4GIcNAc-BSA (Dextra), 10 ng/ml Manal-3(Manal-6)Man-
BSA (Dextra), 10 ng/ml aFuc-BSA (Dextra), 10 ng/ml aGalNAc-
BSA (Dextra), and 10 ng/ml Siac2—6GalB1-4Glc-BSA (Dextra)
dissolved in probing buffer.

Lectin Microarray Analysis—Hydrophobic fractions were
prepared using CelLytic minimum essential medium protein
extraction (Sigma-Aldrich) in accordance with the manufac-
turer’s procedures (25, 27). After protein quantification using a
BCA assay (Thermo Fisher Scientific), hydrophobic fractions
were fluorescently labeled with Cy3 monoreactive dye (GE
Healthcare), and excess Cy3 was removed with Sephadex G-25
desalting columns (GE Healthcare). After adjusting the protein
concentration to 2 pug/ml with PBST (10 mm PBS, pH 7.4, 140
mm NaCl, 2.7 mm KCl, 1% Triton X-100), the hydrophobic frac-
tion was labeled with Cy3 NHS ester (GE Healthcare). After
dilution with probing buffer at 0.5 pg/ml, the Cy3-labeled
hydrophobic fraction was applied to the lectin microarray
and incubated at 20 °C overnight. After washing with prob-
ing buffer, fluorescence images were acquired using an eva-
nescent field-activated fluorescence scanner (GlycoStation™
reader 1200; GP BioSciences). The fluorescence signal of each
spot was quantified using Array Pro Analyzer version 4.5
(Media Cybernetics, Bethesda, MD), and the background value
was subtracted. The background value was obtained from the
area without lectin immobilization. The lectin signals of tripli-
cate spots were averaged and normalized to the mean value of
96 lectins immobilized on the array. An inhibition assay was
performed by incubating Cy3-labeled cell membrane fractions
of MEF(#1) or MRC5-iPS#25(P22)(#13) with a lectin micro-
array either in the absence or presence of 100 ug/ml of
Galal-3GalB1-4GIcNAc-PAA  (catalog no. 01-079, Gly-
cotech) or a negative control PAA (catalog no. 01-000,
Glycotech).

Gene Expression Analysis—Total RNA was extracted from
each sample by using ISOGEN (NipponGene). The global gene
expression patterns were monitored using Agilent whole
human genome microarray chips (G4112F) with one-color
(cyanine 3) dye. This microarray covers 41,000 well character-
ized human genes and transcripts. Of the 41,000 probes, 16,483
representative probes corresponding to the microarray quality
control unique genes were used for the following analyses (37).

Statistics—Unsupervised clustering was performed by
employing the average linkage method using Cluster 3.0 soft-
ware. The heat map with clustering was acquired using Java
Treeview. Differences between the two arbitrary data sets were
evaluated by Student’s ¢ test to each lectin signal using SPSS
Statistics 19 (SPSS). Significantly different lectin signals or the
glycosyltransferase expression were selected if they satisfied a
familywise error rate (FWER) by the Bonferroni method of
<0.001. i

Immunocytochemistry—Immunocytochemical analysis was
performed as described previously (29, 33, 38). Human iPSCs
were fixed with 4% paraformaldehyde in PBS for 10 min at 4 °C.
After washing with 0.1% Triton X-100 in PBS (PBST), the cells
were prehybridized in blocking buffer for 1-12 h at 4 °C and
then incubated for 612 h at 4 °C with the following primary
antibodies: anti-SSEA4 (1:300 dilution; Chemicon), anti-TRA-
1-60 (1:300; Chemicon), anti-Oct4 (1:50; Santa Cruz Biotech-
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nology, Inc.), anti-Nanog (1:300; ReproCELL), and anti-Sox2
(1:300; Chemicon). The cells were then incubated with anti-
rabbit IgG, anti-mouse IgG, or anti-mouse IgM conjugated
with Alexa Fluor 488 or Alexa Fluor 546 (1:500; Molecular
Probes) in blocking buffer for 1 h at room temperature. The
cells were counterstained with DAPI and then mounted using
the SlowFade light antifade kit (Molecular Probes).

Teratomas—Teratoma formation was performed as de-
scribed previously (1, 2). The 1:1 mixtures of the human iPSC
suspension and basement membrane matrix (BD Biosciences)
were implanted subcutaneously at 1.0 X 107 cells/site into
immunodeficient, non-obese diabetic/severe combined immu-
nodeficiency mice. Teratomas were surgically dissected out
812 weeks after implantation and were fixed with 4% para-
formaldehyde in PBS and embedded in paraffin. Sections of
10-um thickness were stained with hematoxylin-eosin.

Glycoconjugate Microarray Analysis—Glycoconjugate mi-
croarray production and analysis were performed as described
previously (36). Briefly, glycoproteins and glycoside-polyacryl-
amide conjugates were dissolved in the Matsunami spotting
solution at a final concentration of 0.5 and 0.1 mg/ml, respec-
tively. After filtration, they were spotted on the Schott epoxy-
coated glass slide using the Microsys non-contact microarray
printing robot.

Cy3-labeled lectins dissolved in the probing solution (10 or 1
pg/ml) were applied to each chamber of the glycoconjugate
microarray (100 ul/well) and were incubated at 20 °C over-
night. After washing the chambers with the probing solution,
fluorescent images were immediately acquired using an evanes-
cent field-activated fluorescence scanner, the GlycoStation™™
Reader 1200, under Cy3 mode. Data were analyzed with the
Array Pro analyzer version 4.5 (Media Cybernetics, Inc.). The
net intensity value for each spot was determined by signal
intensity minus background value. The lectin signals of tripli-
cate spots were averaged and normalized to the highest signal
intensity among 98 glycoconjugates immobilized on the array.

