf10 expression in HLE cells transfected with pcDNA3.1 or pcDNA3.1-c190rf10 plasmids. (b) Cell
proliferation assay of HLE cells transfected with pcDNA3.1 or pcDNA3.1-c190rf10 plasmids. Cell proliferation was evaluated 72 hr after
each plasmid transfection. (c) RTD-PCR analysis of c190rf10 expression in Hep3B cells transfected with Si-Control or Si-c190rf10.

Gene expression was measured in triplicates 48 hr after transfection. (d) Cell proliferation assay of Hep3B cells transfected with Si-Control
or Si-c190rf10. Cell proliferation was evaluated 72 hr after siRNA transfection. (e) Cell cycle analysis of HuH7 cells transfected with
Si-Control or Si-c190rf10. Cell cycle was evaluated 72 hr after siRNA transfection. A black arrow indicates the G2 phase peak. (f) Western
blotting analysis of Huh7 cells transfected with Si-Control or Si-c190rf10. Cells were lysed by RIPA buffer 72 hr after siRNA

transfection.

pcDNA3.1 or pcDNA3.1-c190rf10 plasmids, we identified an  significantly, enhanced compared to the control 72 hr after
approximately sixfold overexpression of c190rfl10 when com- transfection (p = 0.0015) (Fig. 3b).

pared to the control 48 hr after transfection (p < 0.0001) We also transfected siRNAs targeting an irrelevant
(Fig. 3a). Interestingly, cell proliferation was modestly, but sequence (Si-Control) or c190rfl0 (Si-c190rf10) in Hep3B and
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Figure 4. (a) Coomassie blue staining and Western blotting of culture supernatant of NIH3T3 cells transfected with pSl-c190rf10-FLAG. A
black arrow indicates the 17-kDa c190rf10 protein. (b) Cell proliferation assay of HLE cells supplemented with recombinant c¢190rf10-FLAG,
FLAG peptides or BSA. Cell proliferation was measured in quadruplicates 72 hr after supplementation. (c) Western blotting of HLE cells
supplemented with c190rf10-FLAG (40 ng/ml). Cells were lysed at indicated time after c190rf10 supplementation. (d) Cell proliferation
assay of HLE cells supplemented with control BSA (40 ng/ml) (white bar), c190rf10-FLAG (40 ng/ml) (light gray bar), c190rf10-FLAG

(40 ng/ml) + anti-c190rf10 antibodies (gray bar) and ¢190rf10-FLAG (40 ng/ml) + control mouse IgG (black bar).

HuH7 cells. We observed an ~50% decrease in cI90rf10
expression in Hep3B cells transfected with Si- c190rf10 com-
pared to the control 48 hr after transfection with statistical
significance (p < 0.0001). In this condition, cell proliferation
was suppressed to 50% compared to the control 72 hr after
transfection (p < 0.0001) (Figs. 3¢ and 3d). When we per-
formed cell cycle analysis of HuH7 cells transfected with Si-
Control or Si-c190rf10, we identified an increase of G1l-phase
cells and a decrease of S- and G2-phase cells by cI90rf10
knockdown, suggesting that the G1 cycle arrest was caused
by the knockdown of c190rf10 (Fig. 3e).

We examined the representative  MAPK/Akt pathway-
associated proteins and cell cycle regulators using Western
blotting 72 hr after siRNAs transfection (Fig. 3f). Interest-
ingly, phosphorylation of c-Raf, MEK, MAPK, PI3K and
pAkt was inhibited by knockdown of c1907f10, suggesting the
involvement of c¢I90rfl0 in the MAPK/Akt pathways.
Furthermore, phosphorylation of Rb, CDK4 and CDK6 was
also inhibited by knockdown of c190rf10, consistent with the

observation of G1 cell cycle arrest by CI9ORFI0 knockdown.
PTEN, p53 and phosphorylated CDC2 protein expression
was not affected by knockdown of cI90rf10.

C190rf10 encodes the secretory protein and stimulates

cell proliferation

As the sequence of cI90rf10 suggested that it encodes a secre-
tory protein, we transfected pSI-c19orfl10-FLAG in NIH3T3
cells and examined the culture supernatant. Immunoprecipi-
tation of the collected culture supernatant 48 hr after trans-
fection using anti-FLAG antibodies indicated the existence of
a 17-kDa protein (c190rfl10), compatible with the molecular
weight of the 142 amino acids protein encoded by c19orf10
(Fig. 4a). We purified c190rfl0-FLAG protein from the su-
pernatant of HEK293 cells infected with Ad. cI190rf10-FLAG
using an anti-FLAG column. Supplementation of purified
c190rf10-FLAG into the culture media for 72 hr enhanced
the proliferation of HLE cells in a dose-dependent manner
with statistical significance, whereas control FLAG peptides

Int. J. Cancer: 129, 1576-1585 (2011) © 2010 UICC
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and BSA had no effects on cell proliferation (Fig. 4b). West-
ern blot analysis of HLE cells cultured with purified
c190rf10-FLAG (40 ng/ml) or BSA control (40 ng/ml) indi-
cated the immediate strong phospholyration of Akt peaked 5
min after supplementation (Fig. 4c). The modest phospholy-
ration of GSK3§ (Ser9) and p44/42 MAPK also followed and
peaked 60 min after c19orfl0 supplementation. These data
suggest that Akt pathway might be directly involved in the
c19orf10-mediated cell proliferation signaling with the subse-
quent activation of MAPK pathway. Furthermore, addition of
antibodies against c19orfl0 to the culture media abolished
the cell proliferation induced by c190rfl0, whereas control
IgG had no effects (Fig. 4d). Taken together, these data sug-
gest that c190rf10 may be a growth factor overexpressed in
AFP-positive HCCs and activates the Akt/MAPK pathways,
potentially through the activation of an unidentified c190rf10
receptor.

Discussion
SAGE facilitates the measurement of transcripts from normal
and malignant tissues in a nonbiased and highly accurate,
quantitative manner. Indeed, SAGE produces a comprehen-
sive gene expression profile without a priori gene sequence
information, leading to the identification of novel transcripts
potentially involved in the pathogenesis of human cancer."’
In our study, we identified seven SAGE tags potentially cor-
responding to novel genes activated in HCC. Among them,
we identified the secretory protein c190rfl0 activated in a
subset of HCCs.

Several serum markers including AFP, DCP and Glypican
3 are currently used for the detection and/or the evaluation
of the treatment for HCCs in the clinic.'”'®?* These markers
are known as oncofetal proteins, that is, expressed in the
fetus, transcriptionally suppressed in the adult organ and
reactivated in the tumor. We identified that the expression of
cl9orfl0 positively correlated with AFP expression but did
not correlate with the expression of GPC3 or the biliary
marker KRT19. As ¢c190rf10 was rarely detected in the normal
liver, it is possible that c190rfl0 is also an oncofetal protein
activated in HCC. We are currently developing a system to
detect serum c190rf10 in HCC patients, and the significance
of the serum c¢190rfl0 value as an HCC marker should be
clarified.

Recent advancement in molecular biology has revealed the
considerable diversity of transcription initiation and/or termi-
nation of genes altered in the process of carcinogenesis.
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Indeed, using 5 SAGE approach, we recently discovered the
novel intronic transcripts activated in HCC.*® Interestingly,
when we investigated the transcription initiation of cI9orf10
using the 5" SAGE database, we identified a potential 5 splice
variant initiated from the second exon of c190rf10 (data not
shown). Although we have not yet validated the presence of
5" splice variants in cI90rf10 by PCR, examination of 5’ EST
database also suggested the presence of the similar splice var-
iants (GenBank Accession Number CR980295, BQ680744,
BQ648461, etc.). Alteration of transcription initiation/termi-
nation in cI190rf10 might affect the abundance or function of
c190rfl10 protein, and the details of 5 splice variants in
¢190rf10 should be clarified in future studies.

Molecular targeting therapy has rapidly emerged for solid
tumors as well as for leukemia.*” ™ Sorafenib is a multiki-
nase inhibitor targeting Raf kinase in the MAPK pathway as
well as VEGFR and the platelet-derived growth factor recep-
tor.***! In our study, we identified that c190rfl0 activates the
MAPK and Akt/PI3K pathways and contributes to the prolif-
eration of HCC cell lines, although we still could not discover
the potential receptor of ¢190rf10. Development of a neutral-
izing ¢19orfl0 antibody may provide novel therapeutic
options for HCC patients to inhibit these signaling pathways,
and its efficacy should be evaluated in the future.