RESULTS

Development of High Density Lectin Microarray—In order to
increase glycome coverage and the selection range of lectins
suitable for stem cell evaluation, we first increased the number
of immobilized lectins from 43 to 96, which is the largest num-
ber of immobilized lectins reported (39). For this purpose, lec-
tins with defined structures were first categorized into lectin
families with different protein scaffolds. We then selected lec-
tins from various lectin families, intending to cover a wider
range of glycan binding specificities. Especially, we increased
lectins specific to terminal modifications, such as Sia and Fuc,
which often change dramatically depending on cell properties.
For production of recombinant lectins, the E. coli expression
system was chosen to avoid glycosylation of the produced lec-
tins, which might cause nonspecific binding to lectin-like mol-
ecules in the objective samples. The recombinant lectins thus
produced were purified by affinity chromatography using the
most appropriate sugar-immobilized Sepharose. The glycan-
binding specificities of 96 lectins used in this study were ana-
lyzed by both glycoconjugate microarray (supplemental Fig. 51
and Table S1; also see “Experimental Procedures”) (36) and,
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FIGURE 1. Unsupervised cluster analysis. Lectin microarray data of iPSCs (n = 123), their parental SCs (n = 11), ESCs (9), and MEF (n = 1) were mean-
normalized and log-transformed and then analyzed by Cluster 3.0. The zero value of the lectin signal was converted to 1. Yellow, positive; blue, negative.
Clustering method was average linkage. The heat map with clustering was acquired using Java Treeview.

more quantitatively, frontal affinity chromatography (see the
Lectin Frontier Database Web page) (35, 40). Their basic spec-
ificities evaluated by the above two analytical methods are
briefly summarized in supplemental Table $2. The 96 lectins
were spotted onto epoxy-activated glass slides by a non-contact
spotter (supplemental Fig. $2), and their quality was extensively
assessed using a Cy3-labeled test probe (25). Lot-to-lot variance
(coefficients of variation) of the developed high density lectin
microarray was confirmed to be low (0.14) after mean normal-
ization (25).

Transcription Factor-induced Reprogramming Leads to a
Global Reversion Down to the Pluripotent State at a Cellular
Glycome Level as Well—Using the developed lectin microarray,
we have analyzed 135 cell samples in total, including 114iPSCs,
11 SCs, and nine ESCs, all from human origins, as well as one
mouse embryonic fibroblast (MEF). Human iPSCs were gener-
ated from four different SC lines: MRC5, AM, UtE, and PAE
(supplemental Table 53) (28). We have also analyzed human
iPSCs generated from human dermal fibroblasts with four
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(201B7) (1) and three transcription factors (253G1) (41) and
three cell lines of human ESCs (42). All iPSCs used in this study
were morphologically similar to ESCs, and their pluripotency
was confirmed by staining with the established undifferentia-
tion markers (SSEA4, Tral—60, Oct4, Nanog, and Sox2) and
DNA microarray (28).

Cell membrane hydrophobic fractions were prepared, and
the extracted glycoproteins were then labeled with Cy3-N-hy-
droxysuccinimide ester and analyzed by lectin microarray (25).
We have analyzed cell membrane fractions because they can be
stored in a freezer until use and are easy to handle, allowing
comprehensive analysis of a large number of samples (25, 26).

After being mean-normalized, the obtained data were first
analyzed by unsupervised hierarchical clustering (Fig. 1). As a
result, differentiated SCs and undifferentiated iPSCs/ESCs
were clearly separated into two large clusters, whereas the four
SCs were further separated according to their origins. This
indicates that SCs (MRC5, AM, UtE, and PAE) with different
glycan profiles have acquired profiles quite similar to one
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FIGURE 2. Alterations of the lectin signals upon induction of pluripotency. Lectin microarray data were mean-normalized and analyzed by Student's t test.
Lectins with significantly different signals (FWER < 0.001) between undifferentiated iPSCs/ESCs (n = 123) and differentiated SCs (n = 11) were categorized into
six groups based on the glycan binding specificities of lectins. Data are shown with t values. Also see supplemental Table S4.

another and even to ESCs upon induction of pluripotency.
Thus, transcription factor-induced reprogramming was found
to lead to a global reversion down to the pluripotent state at a
cellular glycome level as well (27, 28).

Characteristic Features of Glycome Alteration upon Induc-
tion of Pluripotency—We then examined in more detail how
glycan structures altered during the induction of pluripotency.
The mean-normalized data were processed by Student’s ¢ test
to select significant probe lectins discriminating between SCs
and iPSCs/ESCs (supplemental Table S4). As a result, 38 lectins
were selected with FWER of <0.001. Among them, nine gave
higher signals in iPSCs than SCs, whereas 29 exhibited lower
signals. Among the 38 lectins, 35 lectins were then categorized
into six groups based on their glycan binding specificities, from
which glycan alterations having occurred upon induction of
pluripotency were estimated (Fig. 2), whereas the three lectins
with broader specificities (wheat germ agglutinin (WGA), a Sia
binder; rRSIIL and aleuria aurantia lectin (AAL), broad Fuc
binders) were not included in this categorization. Here, the lec-
tins with higher signals in iPSCs/ESCs than SCs are shown
below gray lines, whereas lower signals are shown below black
lines. The characteristic features of glycan structures of undif-
ferentiated iPSCs/ESCs relative to differentiated SCs are sum-
marized as follows. 1) The signals of a2—6Sia-binding lectins
(SNA, SSA, TJA] and rPSL1a) were increased, whereas those of
@2-3Sia-binding lectins (MAL, rACG, and ACG) were
decreased correspondingly (28). This agrees well with the pre-
vious report that a2— 6-sialylated glycan expression is higher in
undifferentiated (human ESCs) than differentiated cells
(embryoid body) (43). 2) In terms of fucosylation, the signals of
a1—2Fuc-specific lectins (rGC2 and rBC2LCN) were increased,
whereas those of al-6Fuc-specific lectins (LCA, PSA, and
rPTL) were decreased. This is consistent with the recent report
that human ESCs are stained with anti-Globo H (Fucal—
2GalB1-3GalNAcB1-3Galal-4GalBl-4Glc) and anti-H type
1 (Fucal-2GalB1-3GIcNAc), whose antigens contain al-2Fuc
(9). 3) The signals of type 1 LacNAc (GalB1-3GlcNAc)-binding
lectins (BPL) were increased, whereas those of type 2 LacNAc
(GalB1-4GlcNAc)-binding lectins (rLSLN, ECA, RCA120, and
rCGL2) were decreased. This agrees well with the recent finding
that type 1 LacNAc is the glycan epitope recognized by the well
known pluripotency markers Tra-1-60 and Tra-1-81 (7). 4) The
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FIGURE 3. Alterations in the expression of glycosyltransferases upon
induction of pluripotency. Glycosyltransferases related to the lectin signals
in Fig. 2 are shown with t values. All data are shown in supplemental Table S5.

lectin signals specific to bisecting GlcNAc (PHAE), tetra-anten-
nary N-glycans (PHAL), high mannose type N-glycans (Heltuba,
rRSL, VVAIL rHeltuba, Heltuba, rBanana, rGRFT, and CCA), and
O-glycans (MPA, HEA, WFA, Jacalin, ABA, rABA, rSRL, rCNL,
and rDiscoidin II) were decreased.

The expression profiles of glycosyltransferases synthesizing
glycans agreed well with the results obtained by lectin microar-
ray (Fig. 3 and supplemental Table $5); the expression of «2—6-
sialyltransferases (ST6GAL1I and -2) (28), al-2-fucosyltrans-
ferases (FUT1 and -2), the major glycosyltransferase involved in
the synthesis of type 1 LacNAc (B3GALTS5) (28), and MGATS5,
a glycosyltransferase involved in the synthesis of tetra-anten-
nary N-glycans, was increased, whereas that of a2-3-sialyl-
transferases (ST3GALIL, -3, -4, and -5), al—-6-fucosyltrans-
ferase (FUTS), and the major glycosyltransferase related to the
synthesis of type 2 LacNAc (B4GalT1) was decreased corre-
spondingly in iPSCs/ESCs relative to SCs. Based on the results
obtained by lectin and DNA microarrays, it is conceivable that
the expression of a2-6-sialylation, al-2-fucosylation, and
type 1 LacNAc is increased, whereas that of a2—3-sialylation
and tetra-antennary N-glycans is decreased upon induction of
pluripotency (Fig. 4).

Selection of the Best Lectin Probe to Discriminate
Pluripotency—We then addressed the challenge to develop a
lectin-based procedure to discriminate between differentiated
SCs and undifferentiated iPSCs/ESCs, which could be utilized
to monitor the state of differentiation. As described, rGC2,
rBC2LCN, SNA, TJAI SSA, rPSL1a, rRSIIL, BPL, and AAL gave
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FIGURE 4. Schematic representation of the putative glycan alterations upon induction of pluripotency.

TABLE1
Selection of the best lectin probe to evaluate pluripotency among 96
lectins

Lectins with significantly higher signals (FWER < 0.001) for iPSCs/ESCs than SCs
are shown. Also see supplernental Fig. $4.

SC (mean, SC iPSC/ESC iPSC/ESC FWER
Lectin n=11) (S$.D.) (mean,n=123) (S.D.) (Bonferroni)
rGC2 125 31 304 47 1E-21
BC2LCN 1 1 23 6 2E—19
SNA 69 43 124 18 4E—11
TJAL 96 58 170 28 9E—10
SSA 97 55 156 22 9E—09
rPSL1a 61 32 107 21 2E—07
rRSUL 78 23 109 20 3E—04
BPL 9 5 20 8 7E—04
AAL 518 77 677 114 1E-03

significantly higher signals in iPSCs/ESCs than SCs with
FWER << 0.001 (Table 1). Among them, rBC2LCN showed the
best performance as a probe to detect only undifferentiated
iPSCs/ESCs but never reacted with differentiated SCs and MEF,
whereas other lectins also reacted with SCs (Table 1). Namely,
although rGC2 showed a better score in terms of FWER (1 X
1072") than rBC2LCN (2 X 107 '), the former reacted strongly
with MEF (Fig. 5). Similarly, SNA (4 X 107*"), a representative
a2-68ia-binding lectin, showed significant cross-reactivity
with a part of SCs derived from PAE in addition to MEF (Fig. 5).

Monitoring the Contamination of the Xenoantigen, aGal
Epitope—From a practical viewpoint, monitoring possible con-
tamination by xenotransplantation antigens in iPSCs/ESCs is
essential for their safe use in regenerative medicine. A recom-
binant MOA (rMOA) recognizes the xenotransplantation anti-
gen Galal-3GalB1-4GIcNAc (44) present in most cells from
New World monkeys and non-primate mammals, including
mice, but not in humans. Indeed, rMOA strongly bound to
MEFs but not to any human SCs (Fig. 6). Therefore, rMOA
signals should not be detected in human iPSCs. However, trip-
licate samples of the two cell lines MRC5-iPS#25(P22)(#13—-15)
and UtE-iPSB05(P13)(#64 — 66) exhibited significant signals on
rMOA. In order to validate whether the binding of rMOA is
mediated by a carbohydrate recognition domain of rMOA, we
then performed inhibition assay. As shown in Fig. 6B, the bind-
ing of rMOA to cell membrane fractions of MEF and MRC5-
iPS#25(P22,#13) were abolished in the presence of 100 pg/ml
Galal-3GalBl-4GlcNAc-PAA (Fig. 6B), but no inhibitory
effect was observed for 100 pg/ml of a negative control (PAA
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without sugar moiety), indicating that the binding is due to
specific interactions via the rMOA carbohydrate recogni-
tion domain. As expected, no inhibitory effect of Galal-
3GalpBl-4GlcNAc-PAA on a Fuc-binding lectin, rAAL, was
observed. These data unambiguously reflect contamination by
the xenoantigen aGal epitope, in the above two cell lines, which
were most probably contaminated with MEF.