Recently, c19orfl0 was found to be expressed in fibro-
blast-like synoviocytes in the synovium using a proteomics
approach.”® In addition, a recent article indicated that
c190rfl0 was expressed in preadipocyte cells and involved in
adipogenesis using two-dimensional electrophoresis mass
spectrometry analysis.*® Thus, c190rfl0 may have pleiotropic
effects on various lineages of normal organs in various devel-
opmental stages, and the clarification of its distribution and
biological properties in the whole body may provide more
detailed information about the function of c190rf10.

In conclusion, we have identified the protein ¢19orfl0
that regulates the Akt/MAPK pathways and cell cycle
through an unidentified mechanism in HCC. Although fur-
ther studies should be conducted to" detect the potential
c190rf10 receptor or signaling molecules binding to c190rfl10,
our study suggests that cl9orfl0 may be a novel growth
factor, a potential tumor marker and also a potential target
molecule for HCC treatment.
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Integration of cap analysis of gene expression and chromatin
immunoprecipitation analysis on array reveals genome-wide
androgen receptor signaling in prostate cancer cells
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The androgen receptor (AR) is a critical transcriptional
factor that contributes to the development and the
progression of prostate cancer (PCa) by regulating the
transcription of various target genes. Genome-wide
screening of androgen target genes provides useful
information to understand a global view of AR-mediated
gene network in PCa. In this study, we performed 5'-cap
analysis of gene expression (CAGE) to determine andro-
gen-regulated transcription start sites (TSSs) and chro-
matin immunoprecipitation (ChIP) on array (ChIP-chip)
analysis to identify AR binding sites (ARBSSs) and histone
H3 acetylated (AcH3) sites in the human genome. CAGE
determined 13110 distinct, androgen-regulated TSSs
(P <0.01), and ChIP-chip analysis identified 2872 andro-
gen-dependent ARBSs (P < 1e-5) and 25945 AcH3 sites
(P<1e-4). Both androgen-regulated coding genes and
noncoding RNAs, including microRNAs (miRNAs) were
determined as androgen target genes. Besides prototypic
androgen-regulated TSSs in annotated gene promoter
regions, there are many androgen-dependent TSSs that
are widely distributed throughout the genome, including
those in antisense (AS) direction of RefSeq genes. Several
pairs of sense/antisense promoters were newly identified
within single RefSeq gene regions. The integration of
CAGE and ChIP-chip analyses successfully identified a
cluster of androgen-inducible miRNAs, as exemplified by
the miR-125b-2 cluster on chromosome 21. Notably, the
number of androgen-upregulated genes was larger in
LNCaP cells treated with R1881 for 24 h than for 6 h, and
the percentage of androgen-upregulated genes accompa-
nied with adjacent ARBSs was also much higher in cells
treated with R1881 for 24 h than 6h. On the basis of the
Oncomine database, the majority of androgen-upregu-
lated genes containing adjacent ARBSs and CAGE tag
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clusters in our study were previously confirmed as
androgen target genes in PCa. The integrated high-
throughput genome analyses of CAGE and ChIP-chip
provide useful information for elucidating the AR-
mediated transcriptional network that contributes to the
development and progression of PCa.
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Introduction

Androgen action is essential for the development,
proliferation and subsequent progression of prostate
cancer (PCa). Androgen binds to its cognate receptor,
androgen receptor (AR), a member of the nuclear
receptor superfamilies that functions as a ligand-
dependent transcriptional factor (Shang et al., 2002;
Wang et al., 2005; Dehm and Tindall, 2006). It has been
shown that AR and its downstream signals are deeply
involved in the pathophysiology of hormone-dependent
and hormone-independent PCas (Suzuki er al., 2003;
Chen et al., 2004; Debes and Tindall, 2004). Therefore,
elucidation of the entire AR signaling pathways will
reveal the precise mechanisms underlying the develop-
ment and the progression of PCa and will identify novel
molecular targets for cancer therapy. Recent advances in
high-throughput gene analysis technology have enabled
to identify a number of target genes that are associated
with diseases at various statistical thresholds. Our group
and others have successfully determined bonafide AR
binding sites (ARBSs) in the human genome by
chromatin immunoprecipitation (ChIP) analysis com-
bined with genome tiling arrays (ChIP-chip) (Massie
et al., 2007; Takayama et al., 2007, 2009; Wang et al.,
2007, 2009). ChIP-chip analysis is also useful to
determine epigenetic alterations in the genome. We
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