DISCUSSION

Using the developed high density lectin microarray, we per-
formed a systematic analysis of cell surface glycans of a large set
of human iPSCs (114 cell types) and ESCs (nine cell types). As a
result, a basis for a rational stem cell evaluation system was
established, which can reveal both the state of undifferentiation
and inclusion of aGal epitope (a representative xenoantigen).
Such a comprehensive glycome analysis targeting iPSCs and
ESCs has never been carried out so far. There are at least three
key advantages in using a lectin microarray. 1) An overall glycan
profile of each cell type is readily obtained using a relatively
small number of cells (~1 X 10%), and thus, the method is
widely applicable to stem cells. 2) The proposed evaluation sys-
tem includes selection of the best probe by a statistical strategy
among a number of lectins, which are immobilized on the array.
As candidate probes, carbohydrate-binding antibodies devel-
oped so far could also be included. 3) Various properties of stem
cells can be assessed simultaneously (i.e. with “one-chip” tech-
nology). Using the same strategy described in this study, lectin-
based evaluation methods targeting tumorigenesis and the dif-
ferentiation propensity of stem cells could also be developed.

Based on the lectin signals and the expression profiles of gly-
cosyltransferases, we concluded that the expression of a2—6-
sialylation, a1-2-fucosylation, and type 1 LacNAc increases,
whereas that of a2-3-sialylation and tetra-antennary N-gly-
cans decreases correspondingly upon the induction of pluripo-
tency. These changes are consistent with the recent reports that
relevant glycans (i.e. the expression of Globo H and H type 1
with an a1-2Fuc and a2-6Sia in human ESCs) are higher than
that in differentiated embryoid body (9, 43). Interestingly, the
increased expression of a1-2Fuc and type 1 LacNAc, which are
synthesized by the action of FUT1/2 and B3GalT5, respectively,
is closely related to the synthesis of the well known pluripo-
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tency markers, SSEA3/4 and Tra-1-60/81 (for a scheme, see
supplemental Fig. $4).

In this study, rBC2LCN was selected as the best lectin probe
to evaluate pluripotency among the 96 lectins. BC2LCN is a
TNF-like lectin molecule identified from a Gram-negative
bacterium Burkholderia cenocepacia (45). Glycoconjugate
microarray analysis revealed that rBC2LCN binds specifically
to Fucal-2GalB1-3GIlcNAc (GalNAc)-containing glycans,
such as H type 1 (Fucal-2GalB1-3GlcNAc), H type 3 (Fucal—
2GalB1-3GalNAc), and Lewis b (Fucal-2Galpl-3(Fucal-
4)GlcNAc), which include the two structural characteristics
related to the pluripotency (a1-2Fuc and type 1 LacNAc) as
described above (supplemental Fig. $3). This observation is
consistent with the previous report (45) in which Sulak et al.
studied the glycan-binding specificity of BC2LCN in detail
using glycan microarray and titration microcalorimetry. They
also demonstrated that this lectin also binds to Globo H
(Fucal—-2GalB1-3GalNAcB1-3Galal—4GalBl—4Glc), which
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FIGURE 6. Monitoring the contamination of the xenoantigen aGal epitope using the rMOA lectin. A, mean-normalized lectin microarray data are
represented by a bar graph. Numbers correspond to cell types described in supplemental Table 3. 8, inhibition assay. Cy3-labaled cell membrane fractions of
MEF(#1) or MRC5-iPS#25(P22)(#13) were incubated with lectin microarray either in the absence (None) or presence of 100 ug/ml Gala1-3Gal B1-4GIcNAc-PAA
or negative control PAA without sugar moiety. Data shown were obtained at gain 110 for MEF and gain 120 for MRC5-iPS#25(P22).

was recently proposed as a glycosphingolipid type pluripotency
marker (supplemental Fig. $4) (9, 45). These results explain the
mechanism of how this lectin could be used as the probe to
discriminate pluripotency. rBC2LCN could be used to probe
glycoproteins and possibly all glycoconjugates carrying
Fucal-2GalB1-3GlcNAc (GalNAc), whereas anti-SSEA3 and
anti-SSEA4 specifically target glycosphingolipids. From a prac-
tical viewpoint, rBC2LCN is cost-effective because it can be
produced in large amounts by the conventional E. coli expres-
sion system (84 mg/liter). Thus, this lectin could be a versatile
probe to evaluate pluripotency.

In contrast, Globo H has also been reported to be overex-
pressed in epithelial cell tumors (46). Furthermore, a2-6Sia
up-regulated in iPSCs/ESCs has been reported to be overex-
pressed in many types of human cancers, and its high expres-
sion positively correlates with tumor metastasis and poor prog-
nosis (47). Thus, the glycan alterations upon induction of
pluripotency observed in this study are apparently similar to
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those occurring during malignant transformation, as was
implied recently (9). Although the reason for this similarity
remains to be elucidated, the characteristic glycan changes
should be related to the ability of eternal cell proliferation and
maintenance, properties common to both cancer cells and
pluripotent stem cells.

Glycans are located at the outermost cell surface, where var-
ious events take place on the basis of cell-to-cell recognition
and interactions. Endogenous lectins, major counterpart mol-
ecules of glycans, should play crucial roles in the events (e.g. by
regulating several signaling pathways). In this context, interac-
tions occurring between cell surface glycans and endogenous
lectins are considered to be essential for the maintenance of
pluripotency, self-renewal, and differentiation of iPSCs/ESCs
(48). Indeed, heparan sulfate proteoglycans were reported to
regulate self-renewal and pluripotency of embryonic stem cells
(49). Moreover, reduced sulfation on heparan sulfate and chon-
droitin sulfate were demonstrated to direct neural differentia-
tion of mouse ESCs and human iPSCs (50). Recently, synthetic
substrates recognizing cell surface glycans were reported to
facilitate the long term culture of pluripotent stem cells (48).
Thus, global analysis of the cellular glycomes of iPSCs and ESCs
performed in this study will be necessary to provide the basis to
explore the functions and applications of the stem cell glycobi-
ology. They includes rational design of the effective substrates
and culture conditions to support the long term propagation of
ESCs and iPSCs (48). Of course, the results obtained in this
study could also be readily applied to staining (specification of
the place the event occurs), enrichment (e.g. lectin-aided cap-
turing of necessary cells), and targeting of specific cells (e.g
elimination of unwanted undifferentiated cells). In this regard,
stem cell glycoengineering with the aid of a lectin microarray is
a key issue in realization of regenerative medicine in the near
future.
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We developed a method in which the relationship between chemical compounds, characterized by the
secondary dimensional descriptors by a standard method, is first determined by network inference, and then
the inferred network is divided into the compound groups by network clustering. We applied this method
to 279 active inhibitors of factor Xa found by the first screening. A large network of 266 active compounds
connected with 408 edges emerged and was divided into 10 clusters. Surprisingly, the chemical structures
that were common within the clusters, but diverse between them, could be extracted. The activity differences
between the clusters provide rational clues for the systematic synthesis of derivatives in the lead optimization
process, instead of empirical and intuitive inspections. Thus, our method for automatically grouping the
chemical compounds by a network approach is useful to improve the efficiency of the drug discovery process.

1. INTRODUCTION

Novel computational approaches and methodologies are
increasing the efficiency of drug discovery, which involves
numerous processes.’ Indeed, various computational ap-
proaches in virtual screening are utilized to predict the
activity of hypothetical compounds, based on the quantitative
structure—activity relationship (QSAR).? > In particular, the
selection of compounds from a library or database of
compounds is widely used to identify those that are likely
to possess a given activity, when a single bioactive reference
structure is available.® ® In this approach, fingerprint-based
similarity searching is performed to identify the database
molecules that are most similar to a user-defined reference
structure.” Furthermore, the support vector machine is utilized
to predict the activity of newly synthesized compounds with
high accuracy.'® The principal component analysis (PCA)
also presents the relationship between the compounds, to
allow a visual investigation of their activities in the principal
component space. In particular, it generates a concept for
the distribution of chemical compounds, named the chemical
space, where different chemical compounds are reasonably
distributed, depending on their corresponding origins."'

In spite of the popularity of computational approaches,
empirical and intuitive approaches are still employed in drug
discovery processes.' One reason for retaining the empirical
and intuitive approaches is that after the first screening, the
active compounds are usually compared in terms of the
relationship between the chemical structure and its activity,

* Corresponding author. E-mail: k.horimoto@aist.go.jp.. Telephone: +81
3 3599 8711.

T National Institute of Advanced Industrial Science and Technology
(AIST).

$ INFOCOM Corporation.

¥ Shanghai University.
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before the next step of synthesizing the derivatives for
selecting the ultimate lead. Unfortunately, this step partially
depends on the empirical selection of the candidates for the
chemical synthesis of the drug target, with reference to the
chemical structures of the active and inactive compounds
obtained by the first screening. Indeed, the structural
information on the active compounds after the first screening
is not fully utilized for selecting candidates of seeds for the
derivative synthesis. Thus, the extraction of useful informa-
tion about chemical structure and activity, in an automatic
and visual manner, is desirable to systematically and ef-
ficiently synthesize derivatives for drug discovery.

‘We now propose an automatic method to visually group
chemical compounds based on their structures, by using two
types of network analysis methods. One is the network
inference method. In the present study, we use the path
consistency algorithm,'? one of the graphical models from
the family of probability models simplified by the conditional
independences inherent in the graph,'® which can visually
infer the relationships between variables in a network form.
Another is the network clustering method. This is a method
to extract one property, named the “community structure”,
which indicates that the vertices in networks are often
clustered into tightly knit groups, with a high density of
within-group edges and a lower density of between-group
edges.'* This method is useful to automatically group the
variables into some clusters from the connected network
structure. Here we utilized the two network analysis methods
to assess the relationship between chemical compounds. The
utility of the present method is demonstrated by a set of
chemical compounds after the first screening. The merits and
pitfalls of the present method are also discussed, in terms of
the previous computational methods.

© 2011 American Chemical Society
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Figure 1. Workflow of the present method. The present method is
schematically described in four steps.

2. MATERIALS AND METHODS

2.1. Overview of the Present Method. An overview of
our method is schematically described in Figure 1. First, the
chemical compounds selected by the first screening, in terms
of drug activity, are characterized by their secondary structure
properties, by a standard procedure. Second, the relationships
between the compounds are investigated by a network
inference method, the path consistency algorithm.'? Third,
the inferred network structures are divided into groups by a
network clustering method, the Newman algorithm. 14 Fourth,
the maximum common structures of the compounds are
extracted in each cluster by a standard method. Thus, the
characteristic features of the chemical structures hidden in
the active chemical compounds are revealed visually and
automatically by network analysis methods. The details of
each step are described below.

2.2. Data Set. The data set contains a wide series of
inhibitors of factor Xa extracted from the literature, all
sharing a benzamidine moiety.'> The considered data set
contains 279 very active compounds (K; lower than 10 nM)
among a total of 435 chemical compounds, also including
156 low-activity compounds (K; higher than 1 £M).

2.3. Descriptors. The calculated 2D descriptors were
derived from the commercially available software, MOE, by
Chemical Computing Group Inc. (http://www.chemcomp.
com/). As a preprocessing step for the following analyses,
the values of each descriptor were standardized by their
averages and standard deviations. In this step, the number
of descriptors was reduced, by leaving only the continuous
values of the descriptors. Finally, 158 descriptors were used.

2.4. Network Inference by Path - Consistency (PC)
Algorithm with Modifications. The path consistency (PC)
algorithm is a network inference method based on the
graphical model.'? The original PC algorithm is composed
of two parts: the undirected graph inference by the partial
correlation coefficient and the following directed graph
generated by using the orientation rule. The present method
partially exploits the first part of the PC algorithm, because
the aim of the present application of the network inference
method is to scrutinize the relationships between the chemical
compounds, without the causality.

SAITO ET AL.

The algorithm for the first part is simple. The relationship
between two variables is tested from the lower partial
correlation coefficient to the higher one. For example, the
relationship between the two variables is first tested by the
zero-th partial correlation coefficient. If the null hypothesis
is accepted, i.e., no association between the two variables,
then no further test is performed for the higher order of the
partial correlation coefficient. If it is rejected, then the
relationship between the two variables is tested by the first
partial correlation coefficient. In general, the (m — 2)-th order
of the partial correlation coefficient is calculated between
two variables, given (m — 2) variables, i.e., rjjes, between
X; and X, given the ‘rest’ of the variables, {X;} for k = 1,
2, ..., m, and k # 1, j, and after calculating the (m — 2)-th
order of the partial correlation coefficient, the algorithm
naturally stops. However, the algorithm does not usually
request the (m — 2)-th order of the partial correlation
coefficient for the natural stop. This is because no adjacent
variables will be found after excluding the variables, even
in the calculation of the lower order of the partial correlation
coefficient. We provide the pseudocode of the algorithm in
Figure 2.

In the sample data, the zero-th order (i.e., the condition
where subset S is empty) of the partial correlation coefficient
is calculated by Pearson’s correlation coefficient, rjs = 4,
expressed by

cov(X;, X))

L T —

I Var(X) var(X)
where cov(X;, X)) and var(X;) are the covariance between X;
and X; and the variance of X;. The higher order of the partial
correlation coefficients, rys, expressed by

_rU

Fie = ————=
ijfIs —
e

where ijlS means S={1, 2, ..., p}\{ij}, and ¥ is the i-j
element of the inverse correlation coefficient matrix."* Note
that the dimensions of the correlation coefficient matrix are
related to the orders of the partial correlation coefficients.
The m-th order partial correlation coefficient is calculated
from the (m + 2) dimension of the correlation coefficient
matrix. The partial correlation coefficient is statistically tested
by using the Z-statistic.'® First, z-transforms of the partial
correlation coefficients are calculated, by the following

equation:

1, (1A Dyl

4= 21“(1 ~ryl
Then, the z-statistic is obtained from the following equation:

R —

i/n—3—-p
where n is the number of samples and p = S| is the
conditioning order of the partial correlation coefficient. The
z-statistic follows the standard normal distribution, N(0,1),
and the significance probability can be set according to this

distribution; i.e., we reject the null hypothesis Hy:ry;s = 0, if
Z > Zqpwith significance level o If Hy is not rejected, then
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Let Adj(G.X) \ {X;} be the set of nodes (variables) adjacent to X;, except for Xj, in the undirected graph G.

Let p be the degree of conditioning.
1: G« complete undirected graph
2:p=0

3: repeat

4:  for all X; such that |[Adj(G.X)| -12p do

5: for all X;e Adj(G,X;) do

6: for all subset ScAdj(G,.X)\ {X;} such that |S|=p do
7 ifX;_||_X;|Sthen

8: delete edge between X; and X; in G
9: end if

10: end for

11: end for

12:  end for

13: p=p+1

14: until [4dj(G.X)| - 1<p, VX

15: return G

Where “X;_||_X; | §” means X; and X; are conditionally independent on S; i.e., there is no edge between X; and X;.

Figure 2. Pseudocode of the modified path consistency algorithm. A pseudocode of the modified PC algorithm is described. In line seven,
statistical hypothesis testing for the partial correlation between X; and X; conditioning on S is used to determine whether X; and X; are
conditionally independent (for details, see text). If the partial correlation cannot be calculated, due to the multicollinearity, then we consider
that X; and X; are always conditionally dependent on any other variables.

we consider r;, = 0, and we judge the i-th and j-th nodes as
being conditionally independent of S.

The key point in the present network inference is the two
modifications of the original PC algorithm, for application
to the chemical compounds. The first modification is the
correction of the algorithm in the calculation of the partial
correlation coefficient. Since many compounds frequently
show very similar descriptor values, the difficulty increases
in the numerical calculation of the partial correlation coef-
ficients, due to the multicolinearity between the variables.
The original PC algorithm accidentally stops if only one
partial correlation between a pair of variables violates the
numerical calculation, against the high similarity of the
descriptors. To avoid the accidental stops by the highly
associated compound pairs, the original PC algorithm is
modified as follows: If the calculation of any order of the
partial correlation coefficient between the variables is
violated, then the corresponding pair of variables is regarded
as being dependent. The second modification is the correction
of the output by the algorithm. The network inference outputs
the edges with positive and negative correlations. The edge
with a positive correlation in the network can be interpreted
as a relationship with direct similarity between the properties
of the chemical compound structures, while the edge with a
negative correlation indicates a relationship with dissimilarity
in a linear fashion. Thus, the edges with the positive
correlation are adopted, and those with the negative correla-
tion are excluded from the inferred network.

2.5. Grouping of Chemical Compounds by Network
Clustering. In networks, the vertices are often clustered into
tightly knit groups, with a high density of within-group edges
and a lower density of between-group edges. This property

is called a “community structure”, and the computer algo-
rithms for identifying the community structure are based on
the iterative removal of edges with high “betweenness”
scores, which identify such structures with some sensitivity.
Here, we applied one of these algorithms to group the
chemical compounds in the inferred network.'*

This method is based on the modularity that is measured
by a parameter, the Q-value. The Q-value is defined as
follows:

Q= Z(eii - aiz)

where e; means the fraction of edges in cluster i with respect
to all edges in the network, and a; means the fraction of the
number of edges that end in cluster i. First, this method
considers each node as a cluster. In each subsequent step,
two clusters are combined to maximize the increment of the
Q-value, AQ. AQ is calculated as follows:

AQ = e; + €; — 2a,a, = 2(e

: aa,)

i i

where e; means the half of the fraction of edges between
clusters i and j with respect to all edges in the network. In
addition to the above definition, e; is commutative, e¢; = ¢j;,
in the undirected graph. The complexity of the calculation
is on the order O(N), where N is the number of nodes in the
network, and we combine two clusters at most (N — 1) times;
therefore, in sparse networks, the clustering is complete after
O(N?) times.

2.6. Maximum Common Structures of Clusters. The
maximum common structure within the constituent com-
pounds belonging one cluster was obtained by using
ChemAxon JKlustor libMCS.'”
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Figure 3. Chemical compound network inferred by path consistency algorithm. A large network of 266 compounds, inferred by the path
consistency algorithm with 5% significance probability,'? is described. The compounds and the established edges between compounds are

denoted by open circles and straight lines, respectively.

3. RESULTS AND DISCUSSION

3.1. Chemical Compound Network. The relationships
between the 279 active compounds were inferred by the PC
algorithm. By the network inference, a large network
containing 266 of the 279 active compounds emerged, as
shown in Figure 3. Only seven compounds remained apart
from the large network, and among them, five edges of the
seven compounds were established. The emergence of a large
network seems natural, because all of the compounds
analyzed in this stady share similar physicochemical proper-
ties, in terms of drug activity.

The large network contained 408 edges between com-
pounds, and the average connectivity ([number of edges]/
[n(n — 1)/2], where n is the number of nodes) was about
0.0116. As shown in Figure 3, the inferred network was
relatively sparse, in terms of edge connectivity. Although
several hubs were observed in the network, it seems difficult
to identify clear relationships between the compounds by
visual inspection.

3.2. Chemical Compound Network Clusters. To scru-
tinize the compound relationships, we applied a network
clustering method to rationally rearrange the connectivity in
the inferred network of Figure 3. In Figure 4, 10 clusters
naturally emerged from the entire connectivity in the inferred
large network. Thus, the large, complicated network was
transformed into distinctive clusters, with the number of
compounds in each cluster ranging from 14 to 41. The
emergence of the clusters indicates that some distinctive
compound groups with similar structural properties exist in
the network. The following step involves the investigation

of the constituent compounds of each cluster that emerged
by two network analyses, in terms of chemical structure and
activity.

3.3. Common Structures of Chemical Compound
Network Clusters. We surveyed the structural relationship
between the constituent chemical compounds that belong to
each cluster in the active network. Interestingly, the structures
of the constituent compounds were common within each
cluster, and they were diverse between the clusters.

The common structures of the member compounds in the
clusters of the active network are shown in Figure 5A. It is
readily apparent that common structures were found for all
of the clusters, and high densities of the constituent com-
pound structures were present in all of the clusters. Indeed,
on average, ca. 63.7% of the compounds shared common
structures: the highest and lowest share rates were 100.0%
in cluster 6 and 35.5% in cluster 3. In addition, the average
density of heavy atoms over all constituent compounds in
each cluster was high: 9 of the 10 clusters showed more than
50% of the average density, and the exceptional cases were
found in cluster 8. Furthermore, the common structures of
each cluster were distinctive between them, as seen in Figure
5A. To estimate the differences between the common
structures, the Tanimoto coefficients were calculated between
them, as follows:

; (XX
Ti‘ =
' ;X?k + ;ijk - zk:(Xikak)
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Figure 4. Network clusters of a large network of active chemical compounds. The network clusters estimated for the large network of
active compounds in Figure 3 are depicted. Ten clusters emerged, and they are numbered in the order of the numbers of constituent compounds

within the clusters.

As shown in Table 1, the Tanimoto coefficients for all
pairs of common structures were much less than 0.85, a value
that is generally considered to reflect similarity to each other.
All of the coefficients were less than 0.4, except for only
0.688 between the common structures of clusters 5 and 6.

The structures common within clusters and diverse be-
tween clusters were further investigated in terms of the
activity distribution, expressed by the —log(ICss) histogram
of the constituent compounds. For reference, the histogram
of all compounds was also drawn in Figure 5B, and in the
histogram, the compounds with a —log(ICsy) value of less
than 9 (10 nM), which is generally regarded as the lead
compound, were frequently included (29.3% of compounds).
Subsequently, the compounds with ICsq values less than 10
nM were frequently observed in the histograms of each
cluster in Figure 5A. Interestingly, some exceptions were
also observed. A statistical difference between the total ICs
distribution in Figure 5B and the distributions in Figure 5A
was found in several clusters. In the distributions of clusters
5 and 10, the frequency of observing an ICs; value than 10nM
was relatively high, in comparison with the total distribution.
This indicates that the common structures in clusters 5 and
10 may show a robust ICsy for any chemical modification.
Thus, the common structure may be a candidate for lead
optimization. In contrast, the frequencies of ICsy values less
than 10 nM in clusters 4 and 9 were much lower than that
in the total ICs distribution. This indicates the possibility
that many compounds with an ICs, activity of less than 10
nM can be synthesized from the common structures of the
two clusters. Thus, the correspondence between the common
structures and the ICs, distributions of each cluster provides
some clues for the synthesis of new compounds in the lead
optimization process.

3.4. Related Methods. For comparison with the perfor-
mance of the present method, the PCA was performed for
the same data. Figure 6 shows the projection of the cluster

members of the active network in Figure 4 into the principal
component space. As easily seen in the figure, the cluster
members with each common structure are scattered in the
space. Indeed, the constituent compounds in each cluster
were projected into some duplicated spaces, while the
compounds of clusters 5 and 6 were relatively separated from
the other clusters in the projected space. As indicated in the
preceding subsection, the Tanimoto coefficient between the
common structures of clusters 5 and 6 was exceptionally
large, and this similarity reflects the common configuration
of the constituent compounds in the two clusters in the
principal component space. In contrast, the Tanimoto coef-

- ficients between the common structures of the other clusters

were small, and therefore the compounds were not clearly
discriminated in the space. Thus, the PCA may be a low-
resolution method to clearly detect the groups with common
chemical structures in the data, followed by the first
screening.

The fingerprint approach is well-known as another method
to detect common structures in an ensemble of compounds.”
Actually, we used this approach to identify the common
structure of the constituent compounds in the respective
clusters. As a trial, we applied the fingerprint approach to
all of the compounds but were unable to find the common
structure (data not shown). We expected this failure from
the fact that the common structures of each cluster show
much less similarity, as depicted in Figure 5A. In contrast
to the PCA, therefore, the fingerprint method may be a high-
resolution technique to detect the distinctive groups with
common chemical structures.

Note that there are two reasons why we use the Newman
method, instead of the standard hierarchical clustering by
using the partial correlation matrix as a distance measure.
One reason is that the edges in the inferred network are
established by considering the higher order of correlation
between multiple variables, instead of the distance between
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Figure 5. Maximum common structures of the active compound network clusters, together with ICso histograms of constituent compounds.
(A) The numbers of clusters in the first column are those described in Figure 4. The common structures of the 10 clusters in the second
column were extracted by using ChemAxon JKlustor 1ibMCS.'” The total number of constituent compounds in each cluster is denoted in
the third column, and the number of compounds sharing the corresponding common structures is also denoted in parentheses. In the fourth
column, the average densities of heavy atoms in the common structures over the structures of all compounds are denoted. In the fifth
column, the histograms of the ICsq values of the constituent compounds are depicted: the vertical and horizontal axes are the frequency of
the compounds and the —log(ICso) values, respectively. In addition, the differences between each histogram of ICs, values for the respective
clusters and that for the total active compounds (B) were tested by Fisher’s exact test. The significance of the differences between the
histograms is indicated at the cluster number in the first column: 5%, “**’; and 10%, “*’.
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Table 1. Tanimoto Coefficients between Maximum Common
Structures in Respective Active Compound Clusters

cluster
no. 1 2 3 4 5 6 7 8 9 10

0357 —

0243 0254 -—

0.261 0304 0244 —

0.179 0.197 0.199 0202 —

0.160 0.166 0.226 0.232 0.686 —

0.187 0.193 0.192 0.123 0.132 0.124 —

0.137 0.224 0.176 0.152 0.126 0.150 0.073 —

0.254 0271 0.234 0229 0213 0.198 0.151 0.157 -
0.213 0.165 0228 0.274 0.222 0.246 0.142 0.095 0246 —

OO0~ A WN

—

pairs of variables in the clustering, The clustering technique
in the present study is therefore suitable for keeping the
inferred relationships between variables. The other reason
is that the Newman method can automatically determine the
number of clusters in terms of the network structure. In
contrast, the number of clusters is determined by setting a
threshold, as in hierarchical clustering, or the cluster number
is done before the clustering, as in a self-organization map
(SOM).

In summary, the PCA provides a coarse-grinning relation-
ship between compounds from the macroscopic resources,
and the fingerprint approach provides a fine relationship
between limited ensembles of compounds. With these
situations in mind, our procedure provides a medium
relationship between compounds, to enrich the selection of
molecules with a desired activity. Thus, it bridges the gap
between the two methods, by finding the groups of common
structures in the step after the first screening, during the
process of the lead optimization.

3.5. Merits and Pitfalls of the Present Method. One of
the merits of the present method is that it simply detects the
structura] similarity relationships between active compounds.
Indeed, only one parameter, the significance probability in
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Figure 6. Distribution of members of network clusters in principle
component space. The 266 active compounds in the network of
Figure 3, which were characterized by the same number of
descriptors (158 descriptors) as in the present analysis, were
subjected to the PCA. The inertias of the first and second principal
components (PC1 and PC2 in the figure) were 0.309 and 0.198,
respectively. The constituent compounds of the 10 clusters in Figure
4 are indicated by the following symbols: cluster 1, [J; 2, O; 3, A;
4,+;5, %x;6,0;7, 1 8 @9, a;and 10, @.
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the path consistency algorithm, is set in the network analyses.
Thus, the present method is highly automatic and visual, to
help reveal a rational synthesis route of chemical compounds
for new drug discovery.

One of the key points of our method is the application of
network inference, based on the graphical model, to the
chemical compounds. Among the similar chemical structures,
the present network inference detects the ‘well-balanced’
similarity, by using the partial correlation coefficient. In
general, the graphical model distinguishes between real
correlation and pseudocorrelation, based on the calculation
of a partial correlation coefficient that realizes the concept
of conditional independence.'®> The merit of this graphical
model is that it only establishes the connection between the
compounds with common structures and not between those
lacking common structures. This discriminative ability is
useful for classifying a large number of active compounds
into various groups with different common structures in a
rational manner.

In the present analysis, one large network was inferred,
and 10 clusters emerged. The numbers of networks and
clusters naturally depend on the user-defined descriptors and
one parameter in the network inference. In the present
analysis, the chemical compounds were characterized by as
many secondary structure descriptors as possible. In general,
the kinds of descriptors in the analysis may be changed,
according to the analyzed data and the analysis aim.
Fortunately, the quantification of chemical compounds by
descriptors can be easily and quickly performed, due to recent
advances in high-performance computing. Although the
heuristic choice of descriptors is important to characterize
the compound set, the descriptor optimization responsible
for the compound set can be included as a preprocessing
step in the present work. Furthermore, the size of the network
and the following cluster numbers can be controlled by the
user-defined significance probability in the network inference.
For example, if one chooses a more significant probability
than that of the present study, then a smaller network and
fewer clusters will be obtained, in which more similar
common structures will be found. In addition, the compu-
tational time for the present data in the two network analyses
was about 5 s, using a personal computer (one CPU with a
2.4 GHz Pentium IV processor and 1GB of memory, under
the Linux system). At any rate, the easy manipulation of the
data, using only one user-defined parameter, may promote
the use of the present method in applications to discriminate
between various active compounds in drug discovery.

4. CONCLUSIONS

We have proposed a novel method to group active
chemical compounds, by first screening with a combination
of two network analysis methods. The scrutinization of active
inhibitors of factor Xa by our method revealed reasonable
grouping in terms of chemical structure and significant
differences between each group in terms of activity. The
present results illustrate the possibility that our method will
bridge the gap between the compound activity test by the
first screening and the following synthesis of lead derivatives.
